首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various types of human cells have been tested as feeder cells for the undifferentiated growth of human embryonic stem cells (hESCs) in vitro. We report here the successful culture of two hESC lines (H1 and H9) on human umbilical cord blood (UCB)-derived fibroblast-like cells. These cells permit the long-term continuous growth of undifferentiated and pluripotent hESCs. The cultured hESCs had normal karyotypes, expressed OCT-4, SSEA-4, TRA-1-60, and TRA-1-81, formed cystic embryonic body in vitro and teratomas in vivo after injected into immunodeficient mice. The wide availability of clinical-grade human UCB makes it a promising source of support cells for the growth of hESC for use in cell therapies.  相似文献   

2.
Human embryonic stem cells (hESC) are isolated as clusters of cells from the inner cell mass of blastocysts and thus should formally be considered as heterogeneous cell populations. Homogenous hESC cultures can be obtained through subcloning. Here, we report the clonal derivation and characterization of two new hESC lines from the parental cell line SA002 and the previously clonally derived cell line AS034.1, respectively. The hESC line SA002 was recently reported to have an abnormal karyotype (trisomy 13), but within this population of cells we observed rare individual cells with an apparent normal karyotype. At a cloning efficiency of 5%, we established 33 subclones from SA002, out of which one had a diploid karyotype and this subline was designated SA002.5. From AS034.1 we established one reclone designated AS034.1.1 at a cloning efficiency of 0.1%. These two novel sublines express cell surface markers indicative of undifferentiated hESC (SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81), Oct-4, alkaline phosphatase, and they display high telomerase activity. In addition, the cells are pluripotent and form derivatives of all three embryonic germ layers in vitro as well as in vivo. These results, together with the clonal character of SA002.5 and AS034.1.1 make these homogenous cell populations very useful for hESC based applications in drug development and toxicity testing. In addition, the combination of the parental trisomic hESC line SA002 and the diploid subclone SA002.5 provides a unique experimental system to study the molecular mechanisms underlying the pathologies associated with trisomy 13.  相似文献   

3.
Human embryonic stem cells (hESCs) can self-renew indefinitely and differentiate into all cell types in the human body. Therefore, they are valuable in regenerative medicine, human developmental biology and drug discovery. A number of hESC lines have been derived from the Chinese population,but limited of them are available for research purposes. Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin. These hESCs express alkaline phosphatase and hESC-specific markers, including Oct4, Nanog, SSEA-3, SSEA-4,TRA-1-60 and TRA-1-81. They also have high levels of telomerase activity and normal karyotypes. These cells can form embryoid body in vitro and can be differentiated into all three germ layers in vivo by teratoma formation. The newly established hESCs will be distributed for research purposes.The availability of hESC lines from the Chinese population will facilitate studies on the differences in hESCs from different ethnic groups.  相似文献   

4.
The use of pluripotent stem cells in regenerative medicine and disease modeling is complicated by the variation in differentiation properties between lines. In this study, we characterized 13 human embryonic stem cell (hESC) and 26 human induced pluripotent stem cell (hiPSC) lines to identify markers that predict neural differentiation behavior. At a general level, markers previously known to distinguish mouse ESCs from epiblast stem cells (EPI-SCs) correlated with neural differentiation behavior. More specifically, quantitative analysis of miR-371-3 expression prospectively identified hESC and hiPSC lines with differential neurogenic differentiation propensity and in vivo dopamine neuron engraftment potential. Transient KLF4 transduction increased miR-371-3 expression and altered neurogenic behavior and pluripotency marker expression. Conversely, suppression of miR-371-3 expression in KLF4-transduced cells rescued neural differentiation propensity. miR-371-3 expression level therefore appears to have both a predictive and a functional role in determining human pluripotent stem cell neurogenic differentiation behavior.  相似文献   

5.
Human embryonic stem cell lines derived from the Chinese population   总被引:17,自引:0,他引:17  
Fang ZF  Jin F  Gai H  Chen Y  Wu L  Liu AL  Chen B  Sheng HZ 《Cell research》2005,15(5):394-400
Six human embryonic stem cell lines were established from surplus blastocysts. The cell lines expressed alkaline phosphatase and molecules typical of primate embryonic stem cells, including Oct-4, Nanog, TDGF1, Sox2, EBAF, Thy-1, FGF4, Rex-1, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. Five of the six lines formed embryoid bodies that expressed markers of a variety of cell types; four of them formed teratomas with tissue types representative of all three embryonic germ layers. These human embryonic stem cells are capable of producing clones of undifferentiated morphology, and one of them was propagated to become a subline. Human embryonic stem cell lines from the Chinese population should facilitate stem cell research and may be valuable in studies of population genetics and ecology.  相似文献   

6.
7.
Cell surface glycoconjugates are used as markers for undifferentiated pluripotent stem cells. Here, antibody binding and mass spectrometry characterization of acid glycosphingolipids isolated from a large number (1 × 109 cells) of human embryonic stem cell (hESC) lines allowed identification of several novel acid glycosphingolipids, like the gangliosides sialyl-lactotetraosylceramide and sialyl-globotetraosylceramide, and the sulfated glycosphingolipids sulfatide, sulf-lactosylceramide, and sulf-globopentaosylceramide. A high cell surface expression of sialyl-lactotetra on hESC and human induced pluripotent stem cells (hiPSC) was demonstrated by flow cytometry, immunohistochemistry, and electron microscopy, whereas sulfated glycosphingolipids were only found in intracellular compartments. Immunohistochemistry showed distinct cell surface anti-sialyl-lactotetra staining on all seven hESC lines and three hiPSC lines analyzed, whereas no staining of hESC-derived hepatocyte-like or cardiomyocyte-like cells was obtained. Upon differentiation of hiPSC into hepatocyte-like cells, the sialyl-lactotetra epitope was rapidly down-regulated and not detectable after 14 days. These findings identify sialyl-lactotetra as a promising marker of undifferentiated human pluripotent stem cells.  相似文献   

8.
9.
10.
The ability to maintain human embryonic stem cells (hESCs) during long-term culture and yet induce differentiation to multiple lineages potentially provides a novel approach to address various biomedical problems. Here, we describe derivation of hESC lines, NOTT1 and NOTT2, from human blastocysts graded as 3BC and 3CB, respectively. Both lines were successfully maintained as colonies by mechanical passaging on mouse embryonic feeder cells or as monolayers by trypsin-passaging in feeder-free conditions on Matrigel. Undifferentiated cells retained expression of pluripotency markers (OCT4, NANOG, SSEA-4, TRA-1-60 and TRA-1-81), a stable karyotype during long-term culture and could be transfected efficiently with plasmid DNA and short interfering RNA. Differentiation via formation of embryoid bodies resulted in expression of genes associated with early germ layers and terminal lineage specification. The electrophysiology of spontaneously beating NOTT1-derived cardiomyocytes was recorded and these cells were shown to be pharmacologically responsive. Histological examination of teratomas formed by in vivo differentiation of both lines in severe immunocompromised mice showed complex structures including cartilage or smooth muscle (mesoderm), luminal epithelium (endoderm) and neuroectoderm (ectoderm). These observations show that NOTT1 and NOTT2 display the accepted characteristics of hESC pluripotency.  相似文献   

11.
Derivation of human embryonic stem cell lines from parthenogenetic blastocysts   总被引:15,自引:1,他引:14  
Mai Q  Yu Y  Li T  Wang L  Chen MJ  Huang SZ  Zhou C  Zhou Q 《Cell research》2007,17(12):1008-1019
  相似文献   

12.
Human embryonic stem (hES) cells are pluripotent cells derived from the inner cell mass of blastocysts. Their unique properties of self-renewal and pluripotency make them an attractive tool for basic research as well as a potential cell resource for therapy. However, each hES cell line demonstrates different identity. It is desirable to obtain more fully characterized hES cell lines with newly developed technologies associated with hES cell culture. Here, we report our experience of efficient derivation of three new Chinese hES cell lines (SHhES2, SHhES3, and SHhES4) from in vitro fertilization discarded embryos donated by women with polycystic ovary syndrome. These cell lines were derived under conditions minimizing exposure to animal components and maintained at an undifferentiated state for long-term culture. They retained a normal karyotype and expressed ALP, OCT4, SOX2, SSEA-4, TRA-1-60 and TRA-1-81. RT-PCR analysis also revealed high expression levels of pluripotency markers such as OCT4, LEFTY A, SOX2, TDGF-1, THY1, FGF4, NANOG, and REX1. When suspended in low-attachment culture dishes, embryoid bodies formed and were comprised of various differentiated cell types from all three embryonic germ layers. However, well-shaped teratomas were only harvested from line SHhES2, not from SHhES3 and SHhES4, indicating that the differentiation ability in vivo differs among the three cell lines. Collectively, the three new hES cell lines were established and fully characterized. The effort paves the way toward generating hES cell lines without contamination by animal components. All of these cell lines are available by contact Ying Jin at yjin@sibs.ac.cn.  相似文献   

13.
Human embryonic stem cells (hESC) have great potential in regenerative medicine, provided that culture systems are established that maintain genomic integrity. Here we describe a comparison of the effects of culture in either physiologic oxygen (2%) or room oxygen (21%) on the hESC lines, H1, H9, and RH1. Physiologic oxygen enabled an average sixfold increase in clone recovery across the hESC lines tested (p < 0.001). FACS analysis showed that cells cultured in physiologic oxygen were significantly smaller and less granular. No significant changes had occurred in levels of SSEA4, SSEA1, TRA-1-60, or TRA-1-81. While karyotypic normalcy was maintained in both H1 and H9, the frequency of spontaneous chromosomal aberrations was significantly increased in room oxygen. This increase was not observed in physiologic oxygen. These results clearly demonstrate that physiologic oxygen culture conditions are indispensable for robust hES clone recovery and may enhance the isolation of novel hES lines and transgenic clones.  相似文献   

14.
Development of a serum free, feeder-free (SFFF) culture platform for human embryonic stem cells (hESC) will be important for the expansion of hESC for future cell therapy applications. However, currently, culture of hESC consists of a combination of basal media, basic fibroblast growth factor (bFGF), serum replacer (SR) and conditioned media (CM) from feeders, and it is unclear which components of the mixture are absolutely critical in the maintenance of hESC. To evaluate the relative contributions of these media components in the development of SFFF culture, each was systematically eliminated and pluripotency assayed by dual embryonic stem cell markers, Oct-4 and TRA-1-60. We concluded that SR was the most critical component in the platform, followed by bFGF and CM produced by feeders, where down-regulation of Oct-4 occurred after 2, 5 and 5 passages, respectively, upon their withdrawal from the complete media.  相似文献   

15.
16.
One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specific cell type during early development, and how, or if, pluripotent genes, such as Oct4 and Sox2, play a role in this transition. Here, by studying the dynamic changes in the expression of embryonic surface antigens, we identified the sequential loss of Tra-1-81 and SSEA4 during hESC neural differentiation and isolated a transient Tra-1-81(-)/SSEA4(+) (TR-/S4+) cell population in the early stage of neural differentiation. These cells are distinct from both undifferentiated hESCs and their committed neural progenitor cells (NPCs) in their gene expression profiles and response to extracellular signalling; they co-express both the pluripotent gene Oct4 and the neural marker Pax6. Furthermore, these TR-/S4+ cells are able to produce cells of both neural and non-neural lineages, depending on their environmental cues. Our results demonstrate that expression of the pluripotent factor Oct4 is progressively downregulated and is accompanied by the gradual upregulation of neural genes, whereas the pluripotent factor Sox2 is consistently expressed at high levels, indicating that these pluripotent factors may play different roles in the regulation of neural differentiation. The identification of TR-S4+ cells provides a cell model for further elucidation of the molecular mechanisms underlying hESC neural differentiation.  相似文献   

17.
Here, we describe the derivation of a novel human embryonic stem cell (hESC) line, Endeavour-2 (E-2), propagated on human fetal fibroblasts (HFF) in a serum-replacement media. The inner cell mass (ICM) was manually dissected from the blastocyst without using immunodissection and, therefore, antibodies from animal sources. A total of 20 embryos were thawed and cultured, eight embryos were hatched, and five ICMs were obtained. They were transferred onto HFF used as feeder layer, and one colony representing the initial cell proliferation of a new hESC line, E-2, was obtained. The newly emerged hESC colony was passaged first by physical dissection and subsequently by enzymatic dissociation. E-2 has been in culture for over 6 months and has been shown to possess typical features of a pluripotent hESC line including expression of stem cell surface markers (SSEA4, TRA-160, and integrin alpha-6), intracellular alkaline phosphatase, and pluripotency gene markers, OCT4 and NANOG. This hESC line shows lineage-specific differentiation into various representative cell types expressing markers characteristic of the three somatic germ layers under both in vitro and in vivo conditions. E-2 line shows a normal karyotype (46 XX) and has been successfully cryopreserved and thawed several times using slow-freezing procedures. E-2 adds to the repertoire of existing hESC lines for research and development purposes in the field of regenerative medicine.  相似文献   

18.
Human embryonic stem cells are derived from the inner cell mass of pre-implantation embryos. The cells have unlimited proliferation potential and capacity to differentiate into the cells of the three germ layers. Human embryonic stem cells are used to study human embryogenesis and disease modeling and may in the future serve as cells for cell therapy and drug screening. Human embryonic stem cells are usually isolated from surplus normal frozen embryos and were suggested to be isolated from diseased embryos detected by pre-implantation genetic diagnosis. Here we report the isolation of 12 human embryonic stem cell lines and their thorough characterization. The lines were derived from embryos detected to have aneuploidy by pre-implantation genetic screening. Karyotype analysis of these cell lines showed that they are euploid, having 46 chromosomes. Our interpretation is that the euploid cells originated from mosaic embryos, and in vitro selection favored the euploid cells. The undifferentiated cells exhibited long-term proliferation and expressed markers typical for embryonic stem cells such as OCT4, NANOG, and TRA-1-60. The cells manifested pluripotent differentiation both in vivo and in vitro. To further characterize the different lines, we have analyzed their ethnic origin and the family relatedness among them. The above results led us to conclude that the aneuploid mosaic embryos that are destined to be discarded can serve as source for normal euploid human embryonic stem cell lines. These lines represent various ethnic groups; more lines are needed to represent all populations.  相似文献   

19.
20.
Wang Y  Xu C  Wang H  Liu J  Hui S  Li N  Liu F  Li J 《Human cell》2012,25(1):16-23
We describe the derivation and characterization of three novel human embryonic stem (hES) cell lines (YT1, YT2, YT3). One hES line (YT1) was obtained from six discarded blastocysts in a culture medium supplemented with 12 ng/ml basic fibroblast growth factor (bFGF), and two lines (YT2,YT3)were obtained from three discarded blastocysts in the same medium but supplemented with 16 ng/ml bFGF. These cell lines were derived by partial or whole embryo culture followed by further expansion after manual dissection of the passaged cells. These cells were passaged continuously for more than 6 or 8 months and possessed all of the typical features of pluripotent hES cell lines, such as typical morphological characteristics and the expression of hES-specific markers (TRA-1-60, TRA-1-81, SSEA-4, SSEA-3, alkaline phosphatase, Oct4, Nanog) and pluripotency-related genes (Oct4, Nanog, TDGF1, Sox2, EBAF, Thy-1, FGF4, Rex1). The lines maintained normal karyotypes after long-term cultivation. The karyotype of YT1 and YT3 was 46,XX, and that of YT2 was 46, XY. Pluripotency was confirmed by in vitro and in vivo differentiation, and genetic identity was demonstrated by DNA fingerprinting.Our results indicate that higher concentrations of bFGF at the early culture stage support efficient the hES cell derivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号