首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
VERO细胞生物反应器放大培养初探   总被引:1,自引:0,他引:1  
目的:研究用生物反应器放大进行Vero细胞微载体培养,实现生物反应器之间Veto细胞放大培养.方法:5L微载体生物反应器以10g/L微载体浓度培养Vero细胞,96h时经漂洗、消化、接种于30L微载体生物反应器,实现放大后的30L微载体生物反应器细胞怏速增殖,期间对不同时期的微载体细胞进行细胞计数、细胞代谢分析和形态观察.结果:5L生物反应器细胞经过96h灌注培养,平均细胞密度达到7.81×10~6cells/mL.5L微载体细胞放大到30L微载体生物反应器,平均细胞收获率为32.3%;放大到30L生物反应器后经过144h培养,细胞密度达到9.19×10~6cells/mL;放大后的细胞代谢途径依然以葡萄糖氧化代谢乳酸为主.结论:生物反应器由5L到30L进行Veto细胞放大培养是可行的.  相似文献   

2.
Chinese hamster ovary cells (CHO-K1) were cultivated in macroporous gelatin microcarriers (CultiSpher G and CultiSpher S) in spinner flasks and a 5 1 bioreactor. Near-to-confluent cultures were harvested by bead-to-bead transfer where intact microcarriers with cells were transferred from a spinner flask to another spinner flask or to the bioreactor with naked microcarrier beads. Successful bead-to-bead transfer was achieved in various split ratios. The duration of attachment seemed to be important where the direct contact of beads to each other can be achieved by intermittent stirring. Repeated transfers were performed and at least four transfers in spinner flasks were achieved.Two variations of bead-to-bead transfer were performed in the 5 1 bioreactor either by seeding the bioreactor with near-to-confluent beads cultivated in spinner flasks orin situ transfer by adding fresh beads to the bioreactor. As in the spinner case, attachment was achieved by intermittent stirring where donor beads were in close proximity to the acceptor beads. Again successful transfers were obtained as evidenced by the good growth on acceptor beads where cell yields were in the range of 3100–4500 cells/bead.The results suggest that bead-to-bead transfer of CHO-K1 cells can be easily performed and do provide an alternative route to applications where dissolution techniques may not offer an efficient solution.  相似文献   

3.
Microbioreactors play a critical role in process development as they reduce reagent requirements and can facilitate high‐throughput screening of process parameters and culture conditions. Here, we have demonstrated and explained in detail, for the first time, the amenability of the automated ambr15 cell culture microbioreactor system for the development of scalable adherent human mesenchymal multipotent stromal/stem cell (hMSC) microcarrier culture processes. This was achieved by first improving suspension and mixing of the microcarriers and then improving cell attachment thereby reducing the initial growth lag phase. The latter was achieved by using only 50% of the final working volume of medium for the first 24 h and using an intermittent agitation strategy. These changes resulted in >150% increase in viable cell density after 24 h compared to the original process (no agitation for 24 h and 100% working volume). Using the same methodology as in the ambr15, similar improvements were obtained with larger scale spinner flask studies. Finally, this improved bioprocess methodology based on a serum‐based medium was applied to a serum‐free process in the ambr15, resulting in >250% increase in yield compared to the serum‐based process. At both scales, the agitation used during culture was the minimum required for microcarrier suspension, NJS. The use of the ambr15, with its improved control compared to the spinner flask, reduced the coefficient of variation on viable cell density in the serum containing medium from 7.65% to 4.08%, and the switch to serum free further reduced these to 1.06–0.54%, respectively. The combination of both serum‐free and automated processing improved the reproducibility more than 10‐fold compared to the serum‐based, manual spinner flask process. The findings of this study demonstrate that the ambr15 microbioreactor is an effective tool for bioprocess development of hMSC microcarrier cultures and that a combination of serum‐free medium, control, and automation improves both process yield and consistency. Biotechnol. Bioeng. 2017;114: 2253–2266. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

4.
A novel oscillating bioreactor, BelloCell, was successfully applied for the cultivation of Vero cells using serum-free medium, and the production of Japanese encephalitis virus. The BelloCell requires no air sparging, pumping, or agitation, and thus provides a low shear environment. Owing to its simple design, BelloCell is extremely easy to handle and operate. Using this BelloCell (500 ml culture), Vero cells reached a maximum number of 2.8 x 10(9) cells and the Japanese encephalitis virus yield reached 6.91 x 10(11) PFU, versus 9.0 x 10(8) cells and 2.98 x 10(11) PFU using a spinner flask (500 ml) with microcarriers. The cell yield and virus production using BelloCell were markedly higher than with microcarrier culture. The neutralizing capacity of the Japanese encephalitis virus produced using BelloCell was equal to that using a microcarrier system. Therefore, these benefits should enable BelloCell to be adopted as a simple system for high population density cell culture and virus production.  相似文献   

5.
人皮肤成纤维细胞在不同培养系统中的生长代谢特性   总被引:2,自引:0,他引:2  
大面积烧伤病人及多种皮肤溃疡病人很难用自体皮肤移植来进行治疗.早期治疗方法采用尸体来源的皮肤移植,但由于来源有限、且有传播疾病的危险,因此应用组织工程技术构建生物活性人工皮肤已成为近十几年来在组织工程和创伤治疗领域的研究热点,目前已有几种人工皮肤成功地走向临床[1].然而,在构建大面积皮肤组织过程中,如何大量制备皮肤种子细胞仍然是一大棘手的难题,成为人体皮肤组织工程迫切需要解决的技术关键.获得大量扩增的皮肤细胞,解决种子细胞的供应问题,是构建人工皮肤的一个关键.  相似文献   

6.
The main disadvantages of foetal calf serum as the world-wide common serum supplement for cell growth are its content of various proteins of variable concentrations between batches as well as its high cost. The use of serum-free and protein-free media is gradually becoming one of the goals of cell culture especially for standardizing culture conditions or for simple purification of cell products like monoclonal antibodies. The mouse hybridoma cells 14/2/1 were cultivated either in protein-free UltraDOMA medium or in serum-containing RPMI medium with and without microcarriers to generate high quantities of monoclonal antibodies against neuroblastoma tumour cells. Cell growth rate, IgG production, viability, glucose and lactate concentrations, attachment rate and doubling time have been used as investigation criteria. Modifications of culture procedures (static or stirred), inoculum density, and microcarrier concentration caused an improvement of monoclonal antibody production. The kinetics of antibody synthesis was best in spinner culture with 2 ml of microcarriers in protein-free medium. These results of short-term microcarrier culture in stirred spinner flasks indicate that IgG yields in protein-free medium 2.5-fold higher to those in serum-supplemented medium can be achieved.  相似文献   

7.
Increased rate of chondrocyte aggregation in a wavy-walled bioreactor   总被引:2,自引:0,他引:2  
A novel wavy-walled bioreactor designed to enhance mixing at controlled shear stress levels was used to culture chondrocytes in suspension. Chondrocyte aggregation in suspensions mixed at 30, 50, and 80 rpm was characterized in the wavy-walled bioreactor and compared with that in conventional smooth-walled and baffled-walled spinner flask bioreactors. Aggregation was characterized in terms of the percentage of cells that aggregated over time, and aggregate size changes over time. The kinetics of chondrocyte aggregation observed in the bioreactors was composed of two phases: early aggregation between 0 and 2 h of culture, and late aggregation between 3 and 24 h of culture. At 50 rpm, the kinetics of early aggregation in the wavy-walled bioreactor was approximately 25% and 65% faster, respectively, than those in the smooth-walled and baffled-walled spinner flask bioreactors. During the late aggregation phase, the kinetics of aggregation in the wavy-walled bioreactor were approximately 45% and 65% faster, respectively, than in the smooth-walled and baffled-walled spinner flasks. The observed improved kinetics of chondrocyte aggregation was obtained at no cost to the cell survival rate. Results of computerized image analysis suggest that chondrocyte aggregation occurred initially by the formation of new aggregates via cell-cell interactions and later by the joining of small aggregates into larger cell clumps. Aggregates appeared to grow for only a couple of hours in culture before reaching a steady size, possibly determined by limitations imposed by the hydrodynamic environment. These results suggest that the novel geometry of the wavy-walled bioreactor generates a hydrodynamic environment distinct from those traditionally used to culture engineered cartilage. Such differences may be useful in studies aimed at distinguishing the effects of the hydrodynamic environment on tissue-engineered cartilage. Characterizing the wavy-walled bioreactor's hydrodynamic environment and its effects on cartilage cell/tissue culture can help establish direct relationships between hydrodynamic forces and engineered tissue properties.  相似文献   

8.
Adaptation of the vaccinia virus expression system to HeLa S3 suspension bioreactor culture for the production of recombinant protein was conducted. Evaluation of hollow fiber perfusion of suspension culture demonstrated its potential for increased cell density prior to infection. The hollow fiber was also used for medium manipulations prior to infection. Two process parameters, multiplicity of infection (MOI) and temperature during the protein production phase, were evaluated to determine their effect on expression of the reporter protein, enhanced green fluorescent protein (EGFP). An MOI of 1.0 was sufficient for infection and led to the highest level of intracellular EGFP expression. Reducing the temperature to 34 degrees C during the protein production phase increased production of the protein two-fold compared to 37 degrees C in spinner flask culture. Scaling up the process to a 1.5-liter bioreactor with hollow fiber perfusion led to an overall production level of 9.9 microg EGFP/10(6) infected cells, or 27 mg EGFP per liter.  相似文献   

9.
Human glandular kallikrein 2 (hK2) is a trypsin-like serine protease that is expressed predominantly in the prostate epithelium and has 78% aa identity with prostate-specific antigen (PSA). hK2 has been recognized as a potential prostate cancer marker and has been demonstrated to be highly expressed in prostate cancer compared to benign prostatic tissue. Purification and characterization of hK2 have been impeded due to its lower expression in bodily fluids and tissues compared to PSA and its ability to autodegrade. Therefore, to study biochemical and biological characteristics of hK2, a stable and enzymatically inactive mutant form of hK2, hK2(A217V), was expressed in a hamster cell line, AV12-664 (AV12-hK2(A217V)). AV12-hK2(A217V) cells secreted prohK2(A217V) (phK2(A217V)) in the spent medium at approximately 2.5 microgram/ml. Since AV12-hK2(A217V) are adherent cells, it was necessary to develop an efficient system to propagate large numbers of cells to obtain significant quantities of phK2(A217V). In this paper, we compared ceramic core bioreactor and microcarrier beads as alternatives to static culture to propagate adherent cells. Considering production levels, ease of operation, cost effectiveness, and labor, microcarrier beads were found to be a better alternative. Our findings led to the development of a general protocol for large-scale propagation of adherent cells on microcarrier beads eliminating the need for propagating AV12-hK2(A217V) in culture flasks or bioreactors. Microcarrier beads coated with AV12-hK2(A217V) cells could be propagated in 1- or 3-liter spinner flasks and were passed from one spinner to the next in a manner analogous to static culture or could be frozen and later used as inoculum for subsequent spinners. Using this protocol, >40 liters of spent medium was harvested within 30 days, which in turn was used to purify phK2(A217V). phK2(A217V) purified from spent medium of cells grown either on microcarrier beads or in culture flasks were biochemically similar as indicated by HIC-HPLC profile followed by sequencing of relevant peaks.  相似文献   

10.
The simple design of traditional spinner flasks makes the on-line estimation of cellular metabolism impossible. An on-line estimation system has been developed and used for the monitoring of oxygen uptake rate (OUR) for insect cells growing in a modified spinner flask. Neglect of oxygen desorption from culture media is a common source of error in OUR measurements for Sf21 cells. Therefore, an algorithm was developed to compensate for the affect of such desorption process on the determination of OUR. A modified spinner flask was successfully used as a low-volume bioreactor for insect cell cultivation and the OUR measurement developed here is both convenient and reliable.  相似文献   

11.
Adaptation of the vaccinia virus expression system to HeLa S3 suspension bioreactor culture for the production of recombinant protein was conducted. Evaluation of hollow fiber perfusion of suspension culture demonstrated its potential for increased cell density prior to infection. The hollow fiber was also used for medium manipulations prior to infection. Two process parameters, multiplicity of infection (MOI) and temperature during the protein production phase, were evaluated to determine their effect on expression of the reporter protein, enhanced green fluorescent protein (EGFP). An MOI of 1.0 was sufficient for infection and led to the highest level of intracellular EGFP expression. Reducing the temperature to 34 °C during the protein production phase increased production of the protein two-fold compared to 37 °C in spinner flask culture. Scaling up the process to a 1.5-liter bioreactor with hollow fiber perfusion led to an overall production level of 9.9 μg EGFP/106 infected cells, or 27 mg EGFP per liter.  相似文献   

12.
造血细胞体外悬浮培养和生物反应器开发   总被引:1,自引:0,他引:1  
为解决造血细胞的静态培养中由浓度梯度引起的培养不稳定、环境不均一、难放大等问题,首先采用转瓶对脐血单个核细胞进行了悬浮培养研究,结果表明,悬浮培养中总细胞、集落和CD34细胞的扩增都高于静态的方瓶培养。在测试了所用材料生物相容性的基础上,开发了可以控制溶氧和pH的生物反应器,并将其应用到造血细胞的批培养中,结果表明反应器的培养环境均一,可实现较高密度的培养,而且总细胞、集落和CD34细胞的扩增都优于静态培养。大规模的反应器培养有利于解决临床应用中细胞数量不足的问题。  相似文献   

13.
目的:哺乳动物细胞目前已广泛用于生物工程药物如单抗和疫苗的生产.而用于贴壁细胞规模化培养的微载体,也应时应需得以开发并应用于生物制药.贴壁细胞微载体培养在搅拌罐和WAVETM反应器中都能进行.而如要进行进一步的放大培养,球转球工艺不可或缺.为了发展球转球这一新的放大技术,以及考量WAVETM反应器这种新型大规模培养设备的应用性,大量的细胞培养和球转球实验在WAVETM反应器和搅拌瓶中进行.收集到的数据得以分析比较.方法:将Vero细胞分别接入WAVETM反应器和搅拌瓶中用微载体Cytodex 1进行培养.适当补充营养并控制温度、pH等培养条件使细胞增殖.长满微载体的细胞用清洗、消化等球转球工艺的一系列步骤而分离,并放大接种到新的培养体系.球转球工艺的有效性通过记录并统计分析细胞消化分离的回收率,以及细胞重新接种生长的存活力来评估.结果:统计学分析比较WAVETM反应器和搅拌瓶中得到的细胞分离回收率分别是67.56%和39.39%,数理统计P值小于0.0003;细胞重新接种存活率分别是95.17%和78.45%,P值等于0.0107.结论:在WAVETM反应器中进行的球转球放大工艺,其总体表现和有效性远高于在搅拌瓶中得到的结果.在WAVETM反应器中培养的Vero细胞有很好的细胞状态,作为种子链和生产用罐相比搅拌型反应罐均有很大的优越性.  相似文献   

14.
Production of human mesenchymal stem cells for allogeneic cell therapies requires scalable, cost‐effective manufacturing processes. Microcarriers enable the culture of anchorage‐dependent cells in stirred‐tank bioreactors. However, no robust, transferable methodology for microcarrier selection exists, with studies providing little or no reason explaining why a microcarrier was employed. We systematically evaluated 13 microcarriers for human bone marrow‐derived MSC (hBM‐MSCs) expansion from three donors to establish a reproducible and transferable methodology for microcarrier selection. Monolayer studies demonstrated input cell line variability with respect to growth kinetics and metabolite flux. HBM‐MSC1 underwent more cumulative population doublings over three passages in comparison to hBM‐MSC2 and hBM‐MSC3. In 100 mL spinner flasks, agitated conditions were significantly better than static conditions, irrespective of donor, and relative microcarrier performance was identical where the same microcarriers outperformed others with respect to growth kinetics and metabolite flux. Relative growth kinetics between donor cells on the microcarriers were the same as the monolayer study. Plastic microcarriers were selected as the optimal microcarrier for hBM‐MSC expansion. HBM‐MSCs were successfully harvested and characterised, demonstrating hBM‐MSC immunophenotype and differentiation capacity. This approach provides a systematic method for microcarrier selection, and the findings identify potentially significant bioprocessing implications for microcarrier‐based allogeneic cell therapy manufacture.  相似文献   

15.
Parameters that affect production of the recombinant reporter protein, EGFP, in the T7 promoter based VOTE vaccinia virus-HeLa cell expression system were examined. Length of infection phase, inducer concentration, and timing of its addition relative to infection were evaluated in 6-well plate monolayer cultures. One hour infection with 1.0 mM IPTG added at the time of infection provided a robust process. For larger scale experiments, anchorage-dependent HeLa cells were grown on 5 g/L Cytodex 3 microcarriers. The change to this dynamic culture environment, with cell-covered microcarriers suspended in culture medium in spinner flasks, suggested a re-examination of the multiplicity of infection (MOI) for this culture type that indicated a need for an increase in the number of virus particles per cell to 5.0, higher than that needed for complete infection in monolayer tissue flask culture. Additionally, dissolved oxygen level and temperature during the protein production phase were evaluated for their effect on EGFP expression in microcarrier spinner flask culture. Both increased dissolved oxygen, based on surface area to volume (SA/V) adjustments, and decreased temperature from 37 to 31 degrees C showed increases in EGFP production over the course of the production phase. The level of production achieved with this system reached approximately 17 microg EGFP/10(6) infected cells.  相似文献   

16.
Cultivation of the new immortalized hepatocyte cell line HepZ was performed with a 1:1 mixture of DMEM and Ham's F12 media containing 5% FCS. The cells were grown in their 40th passage in 100 mL and 1 L volumes in spinner flasks and in a bioreactor, respectively. For the production of adherently growing HepZ cells macroporous CultiSpher G gelatin microcarriers were used in various concentrations from 1 to 3 g/L. The cells were seeded in a density of 2 x 10(5) cells/mL when using a microcarrier concentration of 1 g/L and 5 x 10(5) cells/mL at a microcarrier concentration of 3 g/L. After 7 days of cultivation a maximum cell concentration of 4.5 x 10(6) cells/mL was obtained in the spinner culture using a microcarrier concentration of 1 g/L. With bubble-free aeration and daily medium exchange from day 7, 7.1 x 10(6) cells/mL were achieved in the bioreactor using a microcarrier concentration of 3 g/L. The cells exhibited a maximum specific growth rate of 0.84 per day in the spinner system and 1.0 per day in the bioreactor, respectively. During the growth phase the lactate dehydrogenase (LDH) activity rose slightly up to values of 200 U/L. At the end of cultivation the macroporous carriers were completely filled with cells exhibiting a spherical morphology whereas the hepatocytes on the outer surface were flat-shaped. Concerning their metabolic activity the cells predominantly consumed glutamine and glucose. During the growth phase lactate was produced up to 19.3 mM in the spinner culture and up to 9.1 mM in the bioreactor. Maximal oxygen consumption was 1950 nmol/(10(6) cells. day). HepZ cells resisted a 4-day long chilling period at 9.5 degrees C. The cytochrome P450 system was challenged with a pulse of 7 microgram/mL lidocaine at a cell density of 4.5 x 10(6) cells/mL. Five ng/mL monoethylglycinexylidide (MEGX) was generated within 1 day without phenobarbital induction compared to 26 ng/mL after a preceded three day induction period with 50 microgram/mL of phenobarbital indicating hepatic potency. Thus, the new immortalized HepZ cell line, exhibiting primary metabolic functions and appropriate for a mass cell cultivation, suggests its application for a bioartificial liver support system.  相似文献   

17.
The aim of this study was to develop a robust, quality controlled and reproducible large-scale culture system using serum-free (SF) medium to obtain vast numbers of embryonic stem (ES) cells as a starting source for potential applications in tissue regeneration, as well as for drug screening studies. Mouse ES (mES) cells were firstly cultured on microcarriers in spinner flasks to investigate the effect of different parameters such as the agitation rate and the feeding regimen. Cells were successfully expanded at agitation rates up to 60 rpm using the SF medium and no significant differences in terms of growth kinetics or metabolic profiles were found between the two feeding regimens evaluated: 50% medium renewal every 24 h or 25% every 12 h. Overall, cells reached maximum concentrations of (4.2 ± 0.4) and (5.6 ± 0.8) ×10(6) cells/mL at Day 8 for cells fed once or twice per day; which corresponds to an increase in total cell number of 85 ± 7 and 108 ± 16, respectively. To have a more precise control over culture conditions and to yield a higher number of cells, the scale-up of the spinner flask culture system was successfully accomplished by using a fully controlled stirred tank bioreactor. In this case, the concentration of mES cells cultured on microcarriers increased 85 ± 15-fold over 11 days. Importantly, mES cells expanded under stirred conditions, in both spinner flask and fully controlled stirred tank bioreactor, using SF medium, retained the expression of pluripotency markers such as Oct-4, Nanog, and SSEA-1 and their differentiation potential into cells of the three embryonic germ layers.  相似文献   

18.
利用Bello Cell这种新型的生物反应器,来培养COS7细胞和昆虫Sf9细胞。COS7细胞和昆虫sf9细胞分别用T75培养瓶及spinnerflask培养之后,经细胞计数接入Bello Cell之中,同时检测并分析培养基中葡萄糖、谷氨酰胺、乳酸和氨浓度变化情况。COS7细胞初始接种量为4.208×10^7cells,最终在培养156h后细胞数量达到了4.68×10^8cells,是初始细胞量的11倍。sf9细胞初始接种细胞量为1×10^8cells,在培养192h时,细胞总量达到了最高为4.01×10^9cells,是最初细胞量的40倍。培养基的代谢物进行有规律的变化。Bello Cell适合COS7细胞和昆虫Sf9细胞高密度大规模培养,为动物细胞高效大规模表达药物蛋白,奠定重要的基础。  相似文献   

19.
微载体高密度培养Vero细胞的研究   总被引:10,自引:0,他引:10  
微载体是动物细胞高密度培养的有效手段。首先在硅化的方瓶中对Cytodex 1、Cy-todex 3、Biosilon、Bellco Glass Microcarrier、CT-1、CT-3、MC-1、CT-28种国产和进口微载体进行了比较和筛选。确定以Biosilon作为Vero细胞高密度培养的首选微载体。用500mlWheaton搅拌瓶探索影响Vero细胞高密度培养的条件,表明50~60mg/ml的微载体浓度、1~2×106/ml的细胞接种密度、适当的通气(95%O_2+5%CO2)对该细胞的高密度培养具有重要意义。在200ml培养体积的Wheaton搅拌瓶中,微载体浓度为50~60mg/ml,细胞接种密度为9.24×105/ml,搅拌速度为65~85r/min,经25d培养,Vero细胞密度可达2.34×107/ml,表明50~60mg/ml的微载体浓度对培养细胞没有毒性。接着在1.5L CelliGen生物反应器中进行培养,细胞接种密度为4.98×105/ml,培养体积为1.2L,日灌流量从0.20L逐渐加大到3.65L,经22d连接灌流培养,最终细胞密度可达2.05×107/ml。  相似文献   

20.
It is not well understood how changes from suspension to microcarrier cultures affect cell growth, metabolism, and yield of recombinant proteins. To investigate the effects of culture conditions on cell characteristics, fed-batch bioreactor cultures were performed under different culture conditions (suspension cultures, cultures attached to Cytodex 3 and Cytopore 1 microcarriers) using two different Chinese hamster ovary cell lines producing either secreted human placental alkaline phosphatase (TR2-255) or tissue plasminogen activator (CHO 1-15-500). In controlled, agitated bioreactors, suspension cultures reached cell densities and product titers higher than those in microcarrier cultures, in contrast to the results in static flask cultures. Growth and metabolic activities showed similar trends in suspension and microcarrier culture regardless of cell line. However, the responses of the specific productivities to the different culture conditions differed significantly between the cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号