首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aims to evaluate the potential involvement and regulatory mechanism of miR‐19a in hepatocytes autophagy of acute liver failure (ALF). The in vitro hepatocytes injury model of primary hepatocyte and hepatocytes line HL‐7702 was established by D‐galactosamine (D‐GalN) and lipopolysaccharide (LPS) co‐treatment. Relative expression level of miR‐19a and NBR2 was determined by qRT‐PCR. Protein expression of AMPK/PPARα and autophagy‐related gene was determined by Western blot. In hepatic tissue of 20 ALF patients and D‐GalN/LPS‐stimulated hepatocytes, miR‐19a was upregulated and NBR2 was downregulated. D‐GalN/LPS stimulation caused the inactivation of AMPK/PPARα signaling and the decrease of autophagy‐related LC3‐II/LC3‐I ratio and beclin‐1 expression in hepatocytes. The expression of both AMPK/PPARα and NBR2 were negatively controlled by miR‐19a overexpression or knockdown. Moreover, both NBR2 and PPARα were targeted regulated by miR‐19a according to luciferase reporter assay. In D‐GalN/LPS‐stimulated hepatocytes, AMPK activation promoted PPARα expression. AMPK inactivation inhibited the pro‐autophagy effect of miR‐19a and caused the decrease of LC3‐II/LC3‐I ratio and beclin‐1 expression. PPARα activation abrogated the anti‐autophagy effect of miR‐19a mimic and caused the increase of LC3‐II/LC3‐I ratio and beclin‐1 expression. NBR2 knockdown reversed the anti‐autophagy impact of miR‐19a inhibitor and caused the decrease of LC3‐II/LC3‐I ratio and beclin‐1 expression. In summary, our data suggested that miR‐19a negatively controlled the autophagy of hepatocytes attenuated in D‐GalN/LPS‐stimulated hepatocytes via regulating NBR2 and AMPK/PPARα signaling. J. Cell. Biochem. 119: 358–365, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

2.
Sodium (±)‐5‐bromo‐2‐(a‐hydroxypentyl) benzoate (generic name: brozopine, BZP) has been reported to protect against stroke‐induced brain injury and was approved for Phase II clinical trials for treatment of stroke‐related brain damage by the China Food and Drug Administration (CFDA). However, the role of BZP in cardiac diseases, especially in pressure overload‐induced cardiac hypertrophy and heart failure, remains to be investigated. In the present study, angiotensin II stimulation and transverse aortic constriction were employed to induce cardiomyocyte hypertrophy in vitro and in vivo, respectively, prior to the assessment of myocardial cell autophagy. We observed that BZP administration ameliorated cardiomyocyte hypertrophy and excessive autophagic activity. Further results indicated that AMP‐activated protein kinase (AMPK)‐mediated activation of the mammalian target of rapamycin (mTOR) pathway likely played a role in regulation of autophagy by BZP after Ang II stimulation. The activation of AMPK with metformin reversed the BZP‐induced suppression of autophagy. Finally, for the first time, we demonstrated that BZP could protect the heart from pressure overload‐induced hypertrophy and dysfunction, and this effect is associated with its inhibition of maladaptive cardiomyocyte autophagy through the AMPK‐mTOR signalling pathway. These findings indicated that BZP may serve as a promising compound for treatment of pressure overload‐induced cardiac remodelling and heart failure.  相似文献   

3.
mTOR是细胞生长和增殖的中枢调控因子。mTOR形成2个不同的复合物mTORC1和mTORC2。mTORC1受多种信号调节,如生长因子、氨基酸和细胞能量,同时,mTORC1调节许多重要的细胞过程,包括翻译、转录和自噬。AMPK作为一种关键的生理能量传感器,是细胞和有机体能量平衡的主要调节因子,协调多种代谢途径,平衡能量的供应和需求,最终调节细胞和器官的生长。能量代谢平衡调控是由多个与之相关的信号通路所介导,其中AMPK/mTOR信号通路在细胞内共同构成一个合成代谢和分解代谢过程的开关。此外,AMPK/mTOR信号通路还是一个自噬的重要调控途径。本文着重于目前对AMPK和mTOR信号传导之间关系的了解,讨论了AMPK/mTOR在细胞和有机体能量稳态中的作用。  相似文献   

4.
Previous studies have demonstrated that AMP‐activated protein kinase (AMPK) controls autophagy through the mammalian target of rapamycin (mTOR) and Unc‐51 like kinase 1 (ULK1/Atg1) signaling, which augments the quality of cellular housekeeping, and that β‐guanidinopropionic acid (β‐GPA), a creatine analog, leads to a chronic activation of AMPK. However, the relationship between β‐GPA and aging remains elusive. In this study, we hypothesized that feeding β‐GPA to adult Drosophila produces the lifespan extension via activation of AMPK‐dependent autophagy. It was found that dietary administration of β‐GPA at a concentration higher than 900 mm induced a significant extension of the lifespan of Drosophila melanogaster in repeated experiments. Furthermore, we found that Atg8 protein, the homolog of microtubule‐associated protein 1A/1B‐light chain 3 (LC3) and a biomarker of autophagy in Drosophila, was significantly upregulated by β‐GPA treatment, indicating that autophagic activity plays a role in the effect of β‐GPA. On the other hand, when the expression of Atg5 protein, an essential protein for autophagy, was reduced by RNA interference (RNAi), the effect of β‐GPA on lifespan extension was abolished. Moreover, we found that AMPK was also involved in this process. β‐GPA treatment significantly elevated the expression of phospho‐T172‐AMPK levels, while inhibition of AMPK by either AMPK‐RNAi or compound C significantly attenuated the expression of autophagy‐related proteins and lifespan extension in Drosophila. Taken together, our results suggest that β‐GPA can induce an extension of the lifespan of Drosophila via AMPK‐Atg1‐autophagy signaling pathway.  相似文献   

5.
It has been long recognised that activation of toll‐like receptors (TLRs) induces autophagy to restrict intracellular bacterial growth. However, the mechanisms of TLR‐induced autophagy are incompletely understood. Salmonella Typhimurium is an intracellular pathogen that causes food poisoning and gastroenteritis in humans. Whether TLR activation contributes to S. Typhimurium‐induced autophagy has not been investigated. Here, we report that S. Typhimurium and TLRs shared a common pathway to induce autophagy in macrophages. We first showed that S. Typhimurium‐induced autophagy in a RAW264.7 murine macrophage cell line was mediated by the AMP‐activated protein kinase (AMPK) through activation of the TGF‐β‐activated kinase (TAK1), a kinase activated by multiple TLRs. AMPK activation led to increased phosphorylation of Unc‐51‐like autophagy activating kinase (ULK1) at S317 and S555. ULK1 phosphorylation at these two sites in S. Typhimurium‐infected macrophages overrode the inhibitory effect of mTOR on ULK1 activity due to mTOR‐mediated ULK1 phosphorylation at S757. Lipopolysaccharide (LPS), flagellin, and CpG oligodeoxynucleotide, which activate TLR4, TLR5, and TLR9, respectively, increased TAK1 and AMPK phosphorylation and induced autophagy in RAW264.7 cells and in bone marrow‐derived macrophages. However, LPS was unable to induce TAK1 and AMPK phosphorylation and autophagy in TLR4‐deficient macrophages. TAK1 and AMPK‐specific inhibitors blocked S. Typhimurium‐induced autophagy and xenophagy and increased the bacterial growth in RAW264.7 cells. These observations collectively suggest that activation of the TAK1–AMPK axis through TLRs is essential for S. Typhimurium‐induced autophagy and that TLR signalling cross‐activates the autophagic pathway to clear intracellular bacteria.  相似文献   

6.
Phosphoserine phosphatase (PSPH), a key enzyme of the l -serine synthesis pathway, has been involved in cancer progression and survival. However, limited evidence revealed the PSPH influence on hepatocellular carcinoma (HCC). Herein, we observed that PSPH expression was upregulated in both HCC tissues and cell lines, which was determined by western blotting. TCGA database showed that the PSPH protein levels were significantly upregulated and affected patient survival rates in HCC. Then gain- and loss-of-function manipulations were performed by transfection with a pcDNA-PSPH expression vector or a specific short interfering RNA against PSPH in Huh7 cells. Huh7 cell proliferation, stemness, invasion, and apoptosis were assessed by using CCK-8 test, colony formation assay, Transwell assay, and Flow cytometry analysis, respectively, and levels of autophagy-related proteins were detected by using western blotting. The results showed that PSPH could induce Huh7 cell autophagy, promote cell proliferation and invasion, and inhibit apoptosis. The knockdown of PSPH could inhibit Huh7 cell proliferation, invasion, and autophagy. Furthermore, PSPH activated Liver kinase B1 (LKB1) and TGF beta-activated kinase 1 (TAK1), affected the adenosine 5′-monophosphate-activated protein kinase (AMPK)/mTOR/ULK1 signaling pathway, but could not activate calcium/calmodulin-dependent protein kinase kinase (CaMKK) in Huh7 cells. Inhibition of either LKB1, TAK1, or AMPK could eliminate the effect of PSPH overexpression on Huh7 cell behaviors. However, inhibition of CaMKK could not influence the effect of PSPH overexpression on Huh7 cell behaviors. In conclusion, PSPH could induce autophagy, promote proliferation and invasion, and inhibit apoptosis in HCC cells via the AMPK/mTOR/ULK1 signaling pathway.  相似文献   

7.
Avicins, a family of plant triterpene electrophiles, can trigger apoptosis-associated tumor cell death, and suppress chemical-induced carcinogenesis by its anti-inflammatory, anti-mutagenic, and antioxidant properties. Here, we show that tumor cells treated with benzyloxycarbonylvalyl-alanyl-aspartic acid (O-methyl)-fluoro-methylketone, an apoptosis inhibitor, and Bax(-/-)Bak(-/-) apoptosis-resistant cells can still undergo cell death in response to avicin D treatment. We demonstrate that this non-apoptotic cell death is mediated by autophagy, which can be suppressed by chloroquine, an autophagy inhibitor, and by specific knockdown of autophagy-related gene-5 (Atg5) and Atg7. Avicin D decreases cellular ATP levels, stimulates the activation of AMP-activated protein kinase (AMPK), and inhibits mammalian target of rapamycin (mTOR) and S6 kinase activity. Suppression of AMPK by compound C and dominant-negative AMPK decreases avicin D-induced autophagic cell death. Furthermore, avicin D-induced autophagic cell death can be abrogated by knockdown of tuberous sclerosis complex 2 (TSC2), a key mediator linking AMPK to mTOR inhibition, suggesting that AMPK activation is a crucial event targeted by avicin D. These findings indicate the therapeutic potential of avicins by triggering autophagic cell death.  相似文献   

8.
The AMPK pathway is a metabolic stress-related and energy censor pathway which plays important regulatory roles in normal and malignant cells. This cellular cascade controls generation of signals for initiation of mRNA translation via the mTOR pathway and exhibits regulatory roles on the initiation of autophagy. AMPK activators have been shown to suppress mTOR activity and to negatively control malignant transformation and cell proliferation of diverse malignant cell types. Such properties of AMPK inducers have generated substantial interest for the use of AMPK targeting compounds as antineoplastic agents and have provoked extensive research efforts to better define and classify the mechanisms controlling AMPK activity and its functional consequences in malignant cells.  相似文献   

9.
In central nervous system, glioma is the most common primary brain tumour. The diffuse migration and rapid proliferation are main obstacles for successful treatment. Gartanin, a natural xanthone of mangosteen, suppressed proliferation, migration and colony formation in a time‐ and concentration‐dependent manner in T98G glioma cells but not in mouse normal neuronal HT22 cells. Gartanin, at low micromole, led to cell cycle arrest in G1 phase accompanied by inhibited expression level of G1 cell cycle regulatory proteins cyclin D1, while increased expression level of cyclin‐dependent kinase inhibitor p27Kip1. In addition, the secretion and activity of matrix metalloproteinases 2/9 (MMP‐2/‐9) were significantly suppressed in T98G cells treated with gartanin, and it might result from modulating mitogen‐activated protein kinases (MAPK) signalling pathway in T98G glioma cells. Moreover, gartanin significantly induced autophagy in T98G cells and increased GFP‐LC3 punctate fluorescence accompanied by the increased expression level of Beclin 1 and LC3‐II, while suppressed expression level of p62. Gartanin treatment resulted in obvious inhibition of PI3K/Akt/mTOR signalling pathway, which is important in modulating autophagy. Notably, gartanin‐mediated anti‐viability was significantly abrogated by autophagy inhibitors including 3‐methyladenine (3‐MA) and chloroquine (CQ). These results indicate that anti‐proliferation effect of gartanin in T98G cells is most likely via cell cycle arrest modulated by autophagy, which is regulated by PI3K/Akt/mTOR signalling pathway, while anti‐migration effect is most likely via suppression of MMP‐2/‐9 activity which is involved in MAPK signalling pathway.  相似文献   

10.
Osteoclasts are highly differentiated terminal cells formed by fusion of hematopoietic stem cells. Previously, osteoprotegerin (OPG) inhibit osteoclast differentiation and bone resorption by blocking receptor activator of nuclear factor-κB ligand (RANKL) binding to RANK indirect mechanism. Furthermore, autophagy plays an important role during osteoclast differentiation and function. However, whether autophagy is involved in OPG-inhibited osteoclast formation and bone resorption is not known. To elucidate the role of autophagy in OPG-inhibited osteoclast differentiation and bone resorption, we used primary osteoclast derived from mice bone marrow monocytes/macrophages (BMM) by induced M-CSF and RANKL. The results showed that autophagy-related proteins expression were upregulated; tartrate-resistant acid phosphatase-positive osteoclast number and bone resorption activity were decreased; LC3 puncta and autophagosomes number were increased and activated AMPK/mTOR/p70S6K signaling pathway. In addition, chloroquine (as the autophagy/lysosome inhibitor, CQ) or rapamycin (as the autophagy/lysosome inhibitor, Rap) attenuated osteoclast differentiation and bone resorption activity by OPG treatment via AMPK/mTOR/p70S6K signaling pathway. Our data demonstrated that autophagy plays a critical role in OPG inhibiting osteoclast differentiation and bone resorption via AMPK/mTOR/p70S6K signaling pathway in vitro.  相似文献   

11.
The capacity of tumour necrosis factor‐related apoptosis‐inducing ligand (TRAIL) to trigger apoptosis preferentially in cancer cells, although sparing normal cells, has motivated clinical development of TRAIL receptor agonists as anti‐cancer therapeutics. The molecular mechanisms responsible for the differential TRAIL sensitivity of normal and cancer cells are, however, poorly understood. Here, we show a novel signalling pathway that activates cytoprotective autophagy in untransformed human epithelial cells treated with TRAIL. TRAIL‐induced autophagy is mediated by the AMP‐activated protein kinase (AMPK) that inhibits mammalian target of rapamycin complex 1, a potent inhibitor of autophagy. Interestingly, the TRAIL‐induced AMPK activation is refractory to the depletion of the two known AMPK‐activating kinases, LKB1 and Ca(2+)/calmodulin‐dependent kinase kinase‐β, but depends on transforming growth factor‐β‐activating kinase 1 (TAK1) and TAK1‐binding subunit 2. As TAK1 and AMPK are ubiquitously expressed kinases activated by numerous cytokines and developmental cues, these data are most likely to have broad implications for our understanding of cellular control of energy homoeostasis as well as the resistance of untransformed cells against TRAIL‐induced apoptosis.  相似文献   

12.
Cucurbitacins, the natural triterpenoids possessing many biological activities, have been reported to suppress the mTORC1/p70S6K pathway and to induce autophagy. However, the correlation between such activities is largely unknown. In this study, we addressed this issue in human cancer cells in response to cucurbitacin E (CuE) treatment. Our results showed that CuE induced autophagy as evidenced by the formation of LC3-II and colocalization of punctate LC3 with the lysosomal marker LAMP2 in HeLa and MCF7 cells. However, CuE induced much lower levels of autophagy in ATG5-knocked down cells and failed to induce autophagy in DU145 cells lacking functional ATG5 expression, suggesting the dependence of CuE-induced autophagy on ATG5. Consistent with autophagy induction, mTORC1 activity (as reflected by p70S6K and ULK1S758 phosphorylation) was inhibited by CuE treatment. The suppression of mTORC1 activity was further confirmed by reduced recruitment of mTOR to the lysosome, which is the activation site of mTORC1. In contrast, CuE rapidly activated AMPK leading to increased phosphorylation of its substrates. AMPK activation contributed to CuE-induced suppression of mTORC1/p70S6K signaling and autophagy induction, since AMPK knockdown diminished these effects. Collectively, our data suggested that CuE induced autophagy in human cancer cells at least partly via downregulation of mTORC1 signaling and upregulation of AMPK activity.  相似文献   

13.
Phenotypic modulation of vascular smooth muscle cells (VSMCs) is involved in the pathophysiological processes of the intracranial aneurysms (IAs). Although shear stress has been implicated in the proliferation, migration, and phenotypic conversion of VSMCs, the molecular mechanisms underlying these events are currently unknown. In this study, we investigated whether shear stress(SS)-induced VSMC phenotypic modulation was mediated by autophagy involved in adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway. The results show that shear stress could inhibit the expression of key VSMC contractile genes and induce pro-inflammatory/matrix-remodeling genes levels, contributing to VSMCs phenotypic switching from a contractile to a synthetic phenotype. More importantly, Shear stress also markedly increased the levels of the autophagy marker microtubule-associated protein light chain 3-II (LC3II), Beclin-1, and p62 degradation. The autophagy inhibitor 3-methyladenine (3-MA) significantly blocked shear-induced phenotypic modulation of VSMCs. To further explore the molecular mechanism involved in shear-induced autophagy, we found that shear stress could activate AMPK/mTOR/ULK1 signaling pathway in VSMCs. Compound C, a pharmacological inhibitor of AMPK, significantly reduced the levels of p-AMPK and p-ULK, enhanced p-mTOR level, and finally decreased LC3II and Beclin-1 level, which suggested that activated AMPK/mTOR/ULK1 signaling was related to shear-mediated autophagy. These results indicate that shear stress promotes VSMC phenotypic modulation through the induction of autophagy involved in activating the AMPK/mTOR/ULK1 pathway.  相似文献   

14.
In neurodegenerative diseases like Alzheimer's disease (AD), tau is hyperphosphorylated and forms aggregates and neurofibrillary tangles in affected neurons. Autophagy is critical to clear the aggregates of disease‐associated proteins and is often altered in patients and animal models of AD. Because mechanistic target of rapamycin (mTOR) negatively regulates autophagy and is hyperactive in the brains of patients with AD, mTOR is an attractive therapeutic target for AD. However, pharmacological strategies to increase autophagy by targeting mTOR inhibition cause various side effects. Therefore, autophagy activation mediated by non‐mTOR pathways is a new option for autophagy‐based AD therapy. Here, we report that pimozide activates autophagy to rescue tau pathology in an AD model. Pimozide increased autophagic flux through the activation of the AMPK‐Unc‐51 like autophagy activating kinase 1 (ULK1) axis, but not of mTOR, in neuronal cells, and this function was independent of dopamine D2 receptor inhibition. Pimozide reduced levels of abnormally phosphorylated tau aggregates in neuronal cells. Further, daily intraperitoneal (i.p.) treatment of pimozide led to a recovery from memory deficits of TauC3 mice expressing a caspase‐cleaved form of tau. In the brains of these mice, we found increased phosphorylation of AMPK1 and ULK1, and reduced levels of the soluble oligomers and NP40‐insoluble aggregates of abnormally phosphorylated tau. Together, these results suggest that pimozide rescues memory impairments in TauC3 mice and reduces tau aggregates by increasing autophagic flux through the mTOR‐independent AMPK‐ULK1 axis.  相似文献   

15.
16.
Adenosine monophosphate-activated protein kinase (AMPK) acts as a major sensor of cellular energy status in cancers and is critically involved in cell sensitivity to anticancer agents. Here, we showed that AMPK was inactivated in lymphoma and related to the upregulation of the mammalian target of rapamycin (mTOR) pathway. AMPK activator metformin potentially inhibited the growth of B- and T-lymphoma cells. Strong antitumor effect was also observed on primary lymphoma cells while sparing normal hematopoiesis ex vivo. Metformin-induced AMPK activation was associated with the inhibition of the mTOR signaling without involving AKT. Moreover, lymphoma cell response to the chemotherapeutic agent doxorubicin and mTOR inhibitor temsirolimus was significantly enhanced when co-treated with metformin. Pharmacologic and molecular knock-down of AMPK attenuated metformin-mediated lymphoma cell growth inhibition and drug sensitization. In vivo, metformin induced AMPK activation, mTOR inhibition and remarkably blocked tumor growth in murine lymphoma xenografts. Of note, metformin was equally effective when given orally. Combined treatment of oral metformin with doxorubicin or temsirolimus triggered lymphoma cell autophagy and functioned more efficiently than either agent alone. Taken together, these data provided first evidence for the growth-inhibitory and drug-sensitizing effect of metformin on lymphoma. Selectively targeting mTOR pathway through AMPK activation may thus represent a promising new strategy to improve treatment of lymphoma patients.  相似文献   

17.
In this study we aim to elucidate the signaling pathway and biological function of autophagy induced by MNNG, a commonly used DNA alkylating agent. We first observed that MNNG is able to induce necrotic cell death and autophagy in Bax?/? Bak?/? double knockout MEFs. We analyzed the critical role of PARP-1 activation and ATP depletion in MNNG-mediated cell death and autophagy via AMPK activation and mTOR suppression. We provide evidence that suppression of AMPK blocks MNNG-induced autophagy and enhances cell death, suggesting the pro-survival function of autophagy in MNNG-treated cells. Taken together, data from this study reveal a novel mechanism in controlling MNNG-mediated autophagy via AMPK activation downstream of PARP-1 activation and ATP depletion.  相似文献   

18.
Autophagy is a cellular degradation process that is up-regulated upon starvation. Nutrition-dependent regulation of mTOR (mammalian target of rapamycin) is a major determinant of autophagy. RTK (receptor tyrosine kinase) signalling and AMPK (AMP-activated protein kinase) converge upon mTOR to suppress or activate autophagy. Nutrition-dependent regulation of autophagy is mediated via mTOR phosphorylation of the serine/threonine kinase ULK1 (unc51-like kinase 1). In the present study, we also describe ULK1 as an mTOR-independent convergence point for AMPK and RTK signalling. We initially identified ULK1 as a 14-3-3-binding protein and this interaction was enhanced by treatment with AMPK agonists. AMPK interacted with ULK1 and phosphorylated ULK1 at Ser(555) in vitro. Mutation of this residue to alanine abrogated 14-3-3 binding to ULK1, and in vivo phosphorylation of ULK1 was blocked by a dominant-negative AMPK mutant. We next identified a high-stringency Akt site in ULK1 at Ser(774) and showed that phosphorylation at this site was increased by insulin. Finally, we found that the kinase-activation loop of ULK1 contains a consensus phosphorylation site at Thr(180) that is required for ULK1 autophosphorylation activity. Collectively, our results suggest that ULK1 may act as a major node for regulation by multiple kinases including AMPK and Akt that play both stimulatory and inhibitory roles in regulating autophagy.  相似文献   

19.
Porcine circovirus type 2 (PCV2) uses autophagy machinery to enhance its replication in PK-15 cells. However, the underlying mechanisms are unknown. By the use of specific inhibitors, RNA interference, and coimmunoprecipitation, we show that PCV2 induces autophagy in PK-15 cells through a pathway involving the kinases AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinase 1/2 (ERK1/2), the tumor suppressor protein TSC2, and the mammalian target of rapamycin (mTOR). AMPK and ERK1/2 positively regulate autophagy through negative control of the mTOR pathway by phosphorylating TSC2 in PCV2-infected PK-15 cells. Thus, PCV2 might induce autophagy via the AMPK/ERK/TSC2/mTOR signaling pathway in the host cells, representing a pivotal mechanism for PCV2 pathogenesis.  相似文献   

20.
Although the KAI1/CD82 protein has been reported to inhibit cell metastasis in many studies, its mechanism of action has not yet been fully elucidated. In the present study, we investigated the possible effects of KAI1/CD82 on the metastatic phenotype in H1299 lung carcinoma cells. These studies were based on the pivotal role that the acquisition of motile phenotype plays on the initial steps of metastasis. KAI1/CD82‐mediated morphological changes were observed using phase contrast microscopy. We report here, that a KAI1/CD82‐induced phenotypic change was involved in the decrease of Rac1 expression and GTPase activity. However, we found that KAI1/CD82 did not regulate Rac1 mRNA levels. This suggests the existence of another regulatory mechanism of Rac1 protein maturation or activation. To identify the signaling pathway of Rac1 regulation, we investigated the PI3K/Akt/mTOR pathway, since the PI3K/Akt pathway regulates Rac1 activation and mTOR is known to play a regulatory role in protein translation. H1299/CD82‐transfectants showed lower mTOR expression and cell growth than the control group. The data obtained from this study suggested that KAI1/CD82 decreased the metastatic phenotype of H1299 lung carcinoma cells by down‐regulating Rac1 expression through the PI3K/Akt/mTOR pathway. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号