首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pre-germination genotypic screening using PCR amplification of half-seeds   总被引:10,自引:0,他引:10  
A simple and rapid PCR-based method has been developed for determining the genotype of seeds before germination. Single half-seeds of rice (Oryza sativa L.) and wheat (Triticum aestivum L. em. Thell.) were preincubated, without grinding, in an aqueous extraction buffer. The resulting supernatants were then used in polymerase chain reaction (PCR) with oligonucleotide primers corresponding to rice single-copy sequences or a wheat microsatellite repeat. PCR products of identical size were amplified using either the half-seed extract or DNA isolated from leaf tissue. The remnant half-seeds can be maintained in ordered arrays using microtiter plates allowing the recovery of selected genotypes. Pre-germination genotypic screening of seed populations as described in this report should be useful for a variety of applications in plant breeding and genetics studies.  相似文献   

2.
Large scale sequencing of randomly selected cDNA clones was carried out to investigate the feasibility of this method for isolating plant genes. cDNA libraries were made using mRNA prepared from suspension-cultured cells of rice (Oryza sativa L.). Partial nucleotide sequences of 830 individual cDNA clones have been determined and compared with the GenBank database. Approximately 8% of the cDNA clones could be identified as particular genes. This method provides the opportunity to isolate large numbers of plant genes.  相似文献   

3.
PCR with oligonucleotide primers that corresponded to two highly homologous regions, in terms of amino acid sequence, of plant peroxidases was used to amplify a specific DNA fragment from a mixture of rice (Oryza sativa L.) cDNAs. We then screened a cDNA library prepared from mRNAs of rice shoots utilizing the product of PCR as probe. Two cDNA clones, prxRPA and prxRPN, were isolated. They encode distinct isozymes of peroxidase. Sequence analysis indicated that the clones encode mature proteins of approximately 32 kDa, both of which possess a putative signal peptide. Comparison of the amino acid sequences of the two rice peroxidases showed that they are about 70% similar to each other but are only 40% to 50% similar to other plant peroxidases. RNA blot hybridization revealed that mRNAs that corresponded to prxRPA and prxRPN cDNAs accumulate at high levels in roots but only at low levels in stems and leaves. In various tissues of rice plants, levels of both mRNAs were stimulated by wounding and by ethephon. These results indicate that at least two isozymes of peroxidase are expressed not only in shoots but also in roots of rice plants, and that the expression of these genes is influenced by ethylene which is the simplest plant hormone.  相似文献   

4.
Summary Oryza sativa grown in flooded soil were transferred to water culture solution and acetylene reduction activities (ARA) of intact plants and rootless plants were measured for 5 h. Relative rate of ARA associated with the rootless wetland rice plant as compared with an intact plant varied from 8 to 100 percent, depending on the growth stage and varieties of rice and highest at the early stage (3 weeks after transplanting) for all varieties tested (IR26, Latisail, Khao Lo, and JBS236). ARA of shoots was associated with basal parts of the shoots about 3 cm from the base of wetland cultivated rice andOryza australiensis. Phyllospheric ARA was negligible except for senescent outer leaf sheaths. Microaerophilic N2-fixing bacteria also inhabited basal parts of shoots (outer leaf sheaths and stems) of wetland rice. These findings suggest that N2-fixation is partly associated with the shoots of wetland rice plants.  相似文献   

5.
Li X  Tan L  Huang H  Zhu Z  Li C  Hu S  Sun C 《Biotechnology letters》2008,30(3):555-561
As a prerequisite for the map-based cloning of genes from common wild rice (Oryza rufipogon Griff.), which plays an important role in the domestication of cultivated rice (O. sativa L.), we constructed a median-insert size bacterial artificial chromosome (BAC) library of the common wild rice isolate, YJCWR, collected from Yuanjiang, Yunnan Province, China. The library consists of 52,992 clones, with an average insert size of 50 kb, and all clones were pooled into 46 three-dimensional super-pools to facilitate library screening through the PCR method. Seventeen candidate clones were isolated by five markers and some clones containing putative target regions were sequenced. Furthermore, in analyzing the sequences of YJCWR, a retrotransposon, SZ-55, that might contribute to the evolution of Oryza was found.  相似文献   

6.
Sun L  Qiu F  Zhang X  Dai X  Dong X  Song W 《Microbial ecology》2008,55(3):415-424
The endophytic bacterial diversity in the roots of rice (Oryza sativa L.) growing in the agricultural experimental station in Hebei Province, China was analyzed by 16S rDNA cloning, amplified ribosomal DNA restriction analysis (ARDRA), and sequence homology comparison. To effectively exclude the interference of chloroplast DNA and mitochondrial DNA of rice, a pair of bacterial PCR primers (799f–1492r) was selected to specifically amplify bacterial 16S rDNA sequences directly from rice root tissues. Among 192 positive clones in the 16S rDNA library of endophytes, 52 OTUs (Operational Taxonomic Units) were identified based on the similarity of the ARDRA banding profiles. Sequence analysis revealed diverse phyla of bacteria in the 16S rDNA library, which consisted of alpha, beta, gamma, delta, and epsilon subclasses of the Proteobacteria, Cytophaga/Flexibacter/Bacteroides (CFB) phylum, low G+C gram-positive bacteria, Deinococcus-Thermus, Acidobacteria, and archaea. The dominant group was Betaproteobacteria (27.08% of the total clones), and the most dominant genus was Stenotrophomonas. More than 14.58% of the total clones showed high similarity to uncultured bacteria, suggesting that nonculturable bacteria were detected in rice endophytic bacterial community. To our knowledge, this is the first report that archaea has been identified as endophytes associated with rice by the culture-independent approach. The results suggest that the diversity of endophytic bacteria is abundant in rice roots.  相似文献   

7.
Summary Fluorescence in situ hybridization (FISH) is a powerful tool for visualizing the chromosomal location of targeted sequences and has been applied in many areas, including karyotyping, breeding and characterization of genes introduced into the plant genome. A simple, routine and sensitive FISH procedure was developed for localizing single copy genes in rice (Oryza sativa L.) metaphase chromosomes. We used digoxygenin-labeled endogenous or T-DNA sequences as small as 5.6 kb to probe corresponding endogenous sequences or the T-DNA insert in denatured rice metaphase chromosomes prepared from root meristem tissue. The hybridized probe sequence was labeled with cy3-conjugated anti-mouse IgG and visualized using fluorescence microscopy. Single copy and multiple copy introduced T-DNA sequences, as well as endogenous sequences, were localized on the chromosomes. The FISH protocol was effectively used to sereen the chromosomal location of introduced T-DNA and number of integration loci in rice.  相似文献   

8.
9.
Common wild rice (Oryza rufipogon) plays an important role by contributing to modern rice breeding. In this paper, we report the sequence and analysis of a 172-kb genomic DNA region of wild rice around the RM5 locus, which is associated with the yield QTL yld1.1. Comparative sequence analysis between orthologous RM5 regions from Oryza sativa ssp. japonica, O. sativa ssp. indica and O. rufipogon revealed a high level of conserved synteny in the content, homology, structure, orientation, and physical distance of all 14 predicted genes. Twelve of the putative genes were supported by matches to proteins with known function, whereas two were predicted by homology to rice and other plant expressed sequence tags or complementary DNAs. The remarkably high level of conservation found in coding, intronic and intergenic regions may indicate high evolutionary selection on the RM5 region. Although our analysis has not defined which gene(s) determine the yld1.1 phenotype, allelic variation and the insertion of transposable elements, among other nucleotide changes, represent potential variation responsible for the yield QTL. However, as suggested previously, two putative receptor-like protein kinase genes remain the key suspects for yld1.1. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Numerous proteins have been identified in yeast and mammalian cells which are involved in trafficking between the endoplasmic reticulum and the Golgi apparatus. A great number of partial cDNA sequences now available from the two major plant model species, Arabidopsis thaliana and Oryza sativa, makes it possible to identify putative plant homologues of known genes/proteins from non-plant species. The authors used this approach to screen the database of Expressed Sequence Tags (dbEST) in order to detect plant homologues of proteins involved in membrane transport between ER and Golgi. Availability of these partial sequences will facilitate the screening of cDNA and genomic libraries otherwise performed using heterologous probes derived from animal and yeast genes. As the plant Golgi complex differs in many respects from its mammalian and yeast counterparts, the dbEST clones found can be directly used for various functional assays (immunoprecipitation, two-hybrid analysis, transgenic plants etc.) to test the exact roles of the encoded proteins and identify their functional partners, some of which may be specific for plants.  相似文献   

11.
Generation and flanking sequence analysis of a rice T-DNA tagged population   总被引:26,自引:0,他引:26  
Insertional mutagenesis provides a rapid way to clone a mutated gene. Transfer DNA (T-DNA) of Agrobacterium tumefaciens has been proven to be a successful tool for gene discovery in Arabidopsis and rice (Oryza sativa L. ssp. japonica). Here, we report the generation of 5,200 independent T-DNA tagged rice lines. The T-DNA insertion pattern in the rice genome was investigated, and an initial database was constructed based on T-DNA flanking sequences amplified from randomly selected T-DNA tagged rice lines using Thermal Asymmetric Interlaced PCR (TAIL-PCR). Of 361 T-DNA flanking sequences, 92 showed long T-DNA integration (T-DNA together with non-T-DNA). Another 55 sequences showed complex integration of T-DNA into the rice genome. Besides direct integration, filler sequences and microhomology (one to several nucleotides of homology) were observed between the T-DNA right border and other portions of the vector pCAMBIA1301 in transgenic rice. Preferential insertion of T-DNA into protein-coding regions of the rice genome was detected. Insertion sites mapped onto rice chromosomes were scattered in the genome. Some phenotypic mutants were observed in the T1 generation of the T-DNA tagged plants. Our mutant population will be useful for studying T-DNA integration patterns and for analyzing gene function in rice.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Communicated by D. Mackill  相似文献   

12.
ABSTRACT

Twenty-one species belonging to Oryza, including wild rices, were compared with a tetraploid (2n=48) halophytic wild rice relative, Porteresia coarctata Tateoka (=Oryza coarctata) for the genetic relatedness using AFLP and RAPD markers. Diploid and tetraploid groups were clearly separated except in the case of a few species where the clustering was unique and different. The molecular analysis has helped in positioning Porteresia in the vicinity of other wild rice species, and to better understand the pattern of species differentiation in Oryza. From our study, O. australiensis seems to be related to P. coarctata; thus, O. australiensis may be an effective “bridge” species in transferring genetic traits from P. coarctata to O. sativa. The usefulness of molecular marker systems for studying polymorphism and classification, and in clarifying genetic relationships between wild species has been confirmed.  相似文献   

13.
Here we present the genomic sequence of the African cultivated rice, Oryza glaberrima, and compare these data with the genome sequence of Asian cultivated rice, Oryza sativa. We obtained gene‐enriched sequences of O. glaberrima that correspond to about 25% of the gene regions of the O. sativa (japonica) genome by methylation filtration and subtractive hybridization of repetitive sequences. While patterns of amino acid changes did not differ between the two species in terms of the biochemical properties, genes of O. glaberrima generally showed a larger synonymous–nonsynonymous substitution ratio, suggesting that O. glaberrima has undergone a genome‐wide relaxation of purifying selection. We further investigated nucleotide substitutions around splice sites and found that eight genes of O. sativa experienced changes at splice sites after the divergence from O. glaberrima. These changes produced novel introns that partially truncated functional domains, suggesting that these newly emerged introns affect gene function. We also identified 2451 simple sequence repeats (SSRs) from the genomes of O. glaberrima and O. sativa. Although tri‐nucleotide repeats were most common among the SSRs and were overrepresented in the protein‐coding sequences, we found that selection against indels of tri‐nucleotide repeats was relatively weak in both African and Asian rice. Our genome‐wide sequencing of O. glaberrima and in‐depth analyses provide rice researchers not only with useful genomic resources for future breeding but also with new insights into the genomic evolution of the African and Asian rice species.  相似文献   

14.
 The chromosomal position of Starch Branching Enzyme III (SBEIII) was determined via linkage to RFLP markers on an existing molecular map of rice (Oryza sativa L.). A cDNA of 890 bp was generated using specific PCR primers designed from available SBEIII sequence data and used as a probe in Southern analysis. The SBEIII cDNA hybridized to multiple restriction fragments, but these fragments mapped to a single locus on rice chromosome 2, flanked by CDO718 and RG157. The detection of a multiple-copy hybridization pattern suggested the possibility of a tandemly duplicated gene at this locus. The map location of orthologous SBE genes in maize, wheat, and oat were predicted based on previously published genetic studies and comparative maps of the grass family. Received : 5 August 1996 / Accepted : 13 September 1996  相似文献   

15.
Pairwise comparison of whole plastid and draft nuclear genomic sequences of Arabidopsis thaliana and Oryza sativa L. ssp. indica shows that rice nuclear genomic sequences contain homologs of plastid DNA covering about 94 kb (83%) of plastid genome and including one or more full-length intact (without mutations resulting in premature stop codons) homologues of 26 known protein-coding (KPC) plastid genes. By contrast, only about 20 kb (16%) of chloroplast DNA, including a single intact plastid-derived KPC gene, is presented in the nucleus of A. thaliana. Sixteen rice plastid genes have at least one nuclear copy without any mutation or with only synonymous substitutions. Nuclear copies for other ten plastid genes contain both synonymous and non-synonymous substitutions. Multiple ESTs for 25 out of 26 KPC genes were also found, as well as putative promoters for some of them. The study of substitutions pattern shows that some of nuclear homologues of plastid genes may be functional and/or are under the pressure of the positive natural selection. The similar comparative analysis performed on rice chromosome 1 revealed 27 contigs containing plastid-derived sequences, totalling about 84 kb and covering two thirds of chloroplast DNA, with the intact nuclear copies of 26 different KPC genes. One of these contigs, AP003280, includes almost 57 kb (45%) of chloroplast genome with the intact copies of 22 KPC genes. At the same time, we observed that relative locations of homologues in plastid DNA and the nuclear genome are significantly different.  相似文献   

16.
Microsatellites are useful tools to study the extent of divergence between two taxonomic groups that show high sequence similarity. We have compared microsatellite distribution to illustrate genetic variation between the two rice genomes, Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica. Microsatellite distribution proved to be non random as certain regions of very high microsatellite density have been identified. Microsatellite density in the subspecies japonica was computed marginally higher than in the subspecies indica in the genomic regions compared between the two subspecies. Unexpectedly high microsatellite densities were observed in 5′-untranslated regions of genes. These regions also displayed a clear motif bias. Some of the longest microsatellite repeats were found in intron sequences. Frequency, as well as motif bias was also noted with respect to the association of microsatellites with transposable elements. Microsatellite mutability values were exemplarily estimated for 90 loci by aligning the microsatellite containing regions between the two genomes. Poor rates of finding an orthologue corresponded with high microsatellite mutability in rice. These insights are likely to play a significant role in selecting microsatellite loci to be used in molecular breeding and studying evolutionary dynamics of the two subspecies.  相似文献   

17.
Summary Phylogenetic relationship of the cultivated rices Oryza sativa and O. glaberrima with the O. perennis complex, distributed on the three continents of Asia, Africa and America, and O. australiensis has been studied using Fraction 1 protein and two repeated DNA sequences as markers. Fraction 1 protein isolated from the leaf tissue of accessions of different species was subjected to isoelectric focusing. All the species studied have similar nuclear-encoded small subunit polypeptides and chloroplast-encoded large subunit polypeptides, except two of the O. perennis accessions from South America and O. australiensis, which have a different pattern for the chloroplast subunit. Two DNA sequences were isolated from Eco R1 restriction endonuclease digests of total DNA from O. sativa. One of the sequences has been characterized as highly repeated satellite DNA, and the other one as a moderately repeated DNA sequence. These sequences were used as probes in DNA/DNA hybridization with restriction endonuclease digested DNA from some accessions of the different species. Those accessions that are divergent for large subunit polypeptides of Fraction 1 protein (O. australiensis and two of the four South American O. perennis accessions) also lack the satellite DNA and have a different hybridization pattern with the moderately repeated sequence. All other accessions, irrespective of their geographical origin, are similar. We propose that various accessions of O. perennis from Africa and Asia are closely related to O. sativa and O. glaberrima, and that the dispersal of cultivated and O. perennis rices to different continents may be quite recent. The American O. perennis is a heterogeneous group. Some of the accessions ascribed to this group are closely related to the Asian and African O. perennis, while others have diverged.  相似文献   

18.
We amplified resistance gene analogues (RGAs) from the genomic DNA of 10 rice lines having varying degree of resistance to Magnaporthe grisea by using degenerate primers and various RGAs were mapped in silico on different rice chromosomes. The amplified products were grouped into 3–8 restriction fragment length polymorphic classes by using Mbo1 and Alu1 restriction enzymes. Of 98 RGAs obtained in this study, 65 RGA clones showed more than 95% homology with various RGAs sequences present in the GenBank. Phylogenetic analysis of these RGAs formed 11 groups. Using sequence homology approach, RGAs isolated in this study were physically mapped on 23 loci on chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 10, 11 and 12. Twenty RGAs were mapped near to the chromosomal regions containing known genes/QTLs for rice blast, bacterial leaf blight and sheath blight resistance. Thirty‐nine RGA sequences also contained open reading frame representing signature of potential disease resistance genes.  相似文献   

19.
Colinearity of a large region from barley (Hordeum vulgare) chromosome 5H and rice (Oryza sativa) chromosome 3 has been demonstrated by mapping of several common restriction fragment-length polymorphism clones on both regions. One of these clones, WG644, was hybridized to rice and barley bacterial artificial chromosome (BAC) libraries to select homologous clones. One BAC from each species with the largest overlapping segment was selected by fingerprinting and blot hybridization with three additional restriction fragment-length polymorphism clones. The complete barley BAC 635P2 and a 50-kb segment of the rice BAC 36I5 were completely sequenced. A comparison of the rice and barley DNA sequences revealed the presence of four conserved regions, containing four predicted genes. The four genes are in the same orientation in rice, but the second gene is in inverted orientation in barley. The fourth gene is duplicated in tandem in barley but not in rice. Comparison of the homeologous barley and rice sequences assisted the gene identification process and helped determine individual gene structures. General gene structure (exon number, size, and location) was largely conserved between rice and barley and to a lesser extent with homologous genes in Arabidopsis. Colinearity of these four genes is not conserved in Arabidopsis compared with the two grass species. Extensive similarity was not found between the rice and barley sequences other than within the exons of the structural genes, and short stretches of homology in the promoters and 3' untranslated regions. The larger distances between the first three genes in barley compared with rice are explained by the insertion of different transposable retroelements.  相似文献   

20.
A rice (Oryza sativa L.) cDNA clone coding for the cytoplasmic ribosomal protein L5, which associates with 5 S rRNA for ribosome assembly, was cloned and its nucleotide sequence was determined. The primary structure of rice L5, deduced from the nucleotide sequence, contains 294 amino acids and has intriguing features some of which are also conserved in other eucaryotic homologues. These include: four clusters of basic amino acids, one of which may serve as a nucleolar localization signal; three repeated amino acid sequences; the conservation of glycine residues. This protein was identified as the nuclear-encoded cytoplasmic ribosomal protein L5 of rice by sequence similarity to other eucaryotic ribosomal 5 S RNA-binding proteins of rat, chicken, Xenopus laevis, and Saccharomyces cerevisiae. Rice L5 shares 51 to 62% amino acid sequence identity with the homologues. A group of ribosomal proteins from archaebacteria including Methanococcus vanniellii L18 and Halobacterium cutirubrum L13, which are known to be associated with 5 S rRNA, also related to rice L5 and the other eucaryotic counterparts, suggesting an evolutionary relationship in these ribosomal 5 S RNA-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号