首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   3篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2011年   7篇
  2008年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  1991年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
1.
S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches.  相似文献   
2.
The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell''s compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.  相似文献   
3.
Pathogenicity of Mycobacterium tuberculosis is closely related to its ability to survive and replicate in the hostile environment of macrophages. For some pathogenic bacteria, secretion of ATP-utilizing enzymes into the extracellular environment aids in pathogen survival via P2Z receptor-mediated, ATP-induced death of infected macrophages. A component of these enzymes is nucleoside diphosphate kinase (Ndk). The ndk gene was cloned from M. tuberculosis H37Rv and expressed in Escherichia coli. Ndk was secreted into the culture medium by M. tuberculosis, as determined by enzymatic activity and Western blotting. Purified Ndk enhanced ATP-induced macrophage cell death, as assayed by the release of [14C]adenine. A catalytic mutant of Ndk failed to enhance ATP-induced macrophage cell death, and periodate-oxidized ATP (oATP), an irreversible inhibitor of P2Z receptor, blocked ATP/Ndk-induced cell death. Purified Ndk was also found to be autophosphorylated with broad specificity for all nucleotides. Conversion of His117-->Gln, which is part of the nucleotide-binding site, abolished autophosphorylation. Purified Ndk also showed GTPase activity. Collectively, these results indicate that secreted Ndk of M. tuberculosis acts as a cytotoxic factor for macrophages, which may help in dissemination of the bacilli and evasion of the immune system.  相似文献   
4.
Molecular epidemiology studies have used the counts of different mutational types like transitions, transversions, etc. to identify putative mutagens, with little reference to gene organization and structure–function of the translated product. Moreover, geographical variation in the mutational spectrum is not limited to the mutational types at the nucleotide level but also have a bearing at the functional level. Here, we developed a novel measure to estimate the rate of spontaneous detrimental mutations called “mutation index” for comparing the mutational spectra consisting of all single base, missense, and non-missense changes. We have analyzed 1609 mutations occurring in 38 exons in 24 populations in three diseases viz. hemophilia B (F9 gene – 420 mutations in 9 populations across 8 exons), hemophilia A (F8 gene – 650, 8 and 26, respectively) and ovarian carcinoma (TP53 gene – 539, 7 and 4, respectively). We considered exons as units of evolution instead of the entire gene and observed feeble differences among populations implying lack of a mutagen-specific effect and the possibility of mutation causing endogenous factors. In all the three genes we observed elevated rates of detrimental mutations in exons encoding regions of significance for the molecular function of the protein. We propose that this can be extended to the entire exome with implications in exon-shuffling and complex human diseases.  相似文献   
5.
Type 2 diabetes mellitus is a complex disorder with a strong genetic component. Inherited complex disease susceptibility in humans is most commonly associated with single nucleotide polymorphisms. The mechanisms by which this occurs are still poorly understood. Here we focus on analyzing the effect of a set of disease-causing missense variations of the monogenetic form of Type 2 diabetes mellitus and a set of disease-associated nonsynonymous variations in comparison with that of nonsynonymous variations without any experimental evidence for association with any disease. Analysis of different properties such as evolutionary conservation status, solvent accessibility, secondary structure, etc. suggests that disease-causing variations are associated with extreme changes in the value of the parameters relating to evolutionary conservation and/or protein stability. Disease-associated variations are rather moderately conserved and have a milder effect on protein function and stability. The majority of the genes harboring these variations are clustered in or near the insulin signaling network. Most of these variations are identified as potential sites for post-translational modifications; certain predictions have already reported experimental evidence. Overall our results indicate that Type 2 diabetes mellitus may result from a large number of single nucleotide polymorphisms that impair modular domain function and post-translational modifications involved in signaling. Our emphasis is more on conserved corresponding residues than the variation alone. We believe that the approach of considering a stretch of peptide sequence involving a polymorphism would be a better method of defining the role of the polymorphism in the manifestation of this disease. Because most of the variations associated with the disease are rare, we hypothesize that this disease is a "mosaic model" of interaction between a large number of rare alleles and a small number of common alleles along with the environment, which is little contrary to the existing common disease common variant model.  相似文献   
6.
We report the thermoluminescence properties of Sr1.96Al2SiO7:Eu0.04 and Sr1.92Al2SiO7:Eu0.04Dy0.04 phosphors. These phosphors were prepared by a high‐temperature solid‐state reaction method. The prepared phosphors were characterized by X‐ray diffraction. A 254 nm source was used for ultraviolet (UV) irradiation and a 60Co source was used for γ‐irradiation. The effect of heating rate and UV‐exposure were examined. The thermoluminescence temperature shifts to higher values with increasing heating rate and thermoluminescence intensity increases with increasing UV exposure time. The trapping parameters such as activation energy (E), order of kinetics and frequency factor (s) were calculated by peak shape method. The effect of γ‐ and UV‐irradiation on thermoluminescence studies was also examined.  相似文献   
7.
8.
Introduction: An efficient readily employable risk prognostication method is desirable for MM in settings where genomics tests cannot be performed owing to geographical/economical constraints. In this work, a new Modified Risk Staging (MRS) has been proposed for newly diagnosed Multiple Myeloma (NDMM) that exploits six easy-to-acquire clinical parameters i.e. age, albumin, β2-microglobulin (β2M), calcium, estimated glomerular filtration rate (eGFR) and hemoglobin.Materials and Methods: MRS was designed using a training cohort of 716 NDMM patients of our inhouse MM Indian (MMIn) cohort and validated on MMIn (n=354) cohort and MMRF (n=900) cohort. K-adaptive partitioning (KAP) was used to find new thresholds for the parameters. Risk staging rules, obtained via training a J48 classifier, were used to build MRS.Results: New thresholds were identified for albumin (3.6 g/dL), β2M (4.8 mg/L), calcium (11.13 mg/dL), eGFR (48.1 mL/min), and hemoglobin (12.3 g/dL) using KAP on the MMIn dataset. On the MMIn dataset, MRS outperformed ISS for OS prediction in terms of C-index, hazard ratios, and its corresponding p-values, but performs comparable in prediction of PFS. On both MMIn and MMRF datasets, MRS performed better than RISS in terms of C-index and p-values. A simple online tool was also designed to allow automated calculation of MRS based on the values of the parameters.Discussion: Our proposed ML-derived yet simple staging system, MRS, although does not employ genetic features, outperforms RISS as confirmed by better separability in KM survival curves and higher values of C-index on both MMIn and MMRF datasets.Funding: Grant: BT/MED/30/SP11006/2015 (Department of Biotechnology, Govt. of India), Grant: DST/ICPS/CPS-Individual/2018/279(G) (Department of Science and Technology, Govt. of India), UGC-Senior Research Fellowship.  相似文献   
9.
Mechanoluminescence (ML) glow is produced on the back side when the front of a metal sample is irradiated with infrared Nd:YAG laser pulses. An incident laser beam with a power density below the plasma‐flare onset threshold causes a rise in temperature in the studied metal. As the incident laser power density increases, the intensity of the ML glow signal also increases. On the basis of the laser power density‐induced temperature, an expression is derived for the temperature‐induced thermal stress. An expression is derived for the correlation between thermal stress and laser power density, which indicates that the temperature‐induced thermal stress is directly related to the incident laser power density. In the region of plastic deformation, temperature‐induced thermal stress is related to the strain and, consequently, to the emitted ML intensity. Finally, an expression is derived for the laser power dependence of the ML intensity, and good agreement is found between the theoretical and experimental results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
10.
Linear alkyl benzene sulphonate (LAS), one of the main ingredients used in synthetic detergents to enhance their cleansing properties. Indiscriminate and untreated discharge of detergents and their residues in both lantic and lotic habitats pose a variety of ecological threats and also adversely affect aquatic fauna. In vivo, LAS metabolism and biotransformation occurs via monooxygenases in liver, leading to Reactive Oxygen Species, ROS, production and consequently oxidative stress by disturbing cellular antioxidant enzymatic equilibrium. Present study aims to evaluate the activities of two widely distributed antioxidant enzymes viz., catalase (CAT) and superoxide dismutase (SOD) and ROS induced histological impairments in liver of freshwater fish, Channa punctatus. For the estimation of oxidative stress and hepatic impairments, well acclimatized fishes were divided in three groups. Fish of group G1 serves as control whereas fish of the other two groups, G2 and G3 were exposed to two fractions, 1/20th and 1/10th of 96 h LC50 of LAS for 24, 48, 72 and 96 h of exposure periods. Our results showed a significant induction in CAT and SOD activities in liver tissue of C. punctatus in a dose and time dependent manner. ROS induced histopathological impairments in hepatic tissues are characterized by loosely arranged, irregularly distributed and degenerated hepatocytes with increased vacuolization and pyknotic nuclei. The results are quite suggestive that LAS intoxication generates oxidative stress by ROS production which brings about histopathological impairments in exposed fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号