首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNAs (miRNAs) have been confirmed to be closely related to various human complex diseases by many experimental studies. It is necessary and valuable to develop powerful and effective computational models to predict potential associations between miRNAs and diseases. In this work, we presented a prediction model of Graphlet Interaction for MiRNA‐Disease Association prediction (GIMDA) by integrating the disease semantic similarity, miRNA functional similarity, Gaussian interaction profile kernel similarity and the experimentally confirmed miRNA‐disease associations. The related score of a miRNA to a disease was calculated by measuring the graphlet interactions between two miRNAs or two diseases. The novelty of GIMDA lies in that we used graphlet interaction to analyse the complex relationships between two nodes in a graph. The AUCs of GIMDA in global and local leave‐one‐out cross‐validation (LOOCV) turned out to be 0.9006 and 0.8455, respectively. The average result of five‐fold cross‐validation reached to 0.8927 ± 0.0012. In case study for colon neoplasms, kidney neoplasms and prostate neoplasms based on the database of HMDD V2.0, 45, 45, 41 of the top 50 potential miRNAs predicted by GIMDA were validated by dbDEMC and miR2Disease. Additionally, in the case study of new diseases without any known associated miRNAs and the case study of predicting potential miRNA‐disease associations using HMDD V1.0, there were also high percentages of top 50 miRNAs verified by the experimental literatures.  相似文献   

2.
Recently, microRNAs (miRNAs) are confirmed to be important molecules within many crucial biological processes and therefore related to various complex human diseases. However, previous methods of predicting miRNA–disease associations have their own deficiencies. Under this circumstance, we developed a prediction method called deep representations‐based miRNA–disease association (DRMDA) prediction. The original miRNA–disease association data were extracted from HDMM database. Meanwhile, stacked auto‐encoder, greedy layer‐wise unsupervised pre‐training algorithm and support vector machine were implemented to predict potential associations. We compared DRMDA with five previous classical prediction models (HGIMDA, RLSMDA, HDMP, WBSMDA and RWRMDA) in global leave‐one‐out cross‐validation (LOOCV), local LOOCV and fivefold cross‐validation, respectively. The AUCs achieved by DRMDA were 0.9177, 08339 and 0.9156 ± 0.0006 in the three tests above, respectively. In further case studies, we predicted the top 50 potential miRNAs for colon neoplasms, lymphoma and prostate neoplasms, and 88%, 90% and 86% of the predicted miRNA can be verified by experimental evidence, respectively. In conclusion, DRMDA is a promising prediction method which could identify potential and novel miRNA–disease associations.  相似文献   

3.
In recent years, microRNAs (miRNAs) are attracting an increasing amount of researchers’ attention, as accumulating studies show that miRNAs play important roles in various basic biological processes and that dysregulation of miRNAs is connected with diverse human diseases, particularly cancers. However, the experimental methods to identify associations between miRNAs and diseases remain costly and laborious. In this study, we developed a computational method named Network Distance Analysis for MiRNA‐Disease Association prediction (NDAMDA) which could effectively predict potential miRNA‐disease associations. The highlight of this method was the use of not only the direct network distance between 2 miRNAs (diseases) but also their respective mean network distances to all other miRNAs (diseases) in the network. The model's reliable performance was certified by the AUC of 0.8920 in global leave‐one‐out cross‐validation (LOOCV), 0.8062 in local LOOCV and the average AUCs of 0.8935 ± 0.0009 in fivefold cross‐validation. Moreover, we applied NDAMDA to 3 different case studies to predict potential miRNAs related to breast neoplasms, lymphoma, oesophageal neoplasms, prostate neoplasms and hepatocellular carcinoma. Results showed that 86%, 72%, 86%, 86% and 84% of the top 50 predicted miRNAs were supported by experimental association evidence. Therefore, NDAMDA is a reliable method for predicting disease‐related miRNAs.  相似文献   

4.
miRNAs are a class of small noncoding RNAs that are associated with a variety of complex biological processes. Increasing studies have shown that miRNAs have close relationships with many human diseases. The prediction of the associations between miRNAs and diseases has thus become a hot topic. Although traditional experimental methods are reliable, they could only identify a limited number of associations as they are time‐consuming and expensive. Consequently, great efforts have been made to effectively predict reliable disease‐related miRNAs based on computational methods. In this study, we present a novel approach to predict the potential microRNA‐disease associations based on sparse neighbourhood. Specifically, our method takes advantage of the sparsity of the miRNA‐disease association network and integrates the sparse information into the current similarity matrices for both miRNAs and diseases. To demonstrate the utility of our method, we applied global LOOCV, local LOOCV and five‐fold cross‐validation to evaluate our method, respectively. The corresponding AUCs are 0.936, 0.882 and 0.934. Three types of case studies on five common diseases further confirm the performance of our method in predicting unknown miRNA‐disease associations. Overall, results show that SNMDA can predict the potential associations between miRNAs and diseases effectively.  相似文献   

5.
Background: Increasing evidences indicate that microRNAs (miRNAs) are functionally related to the development and progression of various human diseases. Inferring disease-related miRNAs can be helpful in promoting disease biomarker detection for the treatment, diagnosis, and prevention of complex diseases. Methods: To improve the prediction accuracy of miRNA-disease association and capture more potential disease-related miRNAs, we constructed a precise miRNA global similarity network (MSFSN) via calculating the miRNA similarity based on secondary structures, families, and functions. Results: We tested the network on the classical algorithms: WBSMDA and RWRMDA through the method of leave-one-out cross-validation. Eventually, AUCs of 0.8212 and 0.9657 are obtained, respectively. Also, the proposed MSFSN is applied to three cancers for breast neoplasms, hepatocellular carcinoma, and prostate neoplasms. Consequently, 82%, 76%, and 82% of the top 50 potential miRNAs for these diseases are respectively validated by the miRNA-disease associations database miR2Disease and oncomiRDB. Conclusion: Therefore, MSFSN provides a novel miRNA similarity network combining precise function network with global structure network of miRNAs to predict the associations between miRNAs and diseases in various models.  相似文献   

6.
miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases.  相似文献   

7.
MiRNAs are a class of small non‐coding RNAs that are involved in the development and progression of various complex diseases. Great efforts have been made to discover potential associations between miRNAs and diseases recently. As experimental methods are in general expensive and time‐consuming, a large number of computational models have been developed to effectively predict reliable disease‐related miRNAs. However, the inherent noise and incompleteness in the existing biological datasets have inevitably limited the prediction accuracy of current computational models. To solve this issue, in this paper, we propose a novel method for miRNA‐disease association prediction based on matrix completion and label propagation. Specifically, our method first reconstructs a new miRNA/disease similarity matrix by matrix completion algorithm based on known experimentally verified miRNA‐disease associations and then utilizes the label propagation algorithm to reliably predict disease‐related miRNAs. As a result, MCLPMDA achieved comparable performance under different evaluation metrics and was capable of discovering greater number of true miRNA‐disease associations. Moreover, case study conducted on Breast Neoplasms further confirmed the prediction reliability of the proposed method. Taken together, the experimental results clearly demonstrated that MCLPMDA can serve as an effective and reliable tool for miRNA‐disease association prediction.  相似文献   

8.
9.
LncRNA and miRNA are key molecules in mechanism of competing endogenous RNAs(ceRNA), and their interactions have been discovered with important roles in gene regulation. As supplementary to the identification of lncRNA‐miRNA interactions from CLIP‐seq experiments, in silico prediction can select the most potential candidates for experimental validation. Although developing computational tool for predicting lncRNA‐miRNA interaction is of great importance for deciphering the ceRNA mechanism, little effort has been made towards this direction. In this paper, we propose an approach based on linear neighbour representation to predict lncRNA‐miRNA interactions (LNRLMI). Specifically, we first constructed a bipartite network by combining the known interaction network and similarities based on expression profiles of lncRNAs and miRNAs. Based on such a data integration, linear neighbour representation method was introduced to construct a prediction model. To evaluate the prediction performance of the proposed model, k‐fold cross validations were implemented. As a result, LNRLMI yielded the average AUCs of 0.8475 ± 0.0032, 0.8960 ± 0.0015 and 0.9069 ± 0.0014 on 2‐fold, 5‐fold and 10‐fold cross validation, respectively. A series of comparison experiments with other methods were also conducted, and the results showed that our method was feasible and effective to predict lncRNA‐miRNA interactions via a combination of different types of useful side information. It is anticipated that LNRLMI could be a useful tool for predicting non‐coding RNA regulation network that lncRNA and miRNA are involved in.  相似文献   

10.
Background: MicroRNAs (miRNAs) are a significant type of non-coding RNAs, which usually were encoded by endogenous genes with about ~22 nt nucleotides. Accumulating biological experiments have shown that miRNAs have close associations with various human diseases. Although traditional experimental methods achieve great successes in miRNA-disease interaction identification, these methods also have some limitations. Therefore, it is necessary to develop computational method to predict miRNA-disease interactions. Methods: Here, we propose a computational framework (MDVSI) to predict interactions between miRNAs and diseases by integrating miRNA topological similarity and functional similarity. Firstly, the CosRA index is utilized to measure miRNA similarity based on network topological feature. Then, in order to enhance the reliability of miRNA similarity, the functional similarity and CosRA similarity are integrated based on linear weight method. Further, the potential miRNA-disease associations are predicted by using recommendation method. In addition, in order to overcome limitation of recommendation method, for new disease, a new strategy is proposed to predict potential interactions between miRNAs and new disease based on disease functional similarity. Results: To evaluate the performance of different methods, we conduct ten-fold cross validation and de novo test in experiment and compare MDVSI with two the-state-of-art methods. The experimental result shows that MDVSI achieves an AUC of 0.91, which is at least 0.012 higher than other compared methods. Conclusions: In summary, we propose a computational framework (MDSVI) for miRNA-disease interaction prediction. The experiment results demonstrate that it outperforms other the-state-of-the-art methods. Case study shows that it can effectively identify potential miRNA-disease interactions.  相似文献   

11.
X Chen  MX Liu  QH Cui  GY Yan 《PloS one》2012,7(8):e43425
Accumulated evidence has shown that microRNAs (miRNAs) can functionally interact with a number of environmental factors (EFs) and their interactions critically affect phenotypes and diseases. Therefore, in-silico inference of disease-related miRNA-EF interactions is becoming crucial not only for the understanding of the mechanisms by which miRNAs and EFs contribute to disease, but also for disease diagnosis, treatment, and prognosis. In this paper, we analyzed the human miRNA-EF interaction data and revealed that miRNAs (EFs) with similar functions tend to interact with similar EFs (miRNAs) in the context of a given disease, which suggests a potential way to expand the current relation space of miRNAs, EFs, and diseases. Based on this observation, we further proposed a semi-supervised classifier based method (miREFScan) to predict novel disease-related interactions between miRNAs and EFs. As a result, the leave-one-out cross validation has shown that miREFScan obtained an AUC of 0.9564, indicating that miREFScan has a reliable performance. Moreover, we applied miREFScan to predict acute promyelocytic leukemia-related miRNA-EF interactions. The result shows that forty-nine of the top 1% predictions have been confirmed by experimental literature. In addition, using miREFScan we predicted and publicly released novel miRNA-EF interactions for 97 human diseases. Finally, we believe that miREFScan would be a useful bioinformatic resource for the research about the relationships among miRNAs, EFs, and human diseases.  相似文献   

12.
《Genomics》2020,112(1):809-819
Many biological experimental studies have confirmed that microRNAs (miRNAs) play a significant role in human complex diseases. Exploring miRNA-disease associations could be conducive to understanding disease pathogenesis at the molecular level and developing disease diagnostic biomarkers. However, since conducting traditional experiments is a costly and time-consuming way, plenty of computational models have been proposed to predict miRNA-disease associations. In this study, we presented a neoteric Bayesian model (KBMFMDA) that combines kernel-based nonlinear dimensionality reduction, matrix factorization and binary classification. The main idea of KBMFMDA is to project miRNAs and diseases into a unified subspace and estimate the association network in that subspace. KBMFMDA obtained the AUCs of 0.9132, 0.8708, 0.9008±0.0044 in global and local leave-one-out and five-fold cross validation. Moreover, KBMFMDA was applied to three important human cancers in three different kinds of case studies and most of the top 50 potential disease-related miRNAs were confirmed by many experimental reports.  相似文献   

13.
Hybrid breeding of rice via genomic selection   总被引:1,自引:0,他引:1  
Hybrid breeding is the main strategy for improving productivity in many crops, especially in rice and maize. Genomic hybrid breeding is a technology that uses whole‐genome markers to predict future hybrids. Predicted superior hybrids are then field evaluated and released as new hybrid cultivars after their superior performances are confirmed. This will increase the opportunity of selecting true superior hybrids with minimum costs. Here, we used genomic best linear unbiased prediction to perform hybrid performance prediction using an existing rice population of 1495 hybrids. Replicated 10‐fold cross‐validations showed that the prediction abilities on ten agronomic traits ranged from 0.35 to 0.92. Using the 1495 rice hybrids as a training sample, we predicted six agronomic traits of 100 hybrids derived from half diallel crosses involving 21 parents that are different from the parents of the hybrids in the training sample. The prediction abilities were relatively high, varying from 0.54 (yield) to 0.92 (grain length). We concluded that the current population of 1495 hybrids can be used to predict hybrids from seemingly unrelated parents. Eventually, we used this training population to predict all potential hybrids of cytoplasm male sterile lines from 3000 rice varieties from the 3K Rice Genome Project. Using a breeding index combining 10 traits, we identified the top and bottom 200 predicted hybrids. SNP genotypes of the training population and parameters estimated from this training population are available for general uses and further validation in genomic hybrid prediction of all potential hybrids generated from all varieties of rice.  相似文献   

14.
Since the prognosis of hypopharyngeal squamous cell carcinoma (HSCC) remains poor, identification of miRNA as a potential prognostic biomarker for HSCC may help improve personalized therapy. In the 2 cohorts with a total of 511 patients with HSCC (discovery: N = 372 and validation: N = 139) after post‐operative radiotherapy, we used miRNA microarray and qRT‐PCR to screen out the significant miRNAs which might predict survival. Associations of miRNAs and the signature score of these miRNAs with survival were performed by Kaplan‐Meier survival analysis and multivariate Cox hazard model. Among 9 candidate, miRNAs, miR‐200a‐3p, miR‐30b‐5p, miR‐3161, miR‐3605‐5p, miR‐378b and miR‐4451 were up‐regulated, while miR‐200c‐3p, miR‐429 and miR‐4701 were down‐regulated after validation. Moreover, the patients with high expression of miR‐200a‐3p, miR‐30b‐5p and miR‐4451 had significantly worse overall survival (OS) and disease‐specific survival (DSS) than did those with low expression (log‐rank P < .05). Patients with a high‐risk score had significant worse OS and DSS than those with low‐risk score. Finally, after adjusting for other important prognostic confounders, patients with high expression of miR‐200a‐3p, miR‐30b‐5p and miR‐4451 had significantly high risk of overall death and death owing to HSCC and patients with a high‐risk score has approximately 2‐fold increased risk in overall death and death owing to HSCC compared with those with a low‐risk score. These findings indicated that the 3‐miRNA‐based signature may be a novel independent prognostic biomarker for patients given surgery and post‐operative radiotherapy, supporting that these miRNAs may jointly predict survival of HSCC.  相似文献   

15.
16.
microRNA(miRNA)是一类不编码蛋白的调控小分子RNA,在真核生物中发挥着广泛而重要的调控功能.由于miRNA的表达具有时空特异性,因而通过计算方法预测miRNA而后有针对性的实验验证是miRNA发现的一条重要途径.降低假阳性率是miRNA预测方法面临的重要挑战.本研究采用集成学习方法构建预测miRNA前体的分类器SVMbagging,对训练集、测试集和独立测试集的结果表明,本研究的方法性能稳健、假阳性率低,具有很好的泛化能力,尤其是当阈值取0.9时,特异性高达99.90%,敏感性在26%以上,适合于全基因组预测.采用SVMbagging在人全基因组中预测miRNA前体,当取阈值0.9时,得到14933个可能的miRNA前体.通过与高通量小RNA测序数据的比较,发现其中4481个miRNA前体具有完全匹配的小RNA序列,与理论估计的真阳性数值非常接近.最后,对32个可能的miRNA进行实验验证,确定其中2条为真实的miRNA.  相似文献   

17.
Endogenous circular RNAs (circRNAs) have been reported in various diseases. However, their role in active TB remains unknown. The study was aimed to determine plasma circRNA expression profile to characterize potential biomarker and improve our understanding of active TB pathogenesis. CircRNA expression profiles were screened by circRNA microarrays in active TB plasma samples. Dysregulated circRNAs were then verified by qRT‐PCR. CircRNA targets were predicted based on analysis of circRNA‐miRNA‐mRNA interaction. GO and KEGG pathway analyses were used to predict the function of circRNA. ROC curve was calculated to evaluate diagnostic value for active TB. A total of 75 circRNAs were significantly dysregulated in active TB plasma. By further validation, hsa_circRNA_103571 exhibited significant decrease in active TB patients and showed potential interaction with active TB‐related miRNAs such as miR‐29a and miR‐16. Bioinformatics analysis revealed that hsa_circRNA_103571 was primarily involved in ras signalling pathway, regulation of actin cytoskeleton, T‐ and B‐cell receptor signalling pathway. ROC curve analysis suggested that hsa_circRNA_103571 had significant value for active TB diagnosis. Circulating circRNA dysregulation may play a role in active TB pathogenesis. Hsa_circRNA_103571 may be served as a potential biomarker for active TB diagnosis, and hsa_circRNA_103571‐miRNA‐mRNA interaction may provide some novel mechanism for active TB.  相似文献   

18.
RWRMDA: predicting novel human microRNA-disease associations   总被引:1,自引:0,他引:1  
X Chen  MX Liu  GY Yan 《Molecular bioSystems》2012,8(10):2792-2798
Recently, more and more research has shown that microRNAs (miRNAs) play critical roles in the development and progression of various diseases, but it is not easy to predict potential human miRNA-disease associations from the vast amount of biological data. Computational methods for predicting potential disease-miRNA associations have gained a lot of attention based on their feasibility, guidance and effectiveness. Differing from traditional local network similarity measures, we adopted global network similarity measures and developed Random Walk with Restart for MiRNA-Disease Association (RWRMDA) to infer potential miRNA-disease interactions by implementing random walk on the miRNA-miRNA functional similarity network. We tested RWRMDA on 1616 known miRNA-disease associations based on leave-one-out cross-validation, and achieved an area under the ROC curve of 86.17%, which significantly improves previous methods. The method was also applied to three cancers for accuracy evaluation. As a result, 98% (Breast cancer), 74% (Colon cancer), and 88% (Lung cancer) of top 50 predicted miRNAs are confirmed by published experiments. These results suggest that RWRMDA will represent an important bioinformatics resource in biomedical research of both miRNAs and diseases.  相似文献   

19.
20.
microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly contribute to understanding the mechanisms of complex diseases and benefit the prevention, detection, diagnosis and treatment of extraordinary diseases. In this study, we presented a novel model named Graph Convolutional Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified miRNA-disease associations to construct a heterogeneous network, which is applied to learn the embeddings of miRNAs and diseases. In addition, we separately constructed miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate association scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained final prediction scores between miRNAs and diseases by adopting an average ensemble way to integrate the prediction scores from two types of subnetworks. To indicate the accuracy of GCAEMDA, we applied different cross validation methods to evaluate our model whose performances were better than the state-of-the-art models. Case studies on a common human diseases were also implemented to prove the effectiveness of GCAEMDA. The results demonstrated that GCAEMDA was beneficial to infer potential associations of miRNA-disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号