首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The introduction of non‐native species can have long‐term effects on native plant and animal communities. Introduced populations are occasionally not well understood and offer opportunities to evaluate changes in genetic structure through time and major population changes such as bottleneck and or founder events. Invasive species can often evolve rapidly in new and novel environments, which could be essential to their long‐term success. Sika deer are native to East Asia, and their introduction and establishment to the Delmarva Peninsula, USA, is poorly documented, but probably involved ≥1 founder and/or bottleneck events. We quantified neutral genetic diversity in the introduced population and compared genetic differentiation and diversity to the presumed source population from Yakushima Island, Japan, and a captive population of sika deer in Harrington, Delaware, USA. Based on the data from 10 microsatellite DNA loci, we observed reduced genetic variation attributable to founder events, support for historic hybridization events, and evidence that the population did originate from Yakushima Island stocks. Estimates of population structure through Bayesian clustering and demographic history derived from approximate Bayesian computation (ABC), were consistent with the hypothesized founder history of the introduced population in both timing and effective population size (approximately five effective breeding individuals, an estimated 36 generations ago). Our ABC results further supported a single introduction into the wild happening before sika deer spread throughout the Delmarva. We conclude that free‐ranging sika deer on Delmarva are descended from ca. five individuals introduced about 100 years ago from captive stocks of deer maintained in the United Kingdom. Free‐ranging sika deer on Delmarva have lost neutral diversity due to founder and bottleneck events, yet populations have expanded in recent decades and show no evidence of abnormalities associated with inbreeding. We suggest management practices including increasing harvest areas and specifically managing sika deer outside of Maryland.  相似文献   

2.
The oriental fruit fly, Bactrocera dorsalis, is a serious pest of fruits and vegetables in South‐east Asia, and, because of quarantine restrictions, impedes international trade and economic development in the region. Revealing genetic variation in oriental fruit fly populations will provide a better understanding of the colonization process and facilitate the quarantine and management of this species. The genetic structure in 15 populations of oriental fruit fly from southern China, Laos and Myanmar in South‐east Asia was examined with a 640‐bp sequence of the mitochondrial cytochrome oxidase subunit I (COI) gene. The highest levels of genetic diversity were found in Laos and Myanmar. Low to medium levels of genetic differentiation (FST ≤ 0.134) were observed among populations. Pooled populations from mainland China differed from those in Laos and Myanmar (FST = 0.024). Genetic structure across the region did not follow the isolation‐by‐distance model. The high genetic diversity observed in Laos and Myanmar supports the South‐east Asian origin of B. dorsalis. High genetic diversity and significant differentiation between some populations within mainland China indicate B. dorsalis populations have been established in the region for an extended period of time. High levels of genetic diversity observed among the five populations from Hainan Island and similarity between the Island and Chinese mainland populations indicate that B. dorsalis was introduced to Hainan from the mainland and has been on the island for many years. High genetic diversity in the recently established population in Shanghai (Pudong) suggests multiple introductions or a larger number of founders.  相似文献   

3.
For conservation purposes islands are considered safe refuges for many species, particularly in regions where introduced predators form a major threat to the native fauna, but island populations are also known to possess low levels of genetic diversity. The New Zealand archipelago provides an ideal system to compare genetic diversity of large mainland populations where introduced predators are common, to that of smaller offshore islands, which serve as predator-free refuges. We assessed microsatellite variation in South Island robins (Petroica australis australis), and compared large mainland, small mainland, natural island and translocated island populations. Large mainland populations exhibited more polymorphic loci and higher number of alleles than small mainland and natural island populations. Genetic variation did not differ between natural and translocated island populations, even though one of the translocated populations was established with five individuals. Hatching failure was recorded in a subset of the populations and found to be significantly higher in translocated populations than in a large mainland population. Significant population differentiation was largely based on heterogeneity in allele frequencies (including fixation of alleles), as few unique alleles were observed. This study shows that large mainland populations retain higher levels of genetic diversity than natural and translocated island populations. It highlights the importance of protecting these mainland populations and using them as a source for new translocations. In the future, these populations may become extremely valuable for species conservation if existing island populations become adversely affected by low levels of genetic variation and do not persist.  相似文献   

4.
The island rule refers to the tendency of small vertebrates to become larger when isolated on islands and the frequent dwarfing of large forms. It implies genetic control, and a necessary linkage, of size and body‐mass differences between insular and mainland populations. To examine the island rule, we compared body size and mass of gray jays (Perisoreus canadensis) on Anticosti Island, Québec, located in the Gulf of St. Lawrence, with three mainland populations (2 in Québec and 1 in Ontario). Although gray jays on Anticosti Island were ca 10% heavier, they were not structurally larger, than the three mainland populations. This suggests that Anticosti jays are not necessarily genetically distinct from mainland gray jays and that they may have achieved their greater body masses solely through packing more mass onto mainland‐sized body frames. As such, they may be the first‐known example of a proposed, purely phenotypic initial step in the adherence to the island rule by an insular population. Greater jay body mass is probably advantageous in Anticosti's high‐density, intensely competitive social environment that may have resulted from the island's lack of mammalian nest predators.  相似文献   

5.
Aim To provide insights into genetic differentiation between insular endemic Weigela coraeensis var. fragrans and its progenitor variety W. coraeensis var. coraeensis, the population genetic structure of both varieties was examined, and factors promoting genetic differentiation between the two taxa were explored. Location The natural range of W. coraeensis (sensu lato) throughout mainland Japan (Honshu) and the Izu Islands. Methods The analysis included 349 and 504 individuals across the mainland (Honshu) and the Izu Islands, respectively, using 10 allozyme and 10 microsatellite loci. The population genetic structure of W. coraeensis was assessed by analysing genetic diversity indices for each population, genetic differentiation among populations, model‐based Bayesian clustering or distance‐based clustering, and bottleneck tests. Results The level of genetic diversity in each of the populations on the Izu Islands was negatively correlated with geographical distance between each island and the mainland. The populations on the mainland and on the Izu Islands were genetically differentiated to a certain extent; however, the microsatellite analyses suggested that gene flow also occurred between the mainland and the islands, and among individual islands. These microsatellite analyses also suggested recent bottlenecks in several populations in both areas. Main conclusions The decrease in genetic diversity throughout the Izu Islands, which correlated with distance to the mainland, Honshu, may be the result of a repeated founder effect occurring at a series of inter‐island colonizations from north to south. The stepping stone‐like configuration of the islands may have played a role in the dispersal of the species. Geographical isolation by sea would effectively result in genetic differentiation of W. coraeensis between mainland Honshu and the Izu Islands, although some gene flow may still occur between Honshu and the northern Izu Islands. The differentiation process of the endemic plants on the Izu Islands is anagenetic but not completed, and the study of these plants will provide insightful knowledge concerning the evolution of insular endemics.  相似文献   

6.
Reduced vocal diversity in founder populations of songbirds is particularly well described in congeners and conspecifics introduced to remote islands but has rarely been examined in species that have been introduced to both island and mainland systems across an expansive geographical range. We examined male between‐ and within‐song complexity variations between founder and native populations of the widely distributed Common Myna Acridotheres tristis and predicted reduced complexity within individuals from founder populations. The percentage of unique songs within a repertoire and within‐song complexity were significantly lower in Mynas from founder populations. This reduced song complexity suggests that vocal founder effects may be exhibited in both island and mainland founder populations.  相似文献   

7.
This study evaluated DNA fingerprinting as a tool for estimating population genetic diversity and differentiation by comparing minisatellite variation in island and mainland populations of silvereyes (Aves: Zosterops lateralis). Three populations with different recent histories were compared: (1) Heron Island and neighboring islands, colonized 3000 to 4000 yr ago; (2) Lady Elliot Island, colonized within the past two decades; and (3) an adjacent mainland population, which presumably has existed for thousands of years. The degree of genetic variability within the three populations reflected both their size and the time since their colonization. Minisatellite diversity was highest in the mainland population, intermediate in the Capricorn Island group (which was shown to represent a single admixture), and lowest in the Lady Elliot Island population, possibly because of a recent population bottleneck during colonization. Mean band sharing between any two populations was less than the mean within either of those populations, and four fingerprint bands common to island birds were rare or absent in the fingerprints of mainland birds. In the absence of significant gene flow between the mainland and the islands, the populations have apparently become distinct at minisatellite loci, as evidenced by differences in both allelic diversity and in the frequencies of specific fragments. Within the Heron Island population, cohort analyses demonstrated the temporal stability of the fingerprint profile over 6 yr. This study demonstrates that length polymorphisms at minisatellite loci may be stable enough over time to retain information about recent historical and demographic effects on the relative genetic variability and differentiation of small, closely related populations.  相似文献   

8.
Aim We investigated how Pleistocene refugia and recent (c. 12,000 years ago) sea level incursions shaped genetic differentiation in mainland and island populations of the Scinax perpusillus treefrog group. Location Brazilian Atlantic Forest, São Paulo state, south‐eastern Brazil. Methods Using mitochondrial and microsatellite loci, we examined population structure and genetic diversity in three species from the S. perpusillus group, sampled from three land‐bridge islands and five mainland populations, in order to understand the roles of Pleistocene forest fragmentation and sea level incursions on genetic differentiation. We calculated metrics of relatedness and genetic diversity to assess whether island populations exhibit signatures of genetic drift and isolation. Two of the three island populations in this study have previously been described as new species based on a combination of distinct morphological and behavioural characters, thus we used the molecular datasets to determine whether phenotypic change is consistent with genetic differentiation. Results Our analyses recovered three distinct lineages or demes composed of northern mainland São Paulo populations, southern mainland São Paulo populations, and one divergent island population. The two remaining island populations clustered with samples from adjacent mainland populations. Estimates of allelic richness were significantly lower, and estimates of relatedness were significantly higher, in island populations relative to their mainland counterparts. Main conclusions Fine‐scale genetic structure across mainland populations indicates the possible existence of local refugia within São Paulo state, underscoring the small geographic scale at which populations diverge in this species‐rich region of the Atlantic Coastal Forest. Variation in genetic signatures across the three islands indicates that the populations experienced different demographic processes after marine incursions fragmented the distribution of the S. perpusillus group. Genetic signatures of inbreeding and drift in some island populations indicate that small population sizes, coupled with strong ecological selection, may be important evolutionary forces driving speciation on land‐bridge islands.  相似文献   

9.
Island populations are mostly characterized by low genetic diversity if compared with their mainland conspecifics. This is often explained as a consequence of founder effects in the wake of island colonization and concomitant bottlenecks. In a recent contribution, Stuessy et al. (Journal of Biogeography, 2012, 39, 1565–1566) point out that the genetic imprint of past founder effects is no longer visible today, as most island colonizations occurred millions of generations ago. The authors argue that low genetic diversity detectable today is mainly caused by recent environmental factors such as anthropogenic habitat destruction. This scenario should be complemented by the influence of long‐term isolation and small habitat size, which often lead to strong population fluctuations and repeated bottlenecks. In consequence, inbreeding and genetic drift, coupled with the potential effects of purging in small populations, may also result in genetic diversity remaining low for a long time after colonization.  相似文献   

10.
Understanding the factors that contribute to loss of genetic diversity in fragmented populations is crucial for conservation measurements. Land‐bridge archipelagoes offer ideal model systems for identifying the long‐term effects of these factors on genetic variations in wild populations. In this study, we used nine microsatellite markers to quantify genetic diversity and differentiation of 810 pond frogs (Pelophylax nigromaculatus) from 24 islands of the Zhoushan Archipelago and three sites on nearby mainland China and estimated the effects of the island area, population size, time since island isolation, distance to the mainland and distance to the nearest larger island on reduced genetic diversity of insular populations. The mainland populations displayed higher genetic diversity than insular populations. Genetic differentiations and no obvious gene flow were detected among the frog populations on the islands. Hierarchical partitioning analysis showed that only time since island isolation (square‐root‐transformed) and population size (log‐transformed) significantly contributed to insular genetic diversity. These results suggest that decreased genetic diversity and genetic differentiations among insular populations may have been caused by random genetic drift following isolation by rising sea levels during the Holocene. The results provide strong evidence for a relationship between retained genetic diversity and population size and time since island isolation for pond frogs on the islands, consistent with the prediction of the neutral theory for finite populations. Our study highlights the importance of the size and estimated isolation time of populations in understanding the mechanisms of genetic diversity loss and differentiation in fragmented wild populations.  相似文献   

11.
Gene flow promotes genetic homogeneity of species in time and space. Gene flow can be modulated by sex‐biased dispersal that links population genetics to mating systems. We investigated the phylogeography of the widely distributed Kentish plover Charadrius alexandrinus. This small shorebird has a large breeding range spanning from Western Europe to Japan and exhibits an unusually flexible mating system with high female breeding dispersal. We analysed genetic structure and gene flow using a 427‐bp fragment of the mitochondrial (mtDNA) control region, 21 autosomal microsatellite markers and a Z microsatellite marker in 397 unrelated individuals from 21 locations. We found no structure or isolation‐by‐distance over the continental range. However, island populations had low genetic diversity and were moderately differentiated from mainland locations. Genetic differentiation based on autosomal markers was positively correlated with distance between mainland and each island. Comparisons of uniparentally and biparentally inherited markers were consistent with female‐biased gene flow. Maternally inherited mtDNA was less structured, whereas the Z‐chromosomal marker was more structured than autosomal microsatellites. Adult males were more related than females within genetic clusters. Taken together, our results suggest a prominent role for polyandrous females in maintaining genetic homogeneity across large geographic distances.  相似文献   

12.
Many songbirds are socially monogamous but genetically polyandrous, mating with individuals outside their pair bonds. Extra‐pair paternity (EPP) varies within and across species, but reasons for this variation remain unclear. One possible source of variation is population genetic diversity, which has been shown in interspecific meta‐analyses to correlate with EPP but which has limited support from intraspecific tests. Using eight populations of the genetically polyandrous red‐winged blackbird (Agelaius phoeniceus), including an island population, we investigated whether population‐level differences in genetic diversity led to differences in EPP. We first measured genetic diversity over 10 microsatellite loci and found, as predicted, low genetic diversity in the island population. Additional structure analyses with multilocus genotypes and mtDNA showed the island population to be distinct from the continental populations. However, the island population's EPP rate fell in the middle of the continental populations' distribution, whereas the continental populations themselves showed significant variation in EPP. This result suggests that genetic diversity by itself is not a predictor of EPP rate. We discuss reasons for the departure from previous results, including hypotheses for EPP that do not solely implicate female‐driven behaviour.  相似文献   

13.
Population genetic structure and intrapopulation levels of genetic variation have important implications for population dynamics and evolutionary processes. Habitat fragmentation is one of the major threats to biodiversity. It leads to smaller population sizes and reduced gene flow between populations and will thus also affect genetic structure. We use a natural system of island and mainland populations of house sparrows along the coast of Norway to characterize the different population genetic properties of fragmented populations. We genotyped 636 individuals distributed across 14 populations at 15 microsatellite loci. The level of genetic differentiation was estimated using F‐statistics and specially designed Mantel tests were conducted to study the influence of population type (i.e. mainland or island) and geographic distance on the genetic population structure. Furthermore, the effects of population type, population size and latitude on the level of genetic variation within populations were examined. Our results suggest that genetic processes on islands and mainland differed in two important ways. First, the intrapopulation level of genetic variation tended to be lower and the occurrence of population bottlenecks more frequent on islands than the mainland. Second, although the general level of genetic differentiation was low to moderate, it was higher between island populations than between mainland populations. However, differentiation increased in mainland populations somewhat faster with geographical distance. These results suggest that population bottleneck events and genetic drift have been more important in shaping the genetic composition of island populations compared with populations on the mainland. Such knowledge is relevant for a better understanding of evolutionary processes and conservation of threatened populations.  相似文献   

14.
One terrestrial invertebrate that naturally spans the globe and travels vast distances is the dragonfly Pantala flavescens (Fabricius) (Odonata: Libellulidae). Recently, there has been a strong call to compare island with continental biota so as to meaningfully characterize island forms. This is done here. The variation and differences in morphology and behaviour of an African continental (Pietermaritzburg, South Africa) and a remote island population (Easter Island) of P. flavescens was investigated to determine whether the island population was panmictic with the migrant population, or whether it was a founder population. Several morphological characters were measured in both populations, and analysed using PCA, t-tests, coefficients of variation and Chi-square analyses. The continental and island populations were significantly different in body colour, head width and femur length. The island population had reduced hindwings, which were also more asymmetrical than the continental population, suggesting that the island individuals were possibly more genetically and environmentally stressed and had less genetic variation than the continental population. The island population was also more robust and flew lower to the ground than the continental population. There was no significant difference in body weight between the two populations because the migrant population had not begun to build up fat reserves for migration. Females were heavier than males in the continental population because they were carrying eggs. This was not the case in the island population because the individuals were not as mature. Colour was significantly different between the two populations, with island individuals having darker wings and abdomens, yet a lighter synthorax colouring than the continental population. Sexual dimorphism was marked in the abdomen and wing colour of the continental population, yet the island individuals showed more difference between the sexes in morphological characters than in colour. The fact that P. flavescens is the only species of dragonfly on Easter Island, and the great distance of the island from any mainland, suggests infrequent arrival of migrants arriving on the island, with resultant reduced genetic variation. The morphological and behavioural differences between the two populations suggests divergence is occurring.  相似文献   

15.
The distribution of genetic variation in species is governed by factors that act differently across spatial scales. To tease apart the contribution of different processes, especially at intermediate spatial scales, it is useful to study simple ecosystems such as those on sub‐Antarctic oceanic islands. In this study, we characterize spatial genetic patterns of two keystone plant species, Azorella selago on sub‐Antarctic Marion Island and Azorella macquariensis on sub‐Antarctic Macquarie Island. Although both islands experience a similar climate and have a similar vegetation structure, they differ significantly in topography and geological history. We genotyped six microsatellites for 1,149 individuals from 123 sites across Marion Island and 372 individuals from 42 sites across Macquarie Island. We tested for spatial patterns in genetic diversity, including correlation with elevation and vegetation type, and clines in different directional bearings. We also examined genetic differentiation within islands, isolation‐by‐distance with and without accounting for direction, and signals of demographic change. Marion Island was found to have a distinct northwest–southeast divide, with lower genetic diversity and more sites with a signal of population expansion in the northwest. We attribute this to asymmetric seed dispersal by the dominant northwesterly winds, and to population persistence in a southwestern refugium during the Last Glacial Maximum. No apparent spatial pattern, but greater genetic diversity and differentiation between sites, was found on Macquarie Island, which may be due to the narrow length of the island in the direction of the dominant winds and longer population persistence permitted by the lack of extensive glaciation on the island. Together, our results clearly illustrate the implications of island shape and geography, and the importance of direction‐dependent drivers, in shaping spatial genetic structure.  相似文献   

16.
Invasive populations typically demonstrate genetic isolation which results in a loss of genetic diversity and a reduction in invasion success. This study focused on the genetic population of a successful invasive species of tarantula. Individuals were sampled in two mainland localities of the Yucatan Peninsula (Zoh-Laguna and Raudales), in addition to two island localities (El Cedral and Rancho Guadalupe on Cozumel Island). All populations present high genetic diversity (mean: He = 0.23, P = 99%), with significant differences between the Raudales and Rancho Guadalupe localities. The AMOVA analysis revealed a significant population structure (14.5% variation among populations), consistent with the gene differentiation coefficient (GST = 0.21), and spatial analysis of population structure. Our results suggested that the original introduced population did not suffer a loss of genetic diversity during establishment on the island, possibly a result of different biological conditions. Population structure analysis leads us to suggest that one island population is similar to the original genetic profile, whereas the genotypic profile of the other island population reflects recent introductions from the mainland. We identified a potential risk of extinction for one local mainland population, suggesting that this species may be a successful invader in a new environment but endangered in some parts of its natural area.  相似文献   

17.
To understand the impact of various factors on the maintenance of genetic variation in natural populations, we need to focus on situations where at least some of these factors are removed or controlled. In this study, we used highly variable, presumably neutral, microsatellite and mtDNA markers to assess the nature of genetic variation in 14 island and two mainland populations of the Australian bush rat, where there is no migration between islands. Thus we are controlling for selection and gene flow. Both marker sets revealed low levels of diversity within the small island populations and extreme differentiation between populations. For six microsatellite loci, all of the small island populations had less genetic variation than the mainland populations; reduction in allelic diversity was more pronounced than loss of heterozygosity. Kangaroo Island, the large island population, had similar levels of diversity to the mainland populations. A 442 base pair (bp) section of the mtDNA control region was screened for variation by outgroup heteroduplex analysis/temperature gradient gel electrophoresis (OHA/TGGE). Only three of the 13 small island populations showed haplotypic diversity: Gambier (2), Waldegrave (2), and Eyere (3). The level of haplotypic diversity in the small island populations was similar to that on the mainland, most likely reflecting a recent population bottleneck on the mainland. In contrast, Kangaroo Island had 9 mtDNA haplotypes. The dominant factor influencing genetic diversity on the islands was island size. No correlation was detected between genetic diversity and the time since isolation or distance form the mainland. The combination of genetic drift within and complete isolation among the small island populations has resulted in rapid and extreme population divergence. Population pair-wise comparisons of allele frequency distributions showed significant differences for all populations for all loci (F st = 0.11–0.84, R st = 0.07–0.99). For the mtDNA control region, 92.6% of variation was apportioned between populations; only the Pearson islands shared a haplotype. Mantel tests of pair-wise genetic distance with pair-wise geographic distance showed no significant geographical clustering of haplotypes. However, population substructuring was detected within populations where sampling was conducted over a broader geographical range, as indicated by departures from Hardy-Weinberg equilibrium. Thus substructuring in the ancestral population cannot be ruled out. The dominant evolutionary forces on the islands, after the initial founder event, are stochastic population processes such as genetic drift and mutation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
海南岛中华蜜蜂遗传多样性的微卫星DNA分析   总被引:1,自引:0,他引:1  
为了解海南岛中华蜜蜂Apis cerana cerana的遗传多样性和遗传结构及其与大陆种群的关系, 本研究应用10个微卫星DNA标记对海南岛11个地点627个蜂群的627头工蜂样本和大陆2个地点102个蜂群的102头工蜂样本进行了分析。结果表明: 海南岛中华蜜蜂遗传多样性较高, 单个位点检测到等位基因5~17个; 各种群平均等位基因数为4.5~7.0个, 平均杂合度为0.59~0.65。海南岛中华蜜蜂在10个位点上表现出相似遗传结构, 文昌和屯昌种群在AT101位点的等位基因频率较特殊。岛内 岛外中华蜜蜂的遗传分化系数FST范围为0.06~0.13; 文昌、 屯昌种群分别同海南岛内其他9个种群的FST(0.06~0.12)大于这9个种群间的FST(0~0.05)。海南岛中华蜜蜂同邻近大陆种群发生了明显的遗传分化; 除文昌、 屯昌种群发生中等程度的分化外, 海南岛内其他种群之间遗传分化较小。本研究结果对海南岛中华蜜蜂资源的保护和合理利用具有重要的指导意义。  相似文献   

19.

Aim

Tapinoma melanocephalum is listed as one of the most important invasive pest species in China. Information regarding the patterns of invasion and effects of geographic isolation on the population genetics of this species is largely lacking.

Location

South China.

Methods

To address this problem, we genotyped 39 colonies (two colonies were collapsed due to genetic similarity) using microsatellite markers and mitochondrial DNA sequencing to compare colony genetic structure of T. melanocephalum on the mainland and islands of South China.

Results

An analysis of the colony genotypes showed that the genetic diversity of the mainland population was slightly higher than that of the island populations but not significantly so. However, the observed heterozygosity on Shangchuan Island (SCD) was significantly lower than that of the other colonies. We also found six haplotypes in 111 mitochondrial DNA COI sequences. The relatedness (r) value between colonies of SCD was 0.410, higher than that of the other populations. The genetic clusters among colonies were not related to geographic locations and exhibited admixture likely due to frequent human‐mediated dispersal associated with trade between the mainland population and the islands. Pairwise FSTs between populations showed differentiation among mainland populations, while SCD displayed high levels of divergence (FST > 0.15) from most mainland populations. There was no significant isolation by distance among colonies. Most populations showed signs of a bottleneck effect.

Main conclusions

Our study suggests that there was no significant difference in the genetic diversity among the islands and the mainland; however, the lower genetic diversity, the higher degree of genetic divergence from other colonies, and the higher relatedness among nestmates made the SCD population stand out from all the others.  相似文献   

20.
High densities of introduced herbivores can damage sensitive ecosystems, increase the risk of extinction of native biota, and host and spread disease. An essential step in managing large ‘feral’ animal populations is to quantify how they use habitats so that management interventions, such as culling, can be targeted to reduce densities and to minimize migration into areas from which animals have been removed. An effective method to quantify animal movements is by measuring landscape‐scale genetic population structure. We describe the genetic population structure of one of Australia's more destructive introduced mammals – the Asian swamp buffalo (Bubalus bubalis). We collected 524 skin samples from buffalo across their range in the Northern Territory of Australia. Allelic diversity in the Northern Territory population was low compared to those reported from populations in their native Asian habitats. The Australian population is tentatively made of three subpopulations; Melville Island, Eastern Arnhem and Central‐Western Arnhem populations. The Melville Island population is represented by a single cluster, while the Eastern Arnhem population has three clusters and the Central‐Western Arnhem population seven clusters. We found some support for isolation by distance across all the sampled populations, but little evidence for this relationship when comparing the two well‐mixed mainland meta‐populations. Despite their small founder populations and limited genetic variation, the persistence of buffalo in Australia has likely been aided by release from high predation, parasitism and disease typical of their native habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号