首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The tropical epiphytic cacti Epiphyllum phyllanthus and Rhipsalis baccifera experience extreme variations in soil moisture due to limited soil volumes and episodic rainfalls. To examine possible root rectification, whereby water uptake from a wet soil occurs readily but water loss to a dry soil is minimal, responses of root hydraulic conductivity (Lp) to soil drying and rewetting were investigated along with the underlying anatomical changes. After 30 d of soil drying, Lp decreased 50%–70% for roots of both species, primarily because increased suberization of the periderm reduced radial conductivity. Sheaths composed of soil particles, root hairs, and mucilage covered young roots and helped reduce root desiccation. Axial (xylem) conductance increased during drying due to vessel differentiation and maturation, and drought-induced embolism was relatively low. Within 4 d of rewetting, Lp for roots of both species attained predrought values; radial conductivity increased for young roots due to the growth of new branch roots initiated during drying and for older roots due to the development of radial breaks in the periderm. The decreases in Lp during drought reduced plant water loss to a dry soil, and yet maximal water uptake and transpiration occurred within a few days of rewetting, helping these epiphytes to take advantage of episodic rainfalls in a moist tropical forest.  相似文献   

2.
The constraints on water uptake imposed by individual root tissueswere examined forOpuntia ficus-indicaunder wet, drying, andrewetted soil conditions. Root hydraulic conductivity (LP) andaxial conductance (Kh) were measured for intact root segmentsfrom the distal region with an endodermis and from midroot witha periderm;LPwas then measured for each segment with successivetissues removed by dissection. Radial conductivity (LR) wascalculated fromLPandKhfor the intact segment and for the individualtissues by considering the tissue conductivities in series.Under wet conditions,LRfor intact distal root segments was lowestfor the cortex; at midroot, where cortical cells are dead,LRforthe cortex was higher and no single tissue was the predominantlimiter ofLR.LRfor the endodermis and the periderm were similarunder wet conditions. During 30d of soil drying,LRfor the distalcortex increased almost three-fold due to the death of corticalcells, whereasLRfor the midroot cortex was unaffected;LRforthe endodermis and the periderm decreased by 40 and 90%, respectively,during drying. For both root regions under wet conditions, thevascular cylinder had the highestLR, which decreased by 50–70%during 30d of soil drying. After 3d of rewetting, new lateralroots emerged, increasingLRfor the tissues outside the vascularcylinder as well as increasing uptake of an apoplastic tracerinto the xylem of both the roots and the shoot. The averageLRforintact root segments was similar under wet and rewetted conditions,but the conductivity of the tissues outside the vascular cylinderincreased after rewetting, as did the contribution of the apoplasticpathway to water uptake. Opuntia ficus-indica; prickly pear; root hydraulic conductivity; endodermis; periderm; apoplast; lateral root emergence  相似文献   

3.
A coupled model of stomatal conductance, photosynthesis and transpiration   总被引:18,自引:1,他引:17  
A model that couples stomatal conductance, photosynthesis, leaf energy balance and transport of water through the soil–plant–atmosphere continuum is presented. Stomatal conductance in the model depends on light, temperature and intercellular CO2 concentration via photosynthesis and on leaf water potential, which in turn is a function of soil water potential, the rate of water flow through the soil and plant, and on xylem hydraulic resistance. Water transport from soil to roots is simulated through solution of Richards’ equation. The model captures the observed hysteresis in diurnal variations in stomatal conductance, assimilation rate and transpiration for plant canopies. Hysteresis arises because atmospheric demand for water from the leaves typically peaks in mid‐afternoon and because of uneven distribution of soil matric potentials with distance from the roots. Potentials at the root surfaces are lower than in the bulk soil, and once soil water supply starts to limit transpiration, root potentials are substantially less negative in the morning than in the afternoon. This leads to higher stomatal conductances, CO2 assimilation and transpiration in the morning compared to later in the day. Stomatal conductance is sensitive to soil and plant hydraulic properties and to root length density only after approximately 10 d of soil drying, when supply of water by the soil to the roots becomes limiting. High atmospheric demand causes transpiration rates, LE, to decline at a slightly higher soil water content, θs, than at low atmospheric demand, but all curves of LE versus θs fall on the same line when soil water supply limits transpiration. Stomatal conductance cannot be modelled in isolation, but must be fully coupled with models of photosynthesis/respiration and the transport of water from soil, through roots, stems and leaves to the atmosphere.  相似文献   

4.
We investigated the hydraulic consequences of a major decrease in root‐to‐leaf area ratio (AR:AL) caused by nutrient amendments to 15‐year‐old Pinus taeda L. stands on sandy soil. In theory, such a reduction in AR:AL should compromise the trees’ ability to extract water from drying sand. Under equally high soil moisture, canopy stomatal conductance (GS) of fertilized trees (F) was 50% that of irrigated/fertilized trees (IF), irrigated trees (I), and untreated control trees (C). As predicted from theory, F trees also decreased their stomatal sensitivity to vapour pressure deficit by 50%. The lower GS in F was associated with 50% reduction in leaf‐specific hydraulic conductance (KL) compared with other treatments. The lower KL in F was in turn a result of a higher leaf area per sapwood area and a lower specific conductivity (conducting efficiency) of the plant and its root xylem. The root xylem of F trees was also 50% more resistant to cavitation than the other treatments. A transport model predicted that the lower AR:AL in IF trees resulted in a considerably restricted ability to extract water during drought. However, this deficiency was not exposed because irrigation minimized drought. In contrast, the lower AR:AL in F trees caused only a limited restriction in water extraction during drought owing to the more cavitation resistant root xylem in this treatment. In both fertilized treatments, approximate safety margins from predicted hydraulic failure were minimal suggesting increased vulnerability to drought‐induced dieback compared with non‐fertilized trees. However, IF trees are likely to be so affected even under a mild drought if irrigation is withheld.  相似文献   

5.
Variations in hydraulic conductivity (LP) and the underlying anatomical and morphological changes were investigated for main root-lateral root junctions of Agave deserti and Ferocactus acanthodes under wet, dry, and rewetted soil conditions. During 21 d of drying, LP and radial conductivity (LR) increased threefold to fivefold at junctions of both species. The increase in LR was accompanied by the formation of an apoplastic pathway for radial water movement from the surface of the junction to the stele for A. deserti and by the rupture of periderm by emerging primordia of secondary lateral roots for F. acanthodes. During 7 d of rewetting, LR decreased for junctions of A. deserti, as apoplastic water movement was not apparent, but LR was unchanged for F. acanthodes. Axial conductance (Kh) decreased during drying for both species, largely because of embolism related to the degradation of unlignified cell wall areas in tracheary elements at the root junction. The resulting apertures in the cell walls of such elements would admit air bubbles at pressure differences of only 0.12-0.19 MPa. Rewetting restored Kh for both species, but not completely, due to blockage of xylem elements by tyloses. About 40% of the primary lateral roots of the monocotyledon A. deserti abscised during 21 d of drying. For the dicotyledon F. acanthodes, which can form new conduits in its secondary xylem, only 10% of the primary lateral roots abscised during 21 d of drying, consistent with the much greater frequency of lateral roots that persist during drought in the field compared with the case for the sympatric A. deserti.  相似文献   

6.
Water movement between a root and the soil depends on the hydraulic conductances of the soil, the root, and the intervening root-soil air gap (Lgap) created as roots shrink during soil drying. To measure Lgap, segments of young cylindrical roots of Agave deserti about 3 mm in diameter were placed concentrically or eccentrically within tubes of moistened filter paper at a known water potential. As the width of the air gap between the filter paper and a concentrically located root was made smaller, measured Lgap increased less than did predicted Lgap based on isothermal conditions. For gaps of the size expected in the soil during water loss from roots (e.g., 10% of the root radius), the underprediction was about 70% and was primarily caused by a lowering of the root surface temperature accompanying water evaporation. As a root segment was eccentrically moved toward the filter paper, the measured Lgap increased. For the most eccentric case of touching the filter paper, the measured Lgap was 2.4-fold greater than for the concentric case, compared with an infinite Lgap predicted if the water potential were constant around the root surface. When a root touched soil with a water potential of -1.0MPa, Lgap estimated using a graphical method increased about 2.3-fold and the overall conductance of the root-soil system increased by 31% compared with the concentric case. For markedly eccentric locations of roots in air gaps, Lgap, which can be the principal conductance initially limiting water loss from roots to a drying soil, can be about 60% of the value predicted for the concentric isothermal case.  相似文献   

7.
Hydraulic responses to height growth in maritime pine trees   总被引:12,自引:2,他引:10  
As trees grow taller, decreased xylem path conductance imposes a major constraint on plant water and carbon balance, and is thus a key factor underlying forest productivity decline with age. The responses of stomatal conductance, leaf area: sapwood area ratio (AL : AS) and soil–leaf water potential gradient (ΔΨS–L) to height growth were investigated in maritime pine trees. Extensive measurements of in situ sap flow, stomatal conductance and (non‐gravitational) needle water potential (L = ΨL ? ρwgh) were made during 2 years in a chronosequence of four even‐aged stands, under both wet and dry soil conditions. Under wet soil conditions, L was systematically lower in taller trees on account of differences in gravitational potential. In contrast, under dry soil conditions, our measurements clearly showed that L was maintained above a minimum threshold value of ?2.0 MPa independently of tree height, thus limiting the range of compensatory change in ΔΨS–L. Although a decrease in the AL : AS ratio occurred with tree height, this compensation was not sufficient to prevent a decline in leaf‐specific hydraulic conductance, KL (50% lower in 30 m trees than in 10 m trees). An associated decline in stomatal conductance with tree height thus occurred to maintain a balance between water supply and demand. Both the increased investment in non‐productive versus productive tissues (AS : AL) and stomatal closure may have contributed to the observed decrease in tree growth efficiency with increasing tree height (by a factor of three from smallest to tallest trees), although other growth‐limiting responses (e.g. soil nutrient sequestration, increased respiratory costs) cannot be excluded.  相似文献   

8.
The possible link between stomatal conductance (gL), leaf water potential ( Ψ L) and xylem cavitation was studied in leaves and shoots of detached branches as well as of whole plants of Laurus nobilis L. (Laurel). Shoot cavitation induced complete stomatal closure in air‐dehydrated detached branches in less than 10 min. By contrast, a fine regulation of gL in whole plants was the consequence of Ψ L reaching the cavitation threshold ( Ψ CAV) for shoots. A pulse of xylem cavitation in the shoots was paralleled by a decrease in gL of about 50%, while Ψ L stabilized at values preventing further xylem cavitation. In these experiments, no root signals were likely to be sent to the leaves from the roots in response to soil dryness because branches were either detached or whole plants were growing in constantly wet soil. The stomatal response to increasing evaporative demand appeared therefore to be the result of hydraulic signals generated during shoot cavitation. A negative feedback link is proposed between gL and Ψ CAV rather than with Ψ L itself.  相似文献   

9.
Drought-induced changes in root hydraulic conductance (LP) and mercury-sensitive water transport were examined for distal (immature) and mid-root (mature) regions of Opuntia acanthocarpa. During 45 d of soil drying, LP decreased by about 67% for distal and mid-root regions. After 8 d in rewetted soil, LP recovered to 60% of its initial value for both regions. Axial xylem hydraulic conductivity was only a minor limiter of LP. Under wet conditions, HgCl2 (50 microM), which is known to block membrane water-transport channels (aquaporins), decreased LP and the radial hydraulic conductance for the stele (L(R, S)) of the distal root region by 32% and 41%, respectively; both LP and L(R, S) recovered fully after transfer to 2-mercaptoethanol (10 mM). In contrast, HgCl2 did not inhibit LP of the mid-root region under wet conditions, although it reduced L(R, S) by 41%. Under dry conditions, neither LP nor L(R, S) of the two root regions was inhibited by HgCl2. After 8 d of rewetting, HgCl2 decreased LP and L(R, S) of the distal region by 23% and 32%, respectively, but LP and L(R, S) of the mid-root region were unaltered. Changes in putative aquaporin activity accounted for about 38% of the reduction in LP in drying soil and for 61% of its recovery for the distal region 8 d after rewetting. In the stele, changes in aquaporin activity accounted for about 74% of the variable L(R, S) during drought and after rewetting. Thus, aquaporins are important for regulating water movement for roots of O. acanthocarpa.  相似文献   

10.
Water movement to and from a root depends on the soil hydraulicconductivity coefficient (Lsoil), the distance across any root-soilair gap, and the hydraulic conductivity coefficient of the root(LP). After analytical equations for the effective conductanceof each part of the pathway are developed, the influences ofsoil drying on the soil water potential and Lsoil are describedduring a 30 d period for a loamy sand in the field. The influencesof soil drying on LP for three desert succulents, Agave deserti,Ferocactus acanthodes, and Opuntia ficus-indica, are also describedfor a 30 d period. To quantify the effects of soil drying onthe development of a root-soil air gap, diameters of 6-week-oldroots of the three species were determined at constant watervapour potentials of –1.0 MPa and –10 MPa as wellas with the water vapour potential decreasing at the same rateas soil drying during a 30 d period. The shrinkage observedfor roots initially 2·0 mm in diameter averaged 19% duringthe 30d period. The predominant limiting factor for water movementwas LP of the root for the first 7 d of soil drying, the root-soilair gap for the next 13 d, and Lsoil thereafter. Compared withthe ease of water uptake from a wet soil, the decrease in conductancesduring soil drying, especially the decrease in Lsoil causedthe overall conductance to decrease by 3 x 103-fold during the30 d period for the three species considered, so relativelylittle water was lost to the dry soil. Such rectifier-like behaviourof water movement in the soil-root system resulted primarilyfrom changes in Lsoil and, presumably, is a general phenomenonamong plants, preventing water loss during drought but facilitatingwater uptake after rainfall. Key words: Agave deserti, Ferocactus acanthodes, Opuntia ficus-indica, rectification, soil water potential, water movement  相似文献   

11.
12.
Two experiments, a split-root experiment and a root pressurizing experiment, were performed to test whether hydraulic signalling of soil drying plays a dominant role in controlling stomatal closure in herbaceous bell pepper plants. In the split-root experiment, when both root parts were dried, synchronous decreases in stomatal conductance (gs), leaf water potential (LWP) and stem sap flow (SFstem) were observed. The value of gs was found to be closely related to soil water potential (SWP) in both compartments. Tight relationships were observed between gs and stem sap flow under all conditions of water stress, indicating a complete stomatal adjustment of transpiration. When the half-root system has been dried to the extent that its water uptake dropped to almost zero, declines in gs of less than 20% were observed without obvious changes in LWP. The reduced plant hydraulic conductance resulting from decreased sap flow and unchanged LWP may be a hydraulic signal controlling stomatal closure; the results of root pressurizing supported this hypothesis. Both LWP and gs in water-stressed plants recovered completely within 25 min of the application of root pressurizing, and decreased significantly within 40 min after pressure release, indicating the hydraulic control of stomatal closure. Our results are in contrast to those of other studies on other herbaceous species, which suggested that chemical messengers from the roots bring about stomatal closure when plants are in water stress.  相似文献   

13.
Huang  Bingru  Fu  Jinmin 《Plant and Soil》2000,227(1-2):17-26
The study was conducted to investigate carbon metabolic responses to surface soil drying for cool-season grasses. Kentucky bluegrass (Poa pratensis L.) and tall fescue (Festuca arundinaceae Schreb.) were grown in a greenhouse in split tubes consisting of two sections. Plants were subjected to three soil moisture regimes: (1) well-watered control; (2) drying of upper 20-cm soil (upper drying); and (3) drying of whole 40-cm soil profile (full drying). Upper drying for 30 d had no dramatic effects on leaf water potential (Ψleaf) and canopy photosynthetic rate (Pn) in either grass species compared to the well-watered control, but it reduced canopy respiration rate (Rcanopy) and root respiration rate in the top 20 cm of soil (Rtop). For both species in the lower 20 cm of wet soil, root respiration rates (Rbottom) were similar to the control levels, and carbon allocation to roots increased with the upper soil drying, particularly for tall fescue. The proportion of roots decreased in the 0-20 cm drying soil, but increased in the lower 20 cm wet soil for both grass species; the increase was greater for tall fescue. The Ψleaf, Pn, Rcanopy, Rtop, Rbottom, and carbon allocation to roots in both soil layers were all significantly higher for upper dried plants than for fully dried plants of both grass species. The reductions in Rcanopy and Rtop in surface drying soil and increases in root respiration and carbon allocation to roots in lower wet soil could help these grasses cope with surface-soil drought stress. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The influence of junctions between main roots and lateral roots on water flow was investigated for the desert succulents Agave deserti and Ferocactus acanthodes during 21 d of drying in soil. Under wet conditions, the junctions did not restrict xylem water flow from lateral roots to main roots, consistent with predictions of axial conductance based on vessel diameters. Embolism caused by drying reduced such axial conductance more at the junctions than in adjoining root regions. Connective tracheary elements at the junctions were abundantly pitted and had large areas of unlignified primary wall, apparently making them more susceptible to embolism than vessels or tracheids elsewhere in the roots. Unlike the decrease in axial conductance, the overall hydraulic conductivity of the junction increased during drying because of an increase in the conductivity of the radial pathway. Despite such increases, main roots may not lose substantial amounts of water to a dry soil during drought, initially because embolism at the junctions can limit xylem flow and later because soil hydraulic conductivity decreases. Moreover, the increased root hydraulic conductivity and a potentially rapid recovery from embolism by connective tracheary elements may favor water uptake near the junctions upon soil rewetting.  相似文献   

15.
In the last few years, the role of reactive oxygen species as signaling molecules has emerged, and not only as damage-related roles. Here, we analyzed how root hydraulic properties were modified by different hydrogen peroxide (H2O2) concentrations applied exogenously to the root medium. Two different experimental setups were employed: Phaseolus vulgaris plants growing in hydroponic or in potted soils. In both experimental setups, we found an increase of root hydraulic conductance (L) in response to H2O2 application for the first time. Twenty millimolar was the threshold concentration of H2O2 for observing an effect on L in the soil experiment, while in the hydroponic experiment, a positive effect on L was observed at 0.25 mM H2O2. In the hydroponic experiment, a correlation between increased L and plasma membrane aquaporin amount and their root localization was observed. These findings provide new insights to study how several environmental factors modify L.  相似文献   

16.
Experiments were conducted on 1-year-old Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and 2- to 3-month-old alder [Alnus rubra (Bong)] seedlings growing in drying soils to determine the relative influence of root and leaf water status on stomatal conductance (gc). The water status of shoots was manipulated independently of that of the roots using a pressure chamber that enclosed the root system. Pressurizing the chamber increases the turgor of cells in the shoot but not in the roots. Seedling shoots were enclosed in a whole-plant cuvette and transpiration and net photosynthesis rates measured continuously. In both species, stomatal closure in response to soil drying was progressively reversed with increasing pressurization. Responses occurred within minutes of pressurization and measurements almost immediately returned to pre-pressurization levels when the pressure was released. Even in wet soils there was a significant increase in gc with pressurization. In Douglas fir, the stomatal response to pressurization was the same for seedlings grown in dry soils for up to 120 d as for those subjected to drought stress over 40 to 60 d. The stomatal conductance of both Douglas fir and alder seedlings was less sensitive to root chamber pressure at higher vapour pressure deficits (D), and stomatal closure in response to increasing D from 1.04 to 2.06 kPa was only partially reversed by pressurization. Our results are in contrast to those of other studies on herbaceous species, even though we followed the same experimental approach. They suggest that it is not always appropriate to invoke a ‘feedforward’ model of short-term stomatal response to soil drying, whereby chemical messengers from the roots bring about stomatal closure.  相似文献   

17.
Effects of ectomycorrhizal (ECM) fungus Suillus tomentosus on water transport properties were studied in jack pine (Pinus banksiana) seedlings. The hydraulic conductivity of root cortical cells (Lpc) and of the whole root system (Lpr) in ECM plants was higher by twofold to fourfold compared with the non‐ECM seedlings. HgCl2 had a greater inhibitory effect on Lpc in ECM compared with non‐ECM seedlings, suggesting that the mercury‐sensitive, aquaporin (AQP)‐mediated water transport was largely responsible for the differences in Lpc between the two groups of plants. Lpc was rapidly and drastically reduced by the 50 mm NaCl treatment. However, in ECM plants, the initial decline in Lpc was followed by a quick recovery to the pre‐treatment level, while the reduction of Lpc in non‐ECM seedlings progressed over time. Treatments with fluoride reduced Lpc by about twofold in non‐ECM seedlings and caused smaller reductions of Lpc in ECM plants. When either 2 mm KF or 2 mm NaF were added to the 50 mm NaCl treatment solution, the inhibitory effect of NaCl on Lpc was rapidly reversed in both groups of plants. The results suggest that AQP‐mediated water transport may be linked to the enhancement of salt stress resistance reported for ECM plants.  相似文献   

18.
Studies have suggested that increased root hydraulic conductivity in mycorrhizal roots could be the result of increased cell‐to‐cell water flux via aquaporins. This study aimed to elucidate if the key effect of the regulation of maize aquaporins by the arbuscular mycorrhizal (AM) symbiosis is the enhancement of root cell water transport capacity. Thus, water permeability coefficient (Pf) and cell hydraulic conductivity (Lpc) were measured in root protoplast and intact cortex cells of AM and non‐AM plants subjected or not to water stress. Results showed that cells from droughted‐AM roots maintained Pf and Lpc values of nonstressed plants, whereas in non‐AM roots, these values declined drastically as a consequence of water deficit. Interestingly, the phosphorylation status of PIP2 aquaporins increased in AM plants subjected to water deficit, and Pf values higher than 12 μm s?1 were found only in protoplasts from AM roots, revealing the higher water permeability of AM root cells. In parallel, the AM symbiosis increased stomatal conductance, net photosynthesis, and related parameters, showing a higher photosynthetic capacity in these plants. This study demonstrates a better performance of AM root cells in water transport under water deficit, which is connected to the shoot physiological performance in terms of photosynthetic capacity.  相似文献   

19.
Plants can be highly segmented organisms with an independently redundant design of organs. In the context of plant hydraulics, leaves may be less embolism resistant than stems, allowing hydraulic failure to be restricted to distal organs that can be readily replaced. We quantified drought‐induced embolism in needles and stems of Pinus pinaster using high‐resolution computed tomography (HRCT). HRCT observations of needles were compared with the rehydration kinetics method to estimate the contribution of extra‐xylary pathways to declining hydraulic conductance. High‐resolution computed tomography images indicated that the pressure inducing 50% of embolized tracheids was similar between needle and stem xylem (P50 needle xylem = ?3.62 MPa, P50 stem xylem = ?3.88 MPa). Tracheids in both organs showed no difference in torus overlap of bordered pits. However, estimations of the pressure inducing 50% loss of hydraulic conductance at the whole needle level by the rehydration kinetics method were significantly higher (P50 needle = ?1.71 MPa) than P50 needle xylem derived from HRCT. The vulnerability segmentation hypothesis appears to be valid only when considering hydraulic failure at the entire needle level, including extra‐xylary pathways. Our findings suggest that native embolism in needles is limited and highlight the importance of imaging techniques for vulnerability curves.  相似文献   

20.
We investigated the contribution of internal water storage and efficiency of water transport to the maintenance of water balance in six evergreen tree species in a Hawaiian dry forest. Wood‐saturated water content, a surrogate for relative water storage capacity, ranged from 70 to 105%, and was inversely related to its morphological correlate, wood density, which ranged between 0·51 and 0·65 g cm?3. Leaf‐specific conductivity (kL) measured in stem segments from terminal branches ranged from 3 to 18 mmol m?1 s?1 MPa?1, and whole‐plant hydraulic efficiency calculated as stomatal conductance (g) divided by the difference between predawn and midday leaf water potential (ΨL), ranged from 70 to 150 mmol m?2 s?1 MPa?1. Hydraulic efficiency was positively correlated with kL (r2 = 0·86). Minimum annual ΨL ranged from ? 1·5 to ? 4·1 MPa among the six species. Seasonal and diurnal variation in ΨL were associated with differences among species in wood‐saturated water content, wood density and kL. The species with higher wood‐saturated water content were more efficient in terms of long‐distance water transport, exhibited smaller diurnal variation in ΨL and higher maximum photosynthetic rates. Smaller diurnal variation in ΨL in species with higher wood‐saturated water content, kL and hydraulic efficiency was not associated with stomatal restriction of transpiration when soil water deficit was moderate, but avoidance of low minimum seasonal ΨL in these species was associated with a substantial seasonal decline in g. Low seasonal minimum ΨL in species with low kL, hydraulic efficiency, and wood‐saturated water content was associated with higher leaf solute content and corresponding lower leaf turgor loss point. Despite the species‐specific differences in leaf water relations characteristics, all six evergreen tree species shared a common functional relationship defined primarily by kL and stem water storage capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号