首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Production of human mesenchymal stem cells for allogeneic cell therapies requires scalable, cost‐effective manufacturing processes. Microcarriers enable the culture of anchorage‐dependent cells in stirred‐tank bioreactors. However, no robust, transferable methodology for microcarrier selection exists, with studies providing little or no reason explaining why a microcarrier was employed. We systematically evaluated 13 microcarriers for human bone marrow‐derived MSC (hBM‐MSCs) expansion from three donors to establish a reproducible and transferable methodology for microcarrier selection. Monolayer studies demonstrated input cell line variability with respect to growth kinetics and metabolite flux. HBM‐MSC1 underwent more cumulative population doublings over three passages in comparison to hBM‐MSC2 and hBM‐MSC3. In 100 mL spinner flasks, agitated conditions were significantly better than static conditions, irrespective of donor, and relative microcarrier performance was identical where the same microcarriers outperformed others with respect to growth kinetics and metabolite flux. Relative growth kinetics between donor cells on the microcarriers were the same as the monolayer study. Plastic microcarriers were selected as the optimal microcarrier for hBM‐MSC expansion. HBM‐MSCs were successfully harvested and characterised, demonstrating hBM‐MSC immunophenotype and differentiation capacity. This approach provides a systematic method for microcarrier selection, and the findings identify potentially significant bioprocessing implications for microcarrier‐based allogeneic cell therapy manufacture.  相似文献   

2.
目的:哺乳动物细胞目前已广泛用于生物工程药物如单抗和疫苗的生产.而用于贴壁细胞规模化培养的微载体,也应时应需得以开发并应用于生物制药.贴壁细胞微载体培养在搅拌罐和WAVETM反应器中都能进行.而如要进行进一步的放大培养,球转球工艺不可或缺.为了发展球转球这一新的放大技术,以及考量WAVETM反应器这种新型大规模培养设备的应用性,大量的细胞培养和球转球实验在WAVETM反应器和搅拌瓶中进行.收集到的数据得以分析比较.方法:将Vero细胞分别接入WAVETM反应器和搅拌瓶中用微载体Cytodex 1进行培养.适当补充营养并控制温度、pH等培养条件使细胞增殖.长满微载体的细胞用清洗、消化等球转球工艺的一系列步骤而分离,并放大接种到新的培养体系.球转球工艺的有效性通过记录并统计分析细胞消化分离的回收率,以及细胞重新接种生长的存活力来评估.结果:统计学分析比较WAVETM反应器和搅拌瓶中得到的细胞分离回收率分别是67.56%和39.39%,数理统计P值小于0.0003;细胞重新接种存活率分别是95.17%和78.45%,P值等于0.0107.结论:在WAVETM反应器中进行的球转球放大工艺,其总体表现和有效性远高于在搅拌瓶中得到的结果.在WAVETM反应器中培养的Vero细胞有很好的细胞状态,作为种子链和生产用罐相比搅拌型反应罐均有很大的优越性.  相似文献   

3.
Hybridoma cell lines can be adapted to grow in a totally protein-free tissue culture medium and cultured in spinner flasks to generate moderate-to-high quantities of monoclonal antibodies. Such antibodies are easily purified by ammonium sulfate precipitation. This system was shown to be useful for growth of 23 different hybridoma cell lines from different sources to yield an average of 40 mg of highly purified antibody per liter of tissue culture medium.  相似文献   

4.
人皮肤成纤维细胞在不同培养系统中的生长代谢特性   总被引:2,自引:0,他引:2  
大面积烧伤病人及多种皮肤溃疡病人很难用自体皮肤移植来进行治疗.早期治疗方法采用尸体来源的皮肤移植,但由于来源有限、且有传播疾病的危险,因此应用组织工程技术构建生物活性人工皮肤已成为近十几年来在组织工程和创伤治疗领域的研究热点,目前已有几种人工皮肤成功地走向临床[1].然而,在构建大面积皮肤组织过程中,如何大量制备皮肤种子细胞仍然是一大棘手的难题,成为人体皮肤组织工程迫切需要解决的技术关键.获得大量扩增的皮肤细胞,解决种子细胞的供应问题,是构建人工皮肤的一个关键.  相似文献   

5.
Comparison of manufacturing techniques for adenovirus production   总被引:2,自引:0,他引:2  
We have compared three different production methods, which may be suitable for the large scale production of adenovirus vectors for human clinical trials. The procedures compared 293 cells adapted to suspension growth in serum-free medium in a stirred tank bioreactor, 293 cells on microcarriers in serum-containing medium in a stirred tank bioreactor, and 293 cells grown in standard tissue culture plasticware. With a given virus, yields varied between 2000 and 10,000 infectious units/cell. The stirred tank bioreactor routinely produced between 4000 and 7000 infectious units/cell when 293 cells were grown on microcarriers. The 293 cells adapted to suspension growth in serum-free medium in the same stirred tank bioreactor yielded between 2000 and 7000 infectious units/cell. Yields obtained from standard tissue culture plasticware were up to 10,000 infectious units/cell. Cell culture conditions were monitored for glucose consumption, lactate production, and ammonia accumulation. Glucose consumption and lactate accumulation correlated well with the cell growth parameters. Ammonia production does not appear to be significant. Based on virus yields, ease of operation and linear scalability, large-scale adenovirus production seems feasible using 293 cells (adapted to suspension/serum free medium or on microcarriers in serum containing medium) in a stirred tank bioreactor. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The aim of this study was to develop a robust, quality controlled and reproducible large-scale culture system using serum-free (SF) medium to obtain vast numbers of embryonic stem (ES) cells as a starting source for potential applications in tissue regeneration, as well as for drug screening studies. Mouse ES (mES) cells were firstly cultured on microcarriers in spinner flasks to investigate the effect of different parameters such as the agitation rate and the feeding regimen. Cells were successfully expanded at agitation rates up to 60 rpm using the SF medium and no significant differences in terms of growth kinetics or metabolic profiles were found between the two feeding regimens evaluated: 50% medium renewal every 24 h or 25% every 12 h. Overall, cells reached maximum concentrations of (4.2 ± 0.4) and (5.6 ± 0.8) ×10(6) cells/mL at Day 8 for cells fed once or twice per day; which corresponds to an increase in total cell number of 85 ± 7 and 108 ± 16, respectively. To have a more precise control over culture conditions and to yield a higher number of cells, the scale-up of the spinner flask culture system was successfully accomplished by using a fully controlled stirred tank bioreactor. In this case, the concentration of mES cells cultured on microcarriers increased 85 ± 15-fold over 11 days. Importantly, mES cells expanded under stirred conditions, in both spinner flask and fully controlled stirred tank bioreactor, using SF medium, retained the expression of pluripotency markers such as Oct-4, Nanog, and SSEA-1 and their differentiation potential into cells of the three embryonic germ layers.  相似文献   

7.
The performance of a protein-free medium was compared in culture flasks with a serum-supplemented medium and with a serum free medium in terms of cell growth and monoclonal antibody production by a murine hybridoma. We present results of continuous production in hollow fiber culture systems using serum-free medium and protein-free medium. In protein-free medium, it has been possible to produce large quantities of monoclonal antibody with a productivity similar to that obtained in serum-free medium. After a two steps purification process, monoclonal antibodies were characterized by SDS-PAGE, High Performance Size Exclusion Chromatography and Free Solution Capillary Electrophoresis. SDS-PAGE and high performance chromatography analysis have showed that purified monoclonal antibodies produced in serum-free medium or protein-free medium were similar. Furthermore, Capillary Electrophoresis characterization revealed that both MAbs were constituted by three isoforms with equivalent electrophoretic mobilities.Abbreviations CHES 2-(N-Cyclohexylamino)ethane-sulfonic acid - ECS Extracapillary Space - FSCE Free Solution Capillary Electrophoresis - HPSEC High Performance Size Exclusion Chromatography - ICS Intracapillary Space - MAb Monoclonal Antibody - PFM Protein-Free Medium - SFM Serum-Free Medium - SSM Serum-Supplemented Medium  相似文献   

8.
The growth and antibody production of the SP2/0-derived hybridoma HB124 (ATCC) grown in media containing varying amounts of fetal bovine serum (FBS) were monitored using biochemical and flow cytometric methods. Hybridomas grown in 100 ml spinner flasks with RPMI-1640 containing varying amounts of serum demonstrated that cell growth, viability and IgG production show significant changes when serum content is decreased from 10.0 to 5.5 to 1.0 and 0.5%. A longer lag phase resulted when the lower serum content media were used. Cellular rates of glucose uptake showed a significant increase as serum levels were lowered. Similarly, exponential phase IgG production rates increased as the amount of serum was decreased, probably as a result of the decreased rate of exponential growth. Flow cytometric analysis showed a similar increase in cellular IgG content as medium serum levels declined. In contrast, the maximum IgG concentrations were found in flasks containing 1% FBS or above with the lowest concentration in the 0.5% FBS flask being due to the lower numbers of viable cells. Cells grown in microporous hollow fiber reactors were fed with medium containing serum which was decreased stepwise with time. Decreasing medium serum content stepwise from 10 to 2.5% resulted in increased antibody production. However, complete removal of serum from the medium resulted in a significant drop in antibody productivity. Cumulative antibody production was equivalent for cells grown entirely in medium containing 10% FBS and for those which experienced a drop to 2.5% FBS. To compare a defined serum-free medium preparation with medium containing 10% FBS, cells were again grown in batch suspension culture and analyzed. The growth rates were similar but there was a significant difference in IgG production rates. The serum-free culture exhibited both higher cellular production rates and higher IgG concentrations. These results indicate that decreasing medium serum content can adversely affect antibody yield because of lower cell viabilities, not because of lower production rates. Use of a defined serum-free medium, as done in this study, results in higher yields because of a higher IgG production rate as well as good cell growth and viability.  相似文献   

9.
Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell‐based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non‐invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)‐free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin‐based Cultispher®S microcarriers and xeno‐free culture medium for the expansion of umbilical cord matrix (UCM)‐derived MSC. This system enabled the production of 2.4 (±1.1) x105 cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)‐fold increase in cell number. The established protocol was then implemented in a stirred‐tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier‐based stirred culture system, using xeno‐free culture medium that suits the intrinsic features of UCM‐derived MSC represents an important step towards a GMP compliant large‐scale production platform for these promising cell therapy candidates.  相似文献   

10.
《Journal of biotechnology》1999,67(2-3):205-216
The feasibility of large scale production of human anti-tetanus toxoid monoclonal antibody for therapeutic use was evaluated using a human heterohybridoma. The effects of duration of subculture, transition from static to agitated culture conditions and the level of serum concentration were studied. The level of antibody secreted by the clone decreased with increasing length of subculture and decreasing serum concentration. The clone exhibited heterogeneity in expression of surface IgG after 2 or 7 weeks of subculture in static culture conditions irrespective of the serum concentration. However, a prolonged duration of subculture (9 weeks) in 3% serum medium had an effect on the expression of surface IgG both in static and agitated culture conditions. With respect to total (surface and intracellular) IgG, two distinct cell populations were observed. On long term subculture (9 weeks) in low serum medium (3% FCS), there was a decrease in the population which was the high synthesizer. In addition, when these cells were cultivated in agitated spinner flasks, a defect in secretion of antibodies was observed. Thus a general fall in the amount of antibody in the supernatant of agitated cultures was due to decrease in antibody synthesis as well as the defect in secretion of antibodies.  相似文献   

11.
The kinetics of mammalian cell growth in a microcarrier culture are affected by the distribution of cells on microcarriers. It has been shown previously that a critical cell number per microcarrier is required for the growth of FS-4 cells on microcarriers. It is advantageous to alter the cell distribution on microcarriers to allow for a larger fraction of microcarriers to acquire enough cells to initiate normal growth. This can be achieved by selecting the diameter of the microcarriers employed. It has also been shown previously that the critical cell number could be reduced by choosing a better culture medium to support low density growth. However, even if all cells inoculated into a culture are capable of growing to confluence, it is still necessary to select the microcarrier diameter ration ally to improve the growth kinetics. The method of selecting the microcarrier diameter is discussed. By employing a improved medium as well as using microcarriers of selected diameter, the multiplication ratio was in creased to 15- to 16-fold for FS-4 cells, as opposed to 3- to 4-fold typically obtained in a batch culture.  相似文献   

12.
Primary bovine aortic endothelial cells were cultivated in serum supplemented medium without any additional growth factors. The anchorage dependent cells were propagated on Dormacell® microcarriers with covalently bound dimeric DEAE-groups at the surface of the dextrane beads. Cultivations were performed in 200 ml spinner cultures containing 1 g l–1 to 3 g l–1 of microcarriers. Out of five types of Dormacell® microcarriers with different ion exchange capacities ranging from 0.30 up to 0.65 meq g–1, corresponding to nitrogen contents from 1.2% to 2.9%, respectively, optimal attachment and growth of endothelial cells were obtained with beads of highest nitrogen content (2.9%). Cells were seeded withca. 5 viable cells per microcarrier being sufficient to achieve fully confluent microcarriers after 4 to 5 days. Glucose concentrations decreased from 21 mM to uppermost half of the original concentrations. 4 mM glutamine was rapidly consumed and virtually exhausted after the cells reached confluency. Lactate concentrations raised to a maximum of 7 mM in spinner cultures, but was found to be reutilized in the stationary phase after glutamine limitation occurred. Serine was found to be the second most prominent amino acid being almost exhausted at confluency whereas alanine was produced in noteworthy amounts. Considerable decrease was determined for threonine, lysine and arginine; low consumption rates were observed for leucine, phenylalanine and methionine. All other amino acids did not alter significantly throughout cultivation. These data support that bovine aortic endothelial cells are capable to utilize glucose and glutamine as well as lactic acid (after glutamine exhaustion) as energy and/or carbon source. Finally, batch cultures in a 2 liter membrane stirred bioreactor with bubble-free aeration were performed to produce large quantities of endothelial cells using microcarrier concentrations of 3 g l–1.Abbreviations BAE cells bovine aortic endothelial cells - NCS newborn calf serum - PBS phosphate buffered saline  相似文献   

13.
We compared serum and protein-free cultures ofa ras-amplified recombinant BHK-21 cell line(ras-rBHK-IgG), which hyperproduces a lungcancer specific recombinant human monoclonal antibody. Ras-rBHK-IgG cells were shown to grow well, evenin protein-free medium and to be morphologicallysimilar to cells cultured in serum containing medium. However, the growth rate of ras-rBHK-IgG cellswas considerably slower in protein-free medium, whichresults in a longer maintenance period compared with cells cultured in serum containing medium. In addition, it was found that antibody production in protein-free culture had a ten times higher maximum than cells cultured in serum containing medium. On theother hand, in high density culture, using the hollowfiber bioreactor system, ras-rBHK-IgG cellscould be maintained for a month in protein-freeculture in contrast with serum culture, which onlylasted for half a month. However, the markedincrease of antibody production was not observed. A total amount of about 15 mg of the recombinantantibody, obtained in protein-free culture, was abouttwo times of that obtained in serum culture, and wasshown to be reactive to lung cancer cells in tissue. From these properties in protein-free medium, it isconcluded that protein-free culture of ras-rBHK-IgG cells is suitable for middle scaleproduction of recombinant human monoclonal antibody.  相似文献   

14.
Microcarrier cell culture technology has been extended by the finding that two mammalian epithelial cell lines can be continuously subcultured by simple bead-to-bead transfer in normal medium in which calcium concentrations have been reduced. Data are reported which show that the hamster ovary line CHO-Kl and the monkey kidney line LLC-MK2 can be subcultured simply by adding fresh microcarriers to the stirred suspension culture. Thirteen generations of continuous exponential growth are demonstrated with two such subcultures for the CHO-Kl cells and with four such subcultures for the LLC-MK2 cells. Cell generation times were unchanged by this subculturing approach compared to standard subculturing procedure using trypsin to remove cells from surfaces. We have applied this technique to the production of vesicular stomatitis virus (VSV) from CHO-Kl cells. Viral yields were comparable (less than twofold difference) in microcarrier cultures which were subcultured via bead-to-bead transfer or by the standard means of removing cells from microcarriers with trypsin.  相似文献   

15.
Summary A shear-sensitive hybridoma cell line, incapable of growth or antibody production in spinner or shake flasks agitated at 40 rpm, was grown successfully in a perfusion propagation system consisting of a bioreactor (1.5 liter), stirred with a cell-lift impeller at 60 rpm, and a tangential flow filtration unit for removal of spent culture medium from the reactor. The culture was maintained over a 48 day period and cell numbers reached 1.8 × 107 cells/ml. Maximal monoclonal antibody concentration was 800 ug/ml, indicating a productivity of 504 mg/day.  相似文献   

16.
In vitro propagation of osteoblasts in three-dimensional culture has been explored as a means of cell line expansion and tissue engineering purposes. Studies investigating optimal culture conditions are being conducted to produce bone-like material. This study demonstrates the use of collagen microcarrier beads as a substrate for three-dimensional cell culture. We have earlier reported that microcarriers consisting of cross-linked type I collagen support chondrocyte proliferation and synthesis of extracellular matrix. In this study, we investigated the use of collagen microcarriers to propagate human trabecular bone-derived osteoblasts. Aggregation of cell-seeded microcarriers and production of extracellular matrix-like material were observed after 5 d in culture. Expression of extracellular matrix proteins osteocalcin, osteopontin, and type I collagen was confirmed by messenger ribonucleic acid analysis, radioimmunoassay, and Western blot analysis. The efficient recovery of viable cells was achieved by collagenase digestion of the cell-seeded microcarriers. The collagen microcarrier spinner culture system provides an efficient method to amplify large numbers of healthy functional cells that can be subsequently used for further in vitro or transplantation studies.  相似文献   

17.
Glucocorticoid hormones promoted the growth of fibroblast cells derived from human neonatal foreskins and prolonged their life span in a microcarrier culture system that used Eagle's minimum essential medium (MEM) supplemented with fetal calf serum (FCS). But, these hormones suppressed cell growth in conventional monolayer cultures. Precolostrum newborn calf serum (PNCS) was the only species that supported the serial propagation of fibroblast cells on microcarriers, possibly because of its high content of hydrocortisone (HC). Fibroblast cells grown on microcarriers in the presence of glucocorticoid hormones maintained their ability to produce interferon (IFN)-beta in a superinduction method with poly I: poly C and antimetabolites. These cells had more than 93% diploidy and no chromosomal aberration or translocation. Use of PNCS for the cultivation of human fibroblast cells has high potential for providing a microcarrier culture system for the mass production of human IFN-beta.  相似文献   

18.
Using porous microcarrier Cytopore and a low-serum medium supplement BIGBEF-3, we have successfully cultivated recombinant CHO cell line CL-11G producing prourokinase and hybridomas producing anti-prourokinase monoclonal antibody in Celligen 1.5 or 5 L bioreactor. The cell density obtained ranged from 1 to 2 × 107 cells mL-1. The yields of prourokinase and monoclonal antibody increased with increasing cell density. As the cells could spontaneously release from and reattach to porous microcarriers, it was very easy to scale-up the cultivation. Thus the bead to bead cell transfer method has been used to scale up the cultivation of CL-11G cells to a 20 L reactor-scale for the pilot production of prourokinase, and also to scale-up the culture of hybridomas for the production of monoclonal antibody for the purification of prourokinase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We have investigated conditions that inhibit the tendency of CHO K1 cells to form cellular bridges between microcarriers and dense clumps of cellular overgrowth in microcarrier cultures. Microcarrier aggregation by cellular bridge formation was found to occur only during periods of rapid cell growth. The level of microcarrier aggregation decreased with increasing agitation intensity. Dense masses of cellular overgrowth formed inside bridges connecting the microcarriers and in clumps that protruded off the microcarrier surface. To replace cells that were continuously sheared from the microcarriers, cell growth occurred preferentially in areas of overgrowth after confluent microcarriers were maintained in a serum-free medium. This ultimately led to poor surface coverage as bare spots developed on the microcarrier away from the areas of dense cellular overgrowth. The development of bare spots was inhibited when confluent microcarriers were maintained in medium supplemented with 1% serum. The development of cellular overgrowth was inhibited by dimethyl sulfoxide. Thus, maintaining confluent microcarriers in medium supplemented with 1% dimethyl sulfoxide and 1% calf serum resulted in microcarriers that appeared similar to monolayer cultures. There was also a decrease in bridging in cultures supplemented with either 1% calf serum or 1% dimethyl sulfoxide/1% calf serum compared to serum-free cultures.  相似文献   

20.
The development of efficient and reproducible culture systems for embryonic stem (ES) cells is an essential pre‐requisite for regenerative medicine. Culture scale‐up ensuring maintenance of cell pluripotency is a central issue, because large amounts of pluripotent cells must be generated to warrant that differentiated cells deriving thereof are transplanted in great amounts and survive the procedure. This study aimed to develop a robust scalable cell expansion system, using a murine embryonic stem cell line that is feeder‐dependent and adapted to serum‐free medium, thus representing a more realistic model for human ES cells. We showed that high concentrations of murine ES cells can be obtained in stirred microcarrier‐based spinner cultures, with a 10‐fold concentration of cells per volume of medium and a 5‐fold greater cell concentration per surface area, as compared to static cultures. No differences in terms of pluripotency and differentiation capability were observed between cells grown in traditional static systems and cells that were replated onto the traditional system after being expanded on microcarriers in the stirred system. This was verified by morphological analyses, quantification of cells expressing important pluripotency markers (Oct‐4, SSEA‐1, and SOX2), karyotype profile, and the ability to form embryoid bodies with similar sizes, and maintaining their intrinsic ability to differentiate into all three germ layers. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号