首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of arbuscular mycorrhizal (AM) fungus, Glomus etunicatum, on growth, water status, chlorophyll concentration and photosynthesis in maize (Zea mays L.) plants was investigated in pot culture under low temperature stress. The maize plants were placed in a sand and soil mixture at 25°C for 7 weeks, and then subjected to 5°C, 15°C and 25°C for 1 week. Low temperature stress decreased AM root colonization. AM symbiosis stimulated plant growth and had higher root dry weight at all temperature treatments. Mycorrhizal plants had better water status than corresponding non-mycorrhizal plants, and significant differences were found in water conservation (WC) and water use efficiency (WUE) regardless of temperature treatments. AM colonization increased the concentrations of chlorophyll a, chlorophyll b and chlorophyll a + b. The maximal fluorescence (Fm), maximum quantum efficiency of PSII primary photochemistry (Fv/Fm) and potential photochemical efficiency (Fv/Fo) were higher, but primary fluorescence (Fo) was lower in AM plants compared with non-AM plants. AM inoculation notably increased net photosynthetic rate (Pn) and transpiration rate (E) of maize plants. Mycorrhizal plants had higher stomatal conductance (gs) than non-mycorrhizal plants with significant difference only at 5°C. Intercellular CO2 concentration (Ci) was lower in mycorrhizal than that in non-mycorrhizal plants, especially under low temperature stress. The results indicated that AM symbiosis protect maize plants against low temperature stress through improving the water status and photosynthetic capacity.  相似文献   

2.
The purpose of this study was to investigate the effects of arbuscular mycorrhizal (AM) symbiosis on gas exchange, chlorophyll fluorescence, pigment concentration and water status of maize plants in pot culture under high temperature stress. Zea mays L. genotype Zhengdan 958 were cultivated in soil at 26/22°C for 6 weeks, and later subjected to 25, 35 and 40°C for 1 week. The plants inoculated with the AM fungus Glomus etunicatum were compared with the non-inoculated plants. The results showed that high temperature stress decreased the biomass of the maize plants. AM symbiosis markedly enhanced the net photosynthetic rate, stomatal conductance and transpiration rate in the maize leaves. Compared with the non-mycorrhizal plants, mycorrhizal plants had lower intercellular CO2 concentration under 40°C stress. The maximal fluorescence, maximum quantum efficiency of PSII photochemistry and potential photochemical efficiency of mycorrhizal plants were significantly higher than corresponding non-mycorrhizal plants under high temperature stress. AM-inoculated plants had higher concentrations of chlorophyll a, chlorophyll b and carotenoid than non-inoculated plants. Furthermore, AM colonization increased water use efficiency, water holding capacity and relative water content. In conclusion, maize roots inoculated with AM fungus may protect the plants against high temperature stress by improving photosynthesis and water status.  相似文献   

3.

Background and Aims

The movement of water through mycorrhizal fungal tissues and between the fungus and roots is little understood. It has been demonstrated that arbuscular mycorrhizal (AM) symbiosis regulates root hydraulic properties, including root hydraulic conductivity. However, it is not clear whether this effect is due to a regulation of root aquaporins (cell-to-cell pathway) or to enhanced apoplastic water flow. Here we measured the relative contributions of the apoplastic versus the cell-to-cell pathway for water movement in roots of AM and non-AM plants.

Methods

We used a combination of two experiments using the apoplastic tracer dye light green SF yellowish and sodium azide as an inhibitor of aquaporin activity. Plant water and physiological status, root hydraulic conductivity and apoplastic water flow were measured.

Key Results

Roots of AM plants enhanced significantly relative apoplastic water flow as compared with non-AM plants and this increase was evident under both well-watered and drought stress conditions. The presence of the AM fungus in the roots of the host plants was able to modulate the switching between apoplastic and cell-to-cell water transport pathways.

Conclusions

The ability of AM plants to switch between water transport pathways could allow a higher flexibility in the response of these plants to water shortage according to the demand from the shoot.  相似文献   

4.
Sheng M  Tang M  Chen H  Yang B  Zhang F  Huang Y 《Mycorrhiza》2008,18(6-7):287-296
The influence of arbuscular mycorrhizal (AM) fungus Glomus mosseae on characteristics of the growth, water status, chlorophyll concentration, gas exchange, and chlorophyll fluorescence of maize plants under salt stress was studied in the greenhouse. Maize plants were grown in sand and soil mixture with five NaCl levels (0, 0.5, 1.0, 1.5, and 2.0 g/kg dry substrate) for 55 days, following 15 days of non-saline pretreatment. Under salt stress, mycorrhizal maize plants had higher dry weight of shoot and root, higher relative chlorophyll content, better water status (decreased water saturation deficit, increased water use efficiency, and relative water content), higher gas exchange capacity (increased photosynthetic rate, stomatal conductance and transpiration rate, and decreased intercellular CO(2) concentration), higher non-photochemistry efficiency [increased non-photochemical quenching values (NPQ)], and higher photochemistry efficiency [increased the maximum quantum yield in the dark-adapted state (Fv/Fm), the maximum quantum yield in the light-adapted sate (Fv'/Fm'), the actual quantum yield in the light-adapted steady state (varphiPSII) and the photochemical quenching values (qP)], compared with non-mycorrhizal maize plants. In addition, AM symbiosis could trigger the regulation of the energy biturcation between photochemical and non-photochemical events reflected in the deexcitation rate constants (kN, kN', kP, and kP'). All the results show that G. mosseae alleviates the deleterious effect of salt stress on plant growth, through improving plant water status, chlorophyll concentration, and photosynthetic capacity, while the influence of AM symbiosis on photosynthetic capacity of maize plants can be indirectly affected by soil salinity and mycorrhizae-mediated enhancement of water status, but not by the mycorrhizae-mediated enhancement of chlorophyll concentration and plant biomass.  相似文献   

5.
The arbuscular mycorrhizal (AM) symbiosis alters host plant physiology under drought stress, but no information is available on whether or not the AM affects respond to drought locally or systemically. A split‐root system was used to obtain AM plants with total or only half root system colonized as well as to induce physiological drought affecting the whole plant or non‐physiological drought affecting only the half root system. We analysed the local and/or systemic nature of the AM effects on accumulation of osmoregulatory compounds and aquaporins and on antioxidant systems. Maize plants accumulated proline both, locally in roots affected by drought and systemically when the drought affected the whole root system, being the last effect ampler in AM plants. PIPs (plasma membrane intrinsic proteins) aquaporins were also differently regulated by drought in AM and non‐AM root compartments. When the drought affected only the AM root compartment, the rise of lipid peroxidation was restricted to such compartment. On the contrary, when the drought affected the non‐AM root fraction, the rise of lipid peroxidation was similar in both root compartments. Thus, the benefits of the AM symbiosis not only rely in a lower oxidative stress in the host plant, but it also restricts locally such oxidative stress.  相似文献   

6.
The impact of deficit and excess of soil water on plant growth, morphological plant features, N and P plant nutrition, soil properties, Rhizobium nodulation and the symbiosis between arbuscular mycorrhizal (AM) fungi and Lotus tenuis Waldst. & Kit. were studied in a saline-sodic soil. Water excess treatment decreased root growth by 36% and increased shoot growth by 13% whereas water deficit treatment decreased both root and shoot growth (26 and 32%, respectively). Differences between stress conditions on shoot growth were due to the ability of L. tenuis to tolerate low oxygen concentration in the soil and the sufficiency of nutrients in soil to sustain shoot growth demands. Water excess treatment decreased pH, and increased available P and labile C in soil. Water deficit treatment decreased available P and also increased labile C. In general, N and P acquisition were affected more by water excess than water deficit. The number of nodules per gram of fresh roots only increased in water excess roots (97%). Under both stress conditions there was a significant proportion of roots colonized by AM fungi. Compared to control treatment, arbuscule formation decreased by 55 and 14% under water excess and water deficit, respectively. Vesicle formation increased 256% in water excess treatment and did not change under water deficit treatment. L. tenuis plants subjected to water deficit or excess treatments could grow, nodulated and maintained a symbiotic association with AM fungi by different strategies. Under water excess, L. tenuis plants decreased root growth and increased shoot growth to facilitate water elimination by transpiration. Under water deficit, L. tenuis plants decreased root growth but also shoot growth which in turn significant decreased the shoot/root ratio. In the present study, under water excess conditions AM fungi reduced nutrient transfer structures (arbuscules), the number of entry points and spore, and hyphal densities in soil, but increased resistance structures (vesicles). At water deficit, however, AM fungi reduced external hyphae and arbuscules to some extent, investing more in maintaining a similar proportion of vesicles in roots and spores in soil compared to control treatment.  相似文献   

7.
The arbuscular mycorrhizal (AM) symbiosis has been shown to modulate the same physiological processes as the phytohormone abscisic acid (ABA) and to improve plant tolerance to water deficit. The aim of the present research was to evaluate the combined influence of AM symbiosis and exogenous ABA application on plant root hydraulic properties and on plasma-membrane intrinsic proteins (PIP) aquaporin gene expression and protein accumulation after both a drought and a recovery period. Results obtained showed that the application of exogenous ABA enhanced osmotic root hydraulic conductivity (L) in all plants, regardless of water conditions, and that AM plants showed lower L values than nonAM plants, a difference that was especially accentuated when plants were supplied with exogenous ABA. This effect was clearly correlated with the accumulation pattern of the different PIPs analyzed, since most showed reduced expression and protein levels in AM plants fed with ABA as compared to their nonAM counterparts. The possible involvement of plant PIP aquaporins in the differential regulation of L by ABA in AM and nonAM plants is further discussed.  相似文献   

8.
It is well known that the arbuscular mycorrhizal (AM) symbiosis helps the host plant to overcome several abiotic stresses including drought. One of the mechanisms for this drought tolerance enhancement is the higher water uptake capacity of the mycorrhizal plants. However, the effects of the AM symbiosis on processes regulating root hydraulic properties of the host plant, such as root hydraulic conductivity and plasma membrane aquaporin gene expression, and protein abundance, are not well defined. Since it is known that K(+) status is modified by AM and that it regulates root hydraulic properties, it has been tested how plant K(+) status could modify the effects of the symbiosis on root hydraulic conductivity and plasma membrane aquaporin gene expression and protein abundance, using maize (Zea mays L.) plants and Glomus intraradices as a model. It was observed that the supply of extra K(+) increased root hydraulic conductivity only in AM plants. Also, the different pattern of plasma membrane aquaporin gene expression and protein abundance between AM and non-AM plants changed with the application of extra K(+). Thus, plant K(+) status could be one of the causes of the different observed effects of the AM symbiosis on root hydraulic properties. The present study also highlights the critical importance of AM fungal aquaporins in regulating root hydraulic properties of the host plant.  相似文献   

9.
Excessive salt accumulation in soils is a major ecological and agronomical problem, in particular in arid and semi-arid areas. Excessive soil salinity affects the establishment, development, and growth of plants, resulting in important losses in productivity. Plants have evolved biochemical and molecular mechanisms that may act in a concerted manner and constitute the integrated physiological response to soil salinity. These include the synthesis and accumulation of compatible solutes to avoid cell dehydration and maintain root water uptake, the regulation of ion homeostasis to control ion uptake by roots, compartmentation and transport into shoots, the fine regulation of water uptake and distribution to plant tissues by the action of aquaporins, the reduction of oxidative damage through improved antioxidant capacity and the maintenance of photosynthesis at values adequate for plant growth. Arbuscular mycorrhizal (AM) symbiosis can help the host plants to cope with the detrimental effects of high soil salinity. There is evidence that AM symbiosis affects and regulates several of the above mentioned mechanisms, but the molecular bases of such effects are almost completely unknown. This review summarizes current knowledge about the effects of AM symbiosis on these physiological mechanisms, emphasizing new perspectives and challenges in physiological and molecular studies on salt-stress alleviation by AM symbiosis.  相似文献   

10.
We studied the role of different arbuscular‐mycorrhizal (AM) fungi on lettuce (Lactuca sativa L.) plant carbon metabolism under drought stress. Plants were grown in pots maintained at two levels of soil moisture and labeled during photosynthesis with CO2. P‐fertilized plants were used as a non‐mycorrhizal control. Well‐watered mycorrhizal plants showed similar growth to that of P‐fertilized plants. The level of mycorrhizal root infection was not significantly affected by fungal species or by water treatment. In contrast, important differences in Δ13C between P‐fertilized and AM plants were found in shoot and root tissues as a consequence of both water limitation and fungal presence. Δ13C in shoots and roots increased in non‐mycorrhizal treatment as compared with the well‐watered plants, whereas this parameter decreased significantly in mycorrhizal plants. Photosynthetic activity was increased in AM plants in well‐watered and droughted plants. G. deserticola was the most beneficial endophyte for water use efficiency in both water treatments. Transpiration rate was not affected by any of the treatments. On the basis of total C in plant tissues, in AM plants the newly fixed C seemed to be preferentially utilized for fungal activity rather than being stored in roots.  相似文献   

11.
Arbuscular mycorrhizal (AM) symbiosis is known to help the host plant to overcome environmental stresses as drought by a combination of multiple mechanisms including enhancing of root water uptake capacity. On the other hand, Nitric oxide (NO) is involved in regulating the response of plants to environmental stresses and colonization process of AM fungi. The objective of this research was to study how AM and non-AM lettuce plants responded to a NO donor (sodium nitroprusside; SNP) or to a NO synthesis inhibitor (Nω-nitro-L-arginine methyl ester hydrochloride; L-NAME) under well watered and drought conditions. Most remarkable results were that L-NAME increased the percentage of AM colonized roots under both water regimes and AM plants modified the shoot:root ratio by both chemicals under well watered conditions. Also, the deleterious effects of SNP treatment were partially prevented by AM symbiosis. Moreover, NO could be involved in the diminution of leaf water content under drought conditions, and SNP treatment seems to favor apoplastic water path inside roots. Therefore, different outcomes of relative water content, stomatal conductance and root hydraulic conductivity observed between AM and non-AM plants could be mediated by NO.  相似文献   

12.
13.
14.
Plants grown in phosphorus-deprived solutions often exhibit disruption of water transport due to reduction in root hydraulic conductivity (Lpr). To uncover the relationship between root Lpr and water permeability coefficient (Pf) of plasma membrane and the role of aquaporins, we evaluated Pf of plasma membrane and also PIP-type aquaporin gene expression in tobacco (Nicotiana tabacum L.) plant roots after seven days P-deprivation. The results showed significant reduction in sap flow rate (Jv) and osmotic root hydraulic conductivity (Lpr-o) in P-deprived roots. These effects were reversed 24 h after P-resupplying. Interestingly, the Pf of root protoplasts was 57% lower in P-deprived plants compared with P-sufficient ones. The expression of NtPIP1;1 and NtPIP2;1 aquaporins did not change significantly in P-deprived plants compared with P-sufficient ones, but the copy number of NtAQP1 increased significantly in P-deprived plants. P-deprivation did not change Lpr-o significantly in antisense NtAQP1 plants. Taken together, these findings suggest that P-deprivation may play an important role in modulation of root hydraulic conductivity by affecting Pf in transcellular pathway of water flow across roots and aquaporins. Finally, we concluded that dominant water transport pathway under P-deprivation was transcellular one.  相似文献   

15.
The adaptation capacity of olive trees to different environments is well recognized. However, the presence of microorganisms in the soil is also a key factor in the response of these trees to drought. The objective of the present study was to elucidate the effects of different arbuscular mycorrhizal (AM) fungi coming from diverse soils on olive plant growth and water relations. Olive plants were inoculated with native AM fungal populations from two contrasting environments, that is, semi‐arid – Freila (FL) and humid – Grazalema (GZ) regions, and subjected to drought stress. Results showed that plants grew better on GZ soil inoculated with GZ fungi, indicating a preference of AM fungi for their corresponding soil. Furthermore, under these conditions, the highest AM fungal diversity was found. However, the highest root hydraulic conductivity (Lpr) value was achieved by plants inoculated with GZ fungi and growing in FL soil under drought conditions. So, this AM inoculum also functioned in soils from different origins. Nine novel aquaporin genes were also cloned from olive roots. Diverse correlation and association values were found among different aquaporin expressions and abundances and Lpr, indicating how the interaction of different aquaporins may render diverse Lpr values.  相似文献   

16.
Mycorrhizal plants benefit from the fungal partners by getting better access to soil nutrients. In exchange, the plant supplies carbohydrates to the fungus. The additional carbohydrate demand in mycorrhizal plants was shown to be balanced partially by higher CO2 assimilation and increased C metabolism in shoots and roots. In order to test the role of sucrose transport for fungal development in arbuscular mycorrhizal (AM) tomato, transgenic plants with down‐regulated expression of three sucrose transporter genes were analysed. Plants that carried an antisense construct of SlSUT2 (SlSUT2as) repeatedly exhibited increased mycorrhizal colonization and the positive effect of plants to mycorrhiza was abolished. Grafting experiments between transgenic and wild‐type rootstocks and scions indicated that mainly the root‐specific function of SlSUT2 has an impact on colonization of tomato roots with the AM fungus. Localization of SISUT2 to the periarbuscular membrane indicates a role in back transport of sucrose from the periarbuscular matrix into the plant cell thereby affecting hyphal development. Screening of an expression library for SlSUT2‐interacting proteins revealed interactions with candidates involved in brassinosteroid (BR) signaling or biosynthesis. Interaction of these candidates with SlSUT2 was confirmed by bimolecular fluorescence complementation. Tomato mutants defective in BR biosynthesis were analysed with respect to mycorrhizal symbiosis and showed indeed decreased mycorrhization. This finding suggests that BRs affect mycorrhizal infection and colonization. If the inhibitory effect of SlSUT2 on mycorrhizal growth involves components of BR synthesis and of the BR signaling pathway is discussed.  相似文献   

17.
Under drought conditions, arbuscular mycorrhizal (AM) fungi alter water relationships of plants and improve their resistance to drought. In a factorial greenhouse experiment, we tested the effects of the AM symbiosis and precipitation regime on the performance (growth, gas exchange, nutrient status and mycorrhizal responsiveness) of Boswellia papyrifera seedlings. A continuous precipitation regime was imitated by continuous watering of plants to field capacity every other day during 4 months, and irregular precipitation by pulsed watering of plants where watering was switched every 15 days during these 4 months, with 15 days of watering followed by 15 days without watering. There were significantly higher levels of AM colonization under irregular precipitation regime than under continuous precipitation. Mycorrhizal seedlings had higher biomass than control seedlings. Stomatal conductance and phosphorus mass fraction in shoot and root were also significantly higher for mycorrhizal seedlings. Mycorrhizal seedlings under irregular watering had the highest biomass. Both a larger leaf area and higher assimilation rates contributed to higher biomass. Under irregular watering, the water use efficiency increased in non-mycorrhizal seedlings through a reduction in transpiration, while in mycorrhizal seedlings irregular watering increased transpiration. Because assimilation rates increased even more, mycorrhizal seedlings achieved an even higher water use efficiency. Boswellia seedlings allocated almost all carbon to the storage root. Boswellia seedlings had higher mass fractions of N, P, and K in roots than in shoots. Irregular precipitation conditions apparently benefit Boswellia seedlings when they are mycorrhizal. Electronic supplementary material The online version of this article (doi:10.1007/s00442-012-2258-3) contains supplementary material, which is available to authorized users.  相似文献   

18.
Water deficit limits plant growth and yield. Arbuscular mycorrhizal (AM) symbiosis is viewed as one of the several methods to improve growth under water deficit. The present study investigated the growth performance in relation to water deficit in two cultivars (“H2” and “660”) of AM treated macadamia (Macadamia tetraphylla L.) plants. AM treatment significantly improved the growth in macadamia plants that have been subjected to water deficit (7 % soil water content) for 14 days. Leaf water content (LWC) and maximum quantum yield of PSII (Fv/Fm) in AM-associated plants were maintained better than those in the control (well-watered) plants. A positive correlation was observed between LWC and Fv/Fm in “H2” cultivar. AM treatment enhanced proline and soluble sugar content in “H2” cultivar under water deficit stress. In contrast, only soluble sugars were accumulated in the AM-associated plants of “660” cultivar under water deficit stress. The study concludes that soluble sugars and proline are involved as key signals of osmoregulation defense response, improve water relation in plant tissues, and thereby resulting in improved growth in AM-associated macadamia plants.  相似文献   

19.
The effect of arbuscular mycorrhiza (AM) symbiosis on plant growth is associated with the balance between costs and benefits. A feedback regulation loop has been described in which the higher carbohydrate cost to plants for AM symbiosis is compensated by increases in their photosynthetic rates. Nevertheless, plant carbon balance depends both on photosynthetic carbon uptake and respiratory carbon consumption. The hypothesis behind this research was that the role of respiration in plant growth under AM symbiosis may be as important as that of photosynthesis. This hypothesis was tested in Arundo donax L. plantlets inoculated with Rhizophagus irregularis and Funneliformis mosseae. We tested the effects of AM inoculation on both photosynthetic capacity and in vivo leaf and root respiration. Additionally, analyses of the primary metabolism and ion content were performed in both leaves and roots. AM inoculation increased photosynthesis through increased CO2 diffusion and electron transport in the chloroplast. Moreover, respiration decreased only in AM roots via the cytochrome oxidase pathway (COP) as measured by the oxygen isotope technique. This decline in the COP can be related to the reduced respiratory metabolism and substrates (sugars and tricarboxylic acid cycle intermediates) observed in roots.  相似文献   

20.
Although the discovery of aquaporins in plants has resulted in a paradigm shift in the understanding of plant water relations, the relationship between aquaporins and plant responses to drought still remains elusive. Moreover, the contribution of aquaporin genes to the enhanced tolerance to drought in arbuscular mycorrhisal (AM) plants has never been investigated. Therefore, we studied, at a molecular level, whether the expression of aquaporin-encoding genes in roots is altered by the AM symbiosis as a mechanism to enhance host plant tolerance to water deficit. In this study, genes encoding plasma membrane aquaporins (PIPs) from soybean and lettuce were cloned and their expression pattern studied in AM and nonAM plants cultivated under well-watered or drought stressed conditions. Results showed that AM plants responded to drought stress by down-regulating the expression of the PIP genes studied and anticipating its down-regulation as compared to nonAM plants. The possible physiological implications of this down-regulation of PIP genes as a mechanism to decrease membrane water permeability and to allow cellular water conservation is further discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号