首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   562篇
  免费   36篇
  国内免费   1篇
  2022年   6篇
  2021年   16篇
  2020年   10篇
  2019年   10篇
  2018年   10篇
  2017年   4篇
  2016年   16篇
  2015年   21篇
  2014年   24篇
  2013年   41篇
  2012年   33篇
  2011年   34篇
  2010年   23篇
  2009年   26篇
  2008年   32篇
  2007年   29篇
  2006年   39篇
  2005年   22篇
  2004年   19篇
  2003年   18篇
  2002年   12篇
  2001年   9篇
  2000年   8篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1992年   5篇
  1991年   3篇
  1989年   7篇
  1988年   11篇
  1987年   3篇
  1986年   4篇
  1984年   5篇
  1983年   3篇
  1981年   3篇
  1979年   5篇
  1978年   3篇
  1975年   12篇
  1972年   4篇
  1970年   6篇
  1969年   3篇
  1968年   3篇
  1967年   2篇
  1966年   4篇
  1965年   2篇
  1964年   4篇
  1962年   2篇
  1960年   5篇
排序方式: 共有599条查询结果,搜索用时 20 毫秒
1.
2.
3.
Telomere shortening is emerging as a biological indicator of accelerated aging and aging-related diseases including type 2 diabetes. While telomere length measurements were largely done in white blood cells, there is lack of studies on telomere length in relation to oxidative stress in target tissues affected in diabetes. Therefore, the aim of this study is to induct oxidative stress in adipocytes and to test whether these adipocytes exhibit shortened telomeres, senescence and functional impairment. 3T3-L1 adipocytes were subjected to oxidative stress and senescence induction by a variety of means for 2 weeks (exogenous application of H2O2, glucose oxidase, asymmetric dimethylarginine (ADMA) and glucose oscillations). Cells were probed for reactive oxygen species generation (ROS), DNA damage, mRNA and protein expression of senescent and pro-inflammatory markers, telomere length and glucose uptake. Compared to untreated cells, both ROS generation and DNA damage were significantly higher in cells subjected to oxidative stress and senescence. Adipocytes subjected to oxidative stress also showed shortened telomeres and increased mRNA and protein expression of p53, p21, TNFα and IL-6. Senescent cells were also characterized by decreased levels of adiponectin and impaired glucose uptake. Briefly, adipocytes under oxidative stress exhibited increased ROS generation, DNA damage, shortened telomeres and switched to senescent/pro-inflammatory phenotype with impaired glucose uptake.  相似文献   
4.
The present study was undertaken to investigate the antihypertensive and antioxidant effects of sesamol on uninephrectomized deoxycorticosterone acetate (DOCA)-salt-induced hypertensive rats. Hypertension was induced in surgically single-kidney-removed (left) adult male albino Wistar rats, weighing 180–200 g, by injecting DOCA (25 mg/kg BW) subcutaneously twice a week for 6 weeks, with saline instead of tap water for drinking. Rats were treated with three different doses of sesamol (50, 100 and 200 mg/kg BW) post-orally by gavage daily for 6 weeks. Hypertension was revealed by increased systolic and diastolic blood pressure and the toxicity of DOCA-salt was determined using hepatic marker enzymes, aspartate aminotransferase, alanine aminotransferase, alkaline phospatase and gamma-glutamyl transpeptidase; and, lipid peroxidative markers, thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes were assayed. The activities of enzymatic antioxidants, superoxide dismutase, catalase and glutathione peroxidase and the levels of non-enzymatic antioxidants (vitamin C, vitamin E and reduced glutathione) were evaluated in erythrocytes, plasma and tissues. Post-oral administration of sesamol at the dosage of 50 mg/kg BW remarkably decreased systolic and diastolic blood pressure, hepatic marker enzyme activities and lipid peroxidation products and also enhanced the antioxidant activity. The biochemical observations were also supported by histopathological examinations of the rat liver, kidney and heart sections. These results suggest that sesamol possesses antihypertensive and antioxidant effects.  相似文献   
5.
Abstract

To select efficient antagonistic strain(s) of biocontrol agents against most of the existing pathotypes of Colletotrichum falcatum, an in vitro interaction study was carried out with 13 pathotypes, 12 isolates of Pseudomonas spp. and 6 isolates of Trichoderma spp. Antagonistic pseudomonad strains exhibited greater variation in their activity depending on the virulence of the pathotype. The lower the pathogen virulence, the higher was the antagonistic activity noticed. In general, sub-tropical pathotypes were suppressed at a comparatively higher level than the tropical pathotypes. Among the four efficient P. fluorescens strains selected based on their inhibitory effect against various pathotypes, ARR1G and VPT4 were effective against tropical pathotypes and FP7 showed moderate effect against all the pathotypes. The strain KKM2 was effective against sub-tropical and weaker tropical pathotypes. Strains of Trichoderma spp. did not show much variation in antagonism, but varied in their mode of action in suppressing the pathogen growth. However, based on higher rate of hyperparasitism, T. harzianum strains T5 and T62 were selected against all the pathotypes.  相似文献   
6.
Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains.  相似文献   
7.
8.
Chickpea seeds of Pusa 1053 (Mediterranean) and Pusa 256 (native) were magnetoprimed with 100 mT static magnetic field for 1 h to evaluate the effect of magnetopriming on germination of seeds under saline conditions. Enhanced rate of germination and seedling growth parameters (root and shoot length, and vigour indices) under different salinity levels indicated that magnetopriming was more effective in alleviating salinity stress at early seedling stage in Pusa 1053 as compared to Pusa 256. Dynamics of seed water absorption in magnetoprimed seeds showed increased water uptake in Pusa 1053 under non-saline as compared to saline conditions. This could have resulted in faster hydration of enzymes in primed seeds leading to higher rate of germination. Total amylase, protease and dehydrogenase activities were higher in primed seeds as compared to unprimed seeds under both non-saline and saline conditions. Production of superoxide radicals was enhanced in germinating seeds of both the genotypes under salinity irrespective of priming. Increased levels of hydrogen peroxide in germinating magnetoprimed seeds, under both the growing conditions, suggested its role in promotion of germination. Our results showed that magnetopriming of dry seeds of chickpea can be effectively used as a pre-sowing treatment for mitigating adverse effects of salinity at seed germination and early seedling growth.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号