首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Barley (Hordeum vulgare L.) and tomato Lycopersicon esculentum Mill.) were grown hydroponically and examined 2, 5, and 10 d after being deprived of nitrogen (N) supply. Leaf elongation rate declined in both species in response to N stress before there was any reduction in rate of dryweight accumulation. Changes in water transport to the shoot could not explain reduced leaf elongation in tomato because leaf water content and water potential were unaffected by N stress at the time leaf elongation began to decline. Tomato maintained its shoot water status in N-stressed plants, despite reduced water absorption per gram root, because the decline in root hydraulic conductance with N stress was matched by a decline in stomatal conductance. In barley the decline in leaf elongation coincided with a small (8%) decline in water content per unit area of young leaves; this decline occurred because root hydraulic conductance was reduced more strongly by N stress than was stomatal conductance. Nitrogen stress caused a rapid decline in tissue NO 3 - pools and in NO 3 - flux to the xylem, particularly in tomato which had smaller tissue NO 3 - reserves. Even in barley, tissue NO 3 - reserves were too small and were mobilized too slowly (60% in 2 d) to support maximal growth for more than a few hours. Organic N mobilized from old leaves provided an additional N source to support continued growth of N-stressed plants. Abscisic acid (ABA) levels increased in leaves of both species within 2 d in response to N stress. Addition of ABA to roots caused an increase in volume of xylem exudate but had no effect upon NO 3 - flux to the xylem. After leaf-elongation rate had been reduced by N stress, photosynthesis declined in both barley and tomato. This decline was associated with increased leaf ABA content, reduced stomatal conductance and a decrease in organic N content. We suggest that N stress reduces growth by several mechanisms operating on different time scales: (1) increased leaf ABA content causing reduced cell-wall extensibility and leaf elongation and (2) a more gradual decline in photosynthesis caused by ABA-induced stomatal closure and by a decrease in leaf organic N.Abbreviation and symbols ABA abscisic acid - ci leaf internal CO2 concentration - Lp root hydraulic conductance  相似文献   

2.
The importance of aquaporins for root hydraulic conductance (LP) was investigated along roots of the desert succulent Agave deserti in wet, dry and rewetted soil. Water channel activity was inferred from HgCl2‐induced reductions of LP that were reversible by 2‐mercaptoethanol. Under wet conditions, HgCl2 reduced LP for the distal root region by 50% and for the root region near the shoot base by 36% but did not affect LP for the mid‐root region. For all root regions, LP decreased by 30–60% during 10 d in drying soil and was not further reduced by HgCl2. After soil rewetting, LP increased to pre‐drying values and was again reduced by HgCl2 for the distal and the basal root regions but not the mid‐root region. For the distal region, water channels in the epidermis/exodermis made a disproportionately large contribution to radial hydraulic conductance of the intact segment; for the basal region, water channel activity was highest in the cortex and endodermis. The role of water channels was greatest in tissues in which cells were metabolically active both in the distal root region, where new apical growth occurs in wet soil, and in the basal region, which is the most likely root region to intercept light rainfall.  相似文献   

3.
The potential of barley (Hordeum vulgare L.) and tomato (Lycopersicon esculentum Mill.) roots for net NO 3 - absorption increased two-to five fold within 2 d of being deprived of NO 3 - supply. Nitrogen-starved barley roots continued to maintain a high potential for NO 3 - absorption, whereas NO 3 - absorption by tomato roots declined below control levels after 10 d of N starvation. When placed in a 0.2 mM NO 3 - solution, roots of both species transported more NO 3 - and total solutes to the xylem after 2 d of N starvation than did N-sufficient controls. However, replenishment of root NO 3 - stores took precedence over NO 3 - transport to the xylem. Consequently, as N stress became more severe, transport of NO 3 - and total solutes to the xylem declined, relative to controls. Nitrogen stress caused an increase in hydraulic conductance (L p) and exudate volume (J v) in barley but decrased these parameters in tomato. Nitrogen stress had no significant effect upon abscisic acid (ABA) levels in roots of barley or flacca (a low-ABA mutant) tomato, but prevented an agerelated decline in ABA in wild-type tomato roots. Applied ABA had the same effect upon barley and upon the wild type and flacca tomatoes: L p and J v were increased, but NO 3 - absorption and NO 3 - flux to the xylem were either unaffected or sometimes inhibited. We conclude that ABA is not directly involved in the normal changes in NO 3 - absorption and transport that occur with N stress in barley and tomato, because (1) the root ABA level was either unaffected by N stress (barley and flacca tomato) or changed, after the greatest changes in NO 3 - absorption and transport and L p had been observed (wild-type tomato); (2) changes in NO 3 - absorption/transport characteristics either did not respond to applied ABA, or, if they did, they changed in the direction opposite to that predicted from changes in root ABA with N stress; and (3) the flacca tomato (which produces very little ABA in response to N stress) responded to N stress with very similar changes in NO 3 - transport to those observed in the wild type.Abbreviation and symbols ABA abscisic acid - Jv exudate volume - Lp root hydraulic conductance  相似文献   

4.
Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na+ and Cl? around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand–clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na+ and Cl? concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P  < 0.001). However, by day 35, the groundwater salinity and height above the water table remained significant factors, but the root fresh mass density was no longer significant. Regression of data from the 200 and 400 mM NaCl treatments showed that the rate of Na+ accumulation in the soil increased until the Na+ concentration reached ~250 mM within the root zone; subsequent decreases in accumulation were associated with decreases in stomatal conductance. Salinization of the soil solution therefore had a feedback effect on further salinization within the root zone.  相似文献   

5.
The concept of root contact hypothesizes that the absorbing roots grown in sandy soil are only partially effective in water uptake. Co-ordination of water supply and demand in the plant requires that the capacity for water uptake from the soil should correspond to an operational rate of water loss from the leaves. To examine how the plant hydraulic system responds to variations in soil texture or evaporative demand through long-term acclimation, an experiment was carried on cotton plants (Gossypium herbaceum L.), where three grades of soil texture and three grades of evaporative demand were applied for the whole life cycle of the plants. Plants were harvested 50 and 90 d (fully grown) after sowing and root length and leaf area measured. At 90 d hydraulic conductance was measured as the ratio of sap flow (measured with sap flow sensors or gravimetrically) and water potential. Results showed that for plants grown at the same evaporative demand, those in sandy soil, where root-specific hydraulic conductance was low, developed more absorbing roots than those grown in heavy-textured soil, where root specific conductance was high. This resulted in the same leaf specific hydraulic conductance (1.8 × 10−4 kg s−1 Mpa−1 m−2) for all three soils. For plants grown in the same sandy soil, those subjected to strong evaporative demand developed more absorbing roots and higher leaf-specific hydraulic conductance than those grown under mild evaporative demand. It is concluded that when soil texture or atmospheric evaporative demand varies, plants co-ordinate their capacities for liquid phase and vapour phase water transport through long-term acclimation of the hydraulic system, or plastic morphological adaptation of the root/leaf ratio.  相似文献   

6.
解析植物木质部导水率对逆境的响应和适应对促进植物抗逆性机理研究和受损植被恢复具有重要意义。该文以荒漠河岸林建群种胡杨(Populus euphratica)为研究对象,系统分析了胡杨幼株根、茎、叶水分传输通道对不同浓度盐胁迫的响应和适应。结果表明:(1)胡杨幼株根系对盐胁迫的敏感性高于茎和叶,盐胁迫下根系生长和根尖数显著受到抑制,根木质部易于发生栓塞,导水率明显降低。(2)胡杨幼株茎木质部导水率对盐胁迫的响应依盐浓度而定,轻度(0.05 mol·L–1 Na Cl)和中度(0.15 mol·L–1 Na Cl)盐胁迫下,胡杨可以通过协调导管输水的有效性和安全性来调节木质部的导水率,维持植物正常生长;重度(0.30 mol·L–1 Na Cl)盐胁迫下,胡杨茎木质部导管输水有效性和安全性均明显降低,木质部导水率显著下降,并伴随叶片气孔导度的显著降低,从而严重抑制了胡杨的光合和生长。  相似文献   

7.
E. Steudle  W. D. Jeschke 《Planta》1983,158(3):237-248
Radial transport of water in excised barley (Hordeum distichon, cv. Villa) roots was measured using a new method based on the pressure-probe technique. After attaching excised roots to the probe, root pressures of 0.9 to 2.9 bar were developed. They could be altered either by changing the root pressure artificially (with the aid of the probe) or by changing the osmotic pressure of the medium in order to induce water flows across the root. The hydraulic conductivity of the barley roots (per cm2 of outer root surface) was obtained in different types of experiments (initial water flow, pressure relaxations, constant water flow) and was (0.3–4.3)·10-7 cm s-1 bar-1. The hydraulic conductivity of the root was by an order of magnitude smaller than the hydraulic conductivity of the cell membranes of cortical and epidermal cells (0.8–2.2)·10-6 cm s-1 bar-1. The half-times of water exchange of these cells was 1–21 s and two orders of magnitude smaller than that of entire excised roots (100–770 s). Their volumetric elastic modulus was 15–305 bar and increased with increasing turgor. Within the root cortex, turgor was independent of the position of the cell within a certain layer and turgor ranged between 3 and 5 bar. The large difference between the hydraulic conductivity of the root and that of the cell membranes indicates that there is substantial cell-to-cell (transcellular plus symplasmic) transport of water in the root. When it is assumed that 10–12 membrane layers (plasmalemma plus tonoplast) in the epidermis, cortex and endodermis form the hydraulic resistance to water flow, a value for the hydraulic conductivity of the root can be calculated which is similar to the measured value. This picture for water transport in the root contradicts current models which favour apoplasmic water transport in the cortex.  相似文献   

8.
Water movement between a root and the soil depends on the hydraulic conductances of the soil, the root, and the intervening root-soil air gap (Lgap) created as roots shrink during soil drying. To measure Lgap, segments of young cylindrical roots of Agave deserti about 3 mm in diameter were placed concentrically or eccentrically within tubes of moistened filter paper at a known water potential. As the width of the air gap between the filter paper and a concentrically located root was made smaller, measured Lgap increased less than did predicted Lgap based on isothermal conditions. For gaps of the size expected in the soil during water loss from roots (e.g., 10% of the root radius), the underprediction was about 70% and was primarily caused by a lowering of the root surface temperature accompanying water evaporation. As a root segment was eccentrically moved toward the filter paper, the measured Lgap increased. For the most eccentric case of touching the filter paper, the measured Lgap was 2.4-fold greater than for the concentric case, compared with an infinite Lgap predicted if the water potential were constant around the root surface. When a root touched soil with a water potential of -1.0MPa, Lgap estimated using a graphical method increased about 2.3-fold and the overall conductance of the root-soil system increased by 31% compared with the concentric case. For markedly eccentric locations of roots in air gaps, Lgap, which can be the principal conductance initially limiting water loss from roots to a drying soil, can be about 60% of the value predicted for the concentric isothermal case.  相似文献   

9.
The effect of saline stress on physiological and morphological parameters in Callistemon citrinus plants was studied to evaluate their adaptability to irrigation with saline water. C. citrinus plants, grown under greenhouse conditions, were subjected to two irrigation treatments lasting 56 weeks: control (0.8 dS·m?1) and saline (4 dS·m?1). The use of saline water in C. citrinus plants decreased aerial growth, increased the root/shoot ratio and improved the root system (increased root diameter and root density), but flowering and leaf colour were not affected. Salinity caused a decrease in stomatal conductance and evapotranspiration, which may prevent toxic levels being reached in the shoot. Net photosynthesis was reduced in plants subjected to salinity, although this response was evident much later than the decrease in stomatal conductance. Stem water potential was a good indicator of salt stress in C. citrinus. The relative salt tolerance of Callistemon was related to storage of higher levels of Na+ and Cl? in the roots compared with the leaves, especially in the case of Na+, which could have helped to maintain the quality of plants. The results show that saline water (around 4 dS·m?1) could be used for growing C. citrinus commercially. However, the cumulative effect of irrigating with saline water for 11 months was a decrease in photosynthesis and intrinsic water use efficiency, meaning that the interaction of the salinity level and the time of exposure to the salt stress should be considered important in this species.  相似文献   

10.
Variations in hydraulic conductivity (LP) and the underlying anatomical and morphological changes were investigated for main root-lateral root junctions of Agave deserti and Ferocactus acanthodes under wet, dry, and rewetted soil conditions. During 21 d of drying, LP and radial conductivity (LR) increased threefold to fivefold at junctions of both species. The increase in LR was accompanied by the formation of an apoplastic pathway for radial water movement from the surface of the junction to the stele for A. deserti and by the rupture of periderm by emerging primordia of secondary lateral roots for F. acanthodes. During 7 d of rewetting, LR decreased for junctions of A. deserti, as apoplastic water movement was not apparent, but LR was unchanged for F. acanthodes. Axial conductance (Kh) decreased during drying for both species, largely because of embolism related to the degradation of unlignified cell wall areas in tracheary elements at the root junction. The resulting apertures in the cell walls of such elements would admit air bubbles at pressure differences of only 0.12-0.19 MPa. Rewetting restored Kh for both species, but not completely, due to blockage of xylem elements by tyloses. About 40% of the primary lateral roots of the monocotyledon A. deserti abscised during 21 d of drying. For the dicotyledon F. acanthodes, which can form new conduits in its secondary xylem, only 10% of the primary lateral roots abscised during 21 d of drying, consistent with the much greater frequency of lateral roots that persist during drought in the field compared with the case for the sympatric A. deserti.  相似文献   

11.
The hydrotropic bending of roots of an ageotropic pea mutant, ageotropum, was studied in humid air in a chamber with a steady humidity gradient. We examined the effects of atmospheric humidity around the root on the water status of root tissues, as well as the wall growth and the hydraulic properties of the elongating tissues. Atmospheric humidity at the surface of the root was clearly lower on the side orientated towards the air with lower humidity than on the side orientated towards the air with higher humidity. However, there were no differences in water potential and osmotic potential between the tissues that faced air with higher and lower humidities in the elongating and mature regions. Plastic extensibility was higher in the tissues that faced the air with lower humidity than in the tissues that faced the air with higher humidity. No differences in turgor pressure and yield threshold were observed between the tissues that faced air with higher and lower humidities. Therefore, the extensibility of the cell wall appeared to be responsible for the different growth rates of tissues in root hydrotropism. A further probable cause of the hydrotropical bending of roots is changes in the hydraulic conductance in the elongating tissues. Since the hydrotropic bending of roots occurred only when a root tip was exposed to a humidity gradient, hydrotropism might occur after perception of a difference in humidity by the root tip, with accompanying changes in cell wall extensibility and hydraulic conductance.  相似文献   

12.
Studies have suggested that increased root hydraulic conductivity in mycorrhizal roots could be the result of increased cell‐to‐cell water flux via aquaporins. This study aimed to elucidate if the key effect of the regulation of maize aquaporins by the arbuscular mycorrhizal (AM) symbiosis is the enhancement of root cell water transport capacity. Thus, water permeability coefficient (Pf) and cell hydraulic conductivity (Lpc) were measured in root protoplast and intact cortex cells of AM and non‐AM plants subjected or not to water stress. Results showed that cells from droughted‐AM roots maintained Pf and Lpc values of nonstressed plants, whereas in non‐AM roots, these values declined drastically as a consequence of water deficit. Interestingly, the phosphorylation status of PIP2 aquaporins increased in AM plants subjected to water deficit, and Pf values higher than 12 μm s?1 were found only in protoplasts from AM roots, revealing the higher water permeability of AM root cells. In parallel, the AM symbiosis increased stomatal conductance, net photosynthesis, and related parameters, showing a higher photosynthetic capacity in these plants. This study demonstrates a better performance of AM root cells in water transport under water deficit, which is connected to the shoot physiological performance in terms of photosynthetic capacity.  相似文献   

13.
The tropical epiphytic cacti Epiphyllum phyllanthus and Rhipsalis baccifera experience extreme variations in soil moisture due to limited soil volumes and episodic rainfalls. To examine possible root rectification, whereby water uptake from a wet soil occurs readily but water loss to a dry soil is minimal, responses of root hydraulic conductivity (Lp) to soil drying and rewetting were investigated along with the underlying anatomical changes. After 30 d of soil drying, Lp decreased 50%–70% for roots of both species, primarily because increased suberization of the periderm reduced radial conductivity. Sheaths composed of soil particles, root hairs, and mucilage covered young roots and helped reduce root desiccation. Axial (xylem) conductance increased during drying due to vessel differentiation and maturation, and drought-induced embolism was relatively low. Within 4 d of rewetting, Lp for roots of both species attained predrought values; radial conductivity increased for young roots due to the growth of new branch roots initiated during drying and for older roots due to the development of radial breaks in the periderm. The decreases in Lp during drought reduced plant water loss to a dry soil, and yet maximal water uptake and transpiration occurred within a few days of rewetting, helping these epiphytes to take advantage of episodic rainfalls in a moist tropical forest.  相似文献   

14.
The contrasting hydraulic properties of wheat (Triticum aestivum), narrow-leafed lupin (Lupinus angustifolius), and yellow lupin (Lupinus luteus) roots were identified by integrating measurements of water flow across different structural levels of organization with anatomy and modeling. Anatomy played a major role in root hydraulics, influencing axial conductance (Lax) and the distribution of water uptake along the root, with a more localized role for aquaporins (AQPs). Lupin roots had greater Lax than wheat roots, due to greater xylem development. Lax and root hydraulic conductance (Lr) were related to each other, such that both variables increased with distance from the root tip in lupin roots. Lax and Lr were constant with distance from the tip in wheat roots. Despite these contrasting behaviors, the hydraulic conductivity of root cells (Lpc) was similar for all species and increased from the root surface toward the endodermis. Lpc was largely controlled by AQPs, as demonstrated by dramatic reductions in Lpc by the AQP blocker mercury. Modeling the root as a series of concentric, cylindrical membranes, and the inhibition of AQP activity at the root level, indicated that water flow in lupin roots occurred primarily through the apoplast, without crossing membranes and without the involvement of AQPs. In contrast, water flow across wheat roots crossed mercury-sensitive AQPs in the endodermis, which significantly influenced Lr. This study demonstrates the importance of examining root morphology and anatomy in assessing the role of AQPs in root hydraulics.  相似文献   

15.
Salinization is one of the most important causes of crop productivity reduction in many areas of the world. Mechanisms that control leaf growth and shoot development under the osmotic phase of salinity are still obscure, and opinions differ regarding the Abscisic acid (ABA) role in regulation of biomass allocation under salt stress. ABA concentration in roots and leaves was analyzed in a genotype of processing tomato under two increasing levels of salinity stress for five weeks: 100 mM NaCl (S10) and 150 mM NaCl (S15), to study the effect of ABA changes on leaf gas exchange and dry matter partitioning of this crop under salinity conditions. In S15, salinization decreased dry matter by 78% and induced significant increases of Na+ and Cl in both leaves and roots. Dry matter allocated in different parts of plant was significantly different in salt-stressed treatments, as salinization increased root/shoot ratio 2-fold in S15 and 3-fold in S15 compared to the control. Total leaf water potential (Ψw) decreased from an average value of approximately −1.0 MPa, measured on control plants and S10, to −1.17 MPa in S15. In S15, photosynthesis was reduced by 23% and stomatal conductance decreased by 61%. Moreover, salinity induced ABA accumulation both in tomato leaves and roots of the more stressed treatment (S15), where ABA level was higher in roots than in leaves (550 and 312 ng g−1 fresh weight, respectively). Our results suggest that the dynamics of ABA and ion accumulation in tomato leaves significantly affected both growth and gas exchange-related parameters in tomato. In particular, ABA appeared to be involved in the tomato salinity response and could play an important role in dry matter partitioning between roots and shoots of tomato plants subjected to salt stress.  相似文献   

16.
The hydraulic conductivities of excised whole root systems of wheat (Triticum aestivum L. cv. Atou) and of single excised roots of wheat and maize (Zea mays L. cv. Passat) were measured using an osmotically induced back-flow technique. Ninety minutes after excision the values for single excised roots ranged from 1.6·10-8 to 5.5·10-8 m·s-1·MPa-1 in wheat and from 0.9·10-8 to 4.8·10-8 m·s-1·MPa-1 in maize. The main source of variation was a decrease in the value as root length increased. The hydraulic conductivities of whole root systems, but not of single excised roots, were smaller 15 h after excision. This was not caused by occlusion of the xylem at the cut end of the coleoptile. The hydraulic conductivities of epidermal, cortical and endodermal cells were measured using a pressure probe. Epidermal and cortical cells of both wheat and maize roots gave mean values of 1.2·10-7 m·s-1·MPa-1 but in endodermal cells (measured only in wheat) the mean value was 0.5·10-7 m·s-1·MPa-1. The cellular hydraulic conductivities were used to calculate the root hydraulic conductivities expected if water flow across the root was via transcellular (vacuole-to-vacuole), apoplasmic or symplasmic pathways. The results indicate that, in freshly excised roots, the bulk of water flow is unlikely to be via the transcellular pathway. This is in contrast to our previous conclusion (H. Jones, A.D. Tomos, R.A. Leigh and R.G. Wyn Jones 1983, Planta 158, 230–236) which was based on results obtained with whole root systems of wheat measured 14–15 h after excision and which probably gave artefactually low values for root hydraulic conductivity. It is now concluded that, near the root tip, water flow could be through a symplasmic pathway in which the only substantial resistances to water flow are provided by the outer epidermal and the inner endodermal plasma membranes. Further from the tip, the measured hydraulic conductivities of the roots are consistent with flow either through the symplasmic or apoplasmic pathways.Symbols L p, cell cell hydraulic conductivity - L p, root root hydraulic conductivity - L p, root calculated root hydraulic conductivity - root reflection coefficient  相似文献   

17.
Aerenchyma development in waterlogged Helianthus annuus, Lycopersicon esculentum, and Salix fragilis was studied. More than half of the root cortical tissue sometimes became an air cavity in willow roots which developed in water. There was no cortical aerenchyma in the terminal portion, but more advanced aerenchyma developed towards the base of the sunflower roots formed in water. Waterlogged sunflower and tomato plants developed lysigenous aerenchyma in the cortex of waterlogged stems within two days.  相似文献   

18.
Our previous work indicated that salinity caused a shift in the predominant site of nitrate reduction and assimilation from the shoot to the root in tomato plants. In the present work we tested whether an enhanced supply of dissolved inorganic carbon (DIC, CO2+ HCO3) to the root solution could increase anaplerotic provision of carbon compounds for the increased nitrogen assimilation in the root of salinity-stressed Lycopersicon esculentum (L.) Mill. cv. F144. The seedlings were grown in hydroponic culture with 0 or 100mM NaCl and aeration of the root solution with either ambient or CO2-enriched air (5000 μmol mol?1). The salinity-treated plants accumulated more dry weight and higher total N when the roots were supplied with CO2-enriched aeration than when aerated with ambient air. Plants grown with salinity and enriched DIC also had higher rates of NO?3 uptake and translocated more NO?3 and reduced N in the xylem sap than did equivalent plants grown with ambient DIC. Incorporation of DIC was measured by supplying a 1 -h pulse of H14CO?3 to the roots followed by extraction with 80% ethanol. Enriched DIC increased root incorporation of DIC 10-fold in both salinized and non-salinized plants. In salinity-stressed plants, the products of dissolved inorganic 14C were preferentially diverted into amino acid synthesis to a greater extent than in non-salinized plants in which label was accumulated in organic acids. It was concluded that enriched DIC can increase the supply of N and anaplerotic carbon for amino acid synthesis in roots of salinized plants. Thus enriched DIC could relieve the limitation of carbon supply for ammonium assimilation and thus ameliorate the influence of salinity on NO?3 uptake and assimilation as well as on plant growth.  相似文献   

19.
We investigated the contribution of internal water storage and efficiency of water transport to the maintenance of water balance in six evergreen tree species in a Hawaiian dry forest. Wood‐saturated water content, a surrogate for relative water storage capacity, ranged from 70 to 105%, and was inversely related to its morphological correlate, wood density, which ranged between 0·51 and 0·65 g cm?3. Leaf‐specific conductivity (kL) measured in stem segments from terminal branches ranged from 3 to 18 mmol m?1 s?1 MPa?1, and whole‐plant hydraulic efficiency calculated as stomatal conductance (g) divided by the difference between predawn and midday leaf water potential (ΨL), ranged from 70 to 150 mmol m?2 s?1 MPa?1. Hydraulic efficiency was positively correlated with kL (r2 = 0·86). Minimum annual ΨL ranged from ? 1·5 to ? 4·1 MPa among the six species. Seasonal and diurnal variation in ΨL were associated with differences among species in wood‐saturated water content, wood density and kL. The species with higher wood‐saturated water content were more efficient in terms of long‐distance water transport, exhibited smaller diurnal variation in ΨL and higher maximum photosynthetic rates. Smaller diurnal variation in ΨL in species with higher wood‐saturated water content, kL and hydraulic efficiency was not associated with stomatal restriction of transpiration when soil water deficit was moderate, but avoidance of low minimum seasonal ΨL in these species was associated with a substantial seasonal decline in g. Low seasonal minimum ΨL in species with low kL, hydraulic efficiency, and wood‐saturated water content was associated with higher leaf solute content and corresponding lower leaf turgor loss point. Despite the species‐specific differences in leaf water relations characteristics, all six evergreen tree species shared a common functional relationship defined primarily by kL and stem water storage capacity.  相似文献   

20.
The shoots of cultivated tomato (Lycopersicon esculentum cv. T5) wilt if their roots are exposed to chilling temperatures of around 5 °C. Under the same treatment, a chilling‐tolerant congener (Lycopersicon hirsutum LA 1778) maintains shoot turgor. To determine the physiological basis of this differential response, the effect of chilling on both excised roots and roots of intact plants in pressure chambers were investigated. In excised roots and intact plants, root hydraulic conductance declined with temperature to nearly twice the extent expected from the temperature dependence of the viscosity of water, but the response was similar in both species. The species differed markedly, however, in stomatal behaviour: in L. hirsutum, stomatal conductance declined as root temperatures were lowered, whereas the stomata of L. esculentum remained open until the roots reached 5 °C, and the plants became flaccid and suffered damage. Grafted plants with the shoots of one genotype and roots of another indicated that the differential stomatal behaviour during root chilling has distinct shoot and root components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号