首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Positive influences of high concentrations of dissolved inorganic carbon (DIC) in the growth medium of salinity-stressed plants are associated with carbon assimilation through phosphoenolpyruvate carboxylase (PEPc) activity in roots; and also in salinity-stressed tomato plants, enriched CO2 in the rhizosphere increases NO?3uptake. In the present study, wild-type and nitrate reductase-deficient plants of barley (Hordeum vulgare L. cv. Steptoe) were used to determine whether the influence of enriched CO2 on NO?3 uptake and metabolism is dependent on the activity of nitrate reductase (NR) in the plant. Plants grown in NH4+and aerated with ambient air, were transferred to either NO3? or NH4+ solutions and aerated with air containing between 0 and 6 500 μmol mol?1 CO2. Nitrogen uptake and tissue concentrations of NO3? and NH4+ were measured as well as activities of NR and PEPc. The uptake of NO?3 by the wild-type was increased by increasing CO2. This was associated with increased in vitro NR activity, but increased uptake of NO3? was found also in the NR-deficient genotype when exposed to high CO2 concentrations; so that the influence of CO2 on NO3? uptake was independent of the reduction of NO3? and assimilation into amino acids. The increase in uptake of NO3? in wild-type plants with enriched CO2 was the same at pH 7 as at pH 5, indicating that the relative abundance of HCO3? or CO2 in the medium did not influence NO3? uptake. Uptake of NH4+ was decreased by enriched CO2 in a pH (5 or 7) independent fashion. Thus NO3? and NH+4 uptakes are influenced by the CO2 component of DIC independently of anaplerotic carbon provision for amino acid synthesis, and CO2 may directly affect the uptake of NO3? and NH4+ in ways unrelated to the NR activity in the tissue.  相似文献   

2.
Previous reports have indicated positive effects of enriched rhizosphere dissolved inorganic carbon on the growth of salinity-stressed tomato (Lycopersicon esculentum L. Mill. cv. F144) plants. In the present work we tested whether a supply of CO2 enriched air to the roots of hydroponically grown tomato plants had an effect on nitrogen uptake in these plants. Uptake was followed over periods of 6 to 12 hours and measured as the depletion of nitrogen from the nutrient solution aerated with either ambient or CO2 enriched air. Enriched rhizosphere CO2 treatments (5000 μmol mol-1) increased NO3 - uptake up to 30% at pH 5.8 in hydroponically grown tomato plants compared to control treatments aerated with ambient CO2 (360 μmol mol-1). Enriched rhizosphere CO2 treatments had no effect on NH3 + uptake. Acetazolamide, an inhibitor of apoplastic carbonic anhydrase, increased NO3 - uptake in ambient rhizosphere CO2 treatments, but had no effect on NO3 - uptake in enriched rhizosphere CO2 treatments. Ethoxyzolamide, an inhibitor of both cytoplasmic and extracellular carbonic anhydrase, decreased NO3 - uptake in ambient rhizosphere CO2 treatments. In contrast, a CO2 enriched rhizosphere increased NO3 - uptake with ethoxyzolamide, although not to the same extent as in plants without ethoxyzolamide. It is suggested that a supply of enriched CO2 to the rhizosphere influenced NO3 - uptake through the formation of increased amounts of HCO3 - in the cytosol. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
We investigated the influence of an increased inorganic carbon supply in the root medium on NO?3 uptake and assimilation in seedlings of Lycopersicon esculentum (L.) Mill. cv. F144. The seedlings were pre-grown for 4 to 7 days with 0 or 100 mM NaCl in hydroponic culture using 0.2 mM NO?3 (group A) or 0.2 mM NH+4 (group B) as nitrogen source. The nutrient solution for group A plants was aerated with air or with air containing 4 800 μumol mol?1 CO2. Nitrate uptake rate and root and leaf malate contents in these plants were determined. The plants of group B were subdivided into two sets. Plants of one set were transferred either to N-free solution containing 0 or 5 mM NaHCO3, or to a medium containing 2 mM NO?3 and 5 mM NaHCO3. Both sets of group B plants were grown for 12 h in darkness prior to 2 h of illumination, and were assayed for malate content and NO?3 uptake rate (only for plants grown in N-free solution). The second set of group B plants was labeled with 14C by a 1-h pulse of H14CO?3 which was added to a 5 mM NaHCO3 solution containing 0 or 100 mM NaCl and 0 or 2 mM NO?3, and 14C-assimilates were extracted and fractionated. The roots of group B plants growing in carbonated medium accumulated twice as much malate as did control plants. This malate was accumulated only when NO?3 was absent from the root medium. Both a high level of root malate and aeration with CO2-enriched air stimulated NO?3 uptake. Analysis of 14C-assimilates indicated that with no NO?3 in the medium, the 14C was present mainly in organic acids, whereas with NO?3, a large proportion of 14C was incorporated into amino acids. Transport of root-incorporated 14C to the shoot was enhanced by NO?3, while the amino acid fraction was the major 14C-assimilates in the shoot. It is concluded that inorganic carbon fixed through phosphoenolpyruvate carboxylase (EC 4.1.1.31) in roots of tomato plants may have two fates: (a) as a carbon skeleton for amino acid synthesis; and (b) to accumulate, mainly as malate, in the roots, in the absence of a demand for the carbon skeleton. Inorganic carbon fixation in the root provides carbon skeletons for the assimilation of the NH+4 resulting from NO3 reduction, and the subsequent removal of amino acids through the xylem. This ‘removal’ of NO?3 from the cytoplasm of the root cells may in turn increase NO?3 uptake.  相似文献   

4.
In hydroponically grown Lycopersicon esculentum (L.) Mill. cv.F144 the site of NO3 reduction and assimilation withinthe plant was shifted from the shoot to the root by salinity.Uptake of NO3 from the root solution was strongly inhibitedby salinization. Consequently, NO3 concentrations inthe leaf, stem and root tissues as well as the nitrate reductaseactivities of the leaves were lower in salinized than in controlplants. Lower NO3, but higher reduced-N, concentrationswere observed in the xylem sap as a result of the enhanced participationof the root in NO3 reduction in salinized plants. Lowerstem K+ concentrations and leaf malate concentrations were foundin salinized compared to control plants which indicates reducedfunctioning of the K+–shuttle in the salinized plants. Incorporation of inorganic carbon by the root was determinedby supplying a pulse of NaH14CO3 followed by extraction andseparation of the labelled products on ion exchange resins.The rate of H14CO3 incorporation was c. 2-fold higherin control than in salinized plants. In salinized plants theproducts of H14CO3 incorporation within the roots werediverted into amino acids, while the control plants divertedrelatively more 14C into organic acids. Products of inorganiccarbon incorporation in the roots of salinized plants providean anaplerotic source of carbon for assimilation of reducedNO3 into amino acids, while in control plants the productswere predominantly organic acids as part of mechanisms to maintainionic balance in the cells and in the xylem sap. Key words: Tomato, nitrate, PEPc, respiration, salinity  相似文献   

5.
The nitrogen requirement of plants is predominantly supplied by NH4+ and/or NO3? from the soil solution, but the energetic cost of uptake and assimilation is generally higher for NO3? than for NH4+. We found that CO2 enrichment of the atmosphere enhanced the root uptake capacity for NO3?, but not for NH4+, in field-grown loblolly pine saplings. Increased preference for NO3? at the elevated CO2 concentration was accompanied by increased carbohydrate levels in roots. The results have important implications for the potential consequences of global climate change on plant-and ecosystem-level processes in many temperate forest ecosystems.  相似文献   

6.
Studies that quantify plant δ15N often assume that fractionation during nitrogen uptake and intra-plant variation in δ15N are minimal. We tested both assumptions by growing tomato (Lycopersicon esculetum Mill. cv. T-5) at NH4+ or NO?3 concentrations typical of those found in the soil. Fractionation did not occur with uptake; whole-plant δ15N was not significantly different from source δ15 N for plants grown on either nitrogen form. No intra-plant variation in δ15N was observed for plants grown with NH+4. In contrast. δ15N of leaves was as much as 5.8% greater than that of roots for plants grown with NO?3. The contrasting patterns of intra-plant variation are probably caused by different assimilation patterns. NH+4 is assimilated immediately in the root, so organic nitrogen in the shoot and root is the product of a single assimilation event. NO?3 assimilation can occur in shoots and roots. Fractionation during assimilation caused the δ15N of NO?3 to become enriched relative to organic nitrogen; the δ15N of NO?3 was 11.1 and 12.9% greater than the δ15N of organic nitrogen in leaves and roots, respectively. Leaf δ15N may therefore be greater than that of roots because the NO?3 available for assimilation in leaves originates from a NO?3 pool that was previously exposed to nitrate assimilation in the root.  相似文献   

7.
Among plants grown under enriched atmospheric CO2, root:shoot balance (RSB) theory predicts a proportionately greater allocation of assimilate to roots than among ambient‐grown plants. Conversely, defoliation, which decreases the plant's capacity to assimilate carbon, is predicted to increase allocation to shoot. We tested these RSB predictions, and whether responses to CO2 enrichment were modified by defoliation, using Heterotheca subaxillaris, an annual plant native to south‐eastern USA. Plants were grown under near‐ambient (400 μmol mol?1) and enriched (700 μmol mol?1) levels of atmospheric CO2. Defoliation consisted of the weekly removal of 25% of each new fully expanded, but not previously defoliated, leaf from either rosette or bolted plants. In addition to dry mass measurements of leaves, stems, and roots, Kjeldahl N, protein, starch and soluble sugars were analysed in these plant components to test the hypothesis that changes in C:N uptake ratio drive shifts in root:shoot ratio. Young, rapidly growing CO2‐enriched plants conformed to the predictions of RSB, with higher root:shoot ratio than ambient‐grown plants (P < 0.02), whereas older, slower growing plants did not show a CO2 effect on root:shoot ratio. Defoliation resulted in smaller plants, among which both root and shoot biomass were reduced, irrespective of CO2 treatment (P < 0.03). However, H. subaxillaris plants were able to compensate for leaf area removal through flexible shoot allocation to more leaves vs. stem (P < 0.01). Increased carbon availability through CO2 enrichment did not enhance the response to defoliation, apparently because of complete growth compensation for defoliation, even under ambient conditions. CO2‐enriched plants had higher rates of photosynthesis (P < 0.0001), but this did not translate into increased final biomass accumulation. On the other hand, earlier and more abundant yield of flower biomass was an important consequence of growth under CO2 enrichment.  相似文献   

8.
The effects of NO?3 and NH+4 nutrition on the rates of dark incorporation of inorganic carbon by roots of hydroponically grown Zea mays L. cv. 712 and on the metabolic products of this incorporation, were determined in plants supplied with NaH14CO3 in the nutrient solution. The shoots and roots of the plants supplied with NaH14CO3 in the root medium for 30 min were extracted with 80%; (v/v) ethanol and fractionated into soluble and insoluble fractions. The soluble fraction was further separated into the neutral, organic acid, amino acid and non-polar fractions. The amino acid fraction was then analyzed to determine quantities and the 14C content of its individual components. The rates of dark incorporation of inorganic carbon calculated from H14CO?3 fixation and attributable to the activity of phosphoenolpyuvate carboxylase (EC 4.1.1.31), were 5-fold higher in ammonium-fed plants than in nitrate-fed plants after a 30-min pulse of 14C. This activity forms a small, but significant component of the carbon budget of the root. The proportion of 14C located in the shoots was also significantly higher in ammonium-fed plants than in nitrate-fed plants, indicating more rapid translocation of the products of dark fixation to the shoots in plants receiving NH+/sp4 nutrition. Ammonium-fed plants favoured incorporation of 14C into amino acids, while nitrate-fed plants allocated relatively more 14C into organic acids. The amino acid composition was also dependent on the type of nitrogen supplied, and asparagine was found to accumulate in ammonium-fed plants. The 14C labelling of the amino acids was consistent with the diversion of 14C-oxaloacetate derived from carboxlyation of phosphoenolpyruvate into the formation of both asparatate and glutamate. The results support the conclusion that inorganic carbon fixation in the roots of maize plants provides an important anaplerotic source of carbon for NH+4 assimilation.  相似文献   

9.
Although nutrient stress is known to alter partitioning between shoots and roots, the physiological basis for the phenomenon is unresolved. Experiments were conducted to examine assimilation of 15NO3 by N-stressed plants and to determine whether apparent changes in assimilation in the root contributed to alterations in whole-plant partitioning of reduced-N. Tobacco plants (Nicotiana tabacum L. cv. NC 2326) were exposed to a low concentration of NO3? in solution (80 μM) for 9 days to effect a N-stress response. Exposure of plants to 1000 μM15NO3? for 12 h on selected days revealed that roots of N-stressed plants developed an increased capacity to absorb NO3?, and accumulation of reduced-15N in the root increased to an even greater extent. When plants were exposed to 80 or 1000 μM15NO3? in steady-state, 15NO3? uptake over a 12 h period was noticeably restricted at the lower concentration, but a larger proportion of the absorbed 15N still accumulated as reduced-15N in the root. The alteration in reduced-15N partitioning was maintained in N-stressed plants during the subsequent 3-day “chase” period when formation of insoluble reduced-15N in the root was quantitatively related to the disappearance of 15NO3? and soluble reduced-15N. The results indicate that increased assimilation of absorbed NO3?, in the root may contribute significantly to the altered reduced-N partitioning which occurs in N-stressed plants.  相似文献   

10.
The root/shoot-ratio is a simple parameter to describe the systemic response of plants to alterations of their nutritional status, as indicated by the C/N-balance of leaves. The ‘functional equilibrium hypothesis’ holds that leaf growth is limited by the supply of nitrogen from the roots, whereas root growth depends on the carbon supply from leaves. The nature of the systemic control that balances root and shoot growth is not fully understood. Previous experiments have shown that root growth of transformed tobacco plants, which lack functional root nitrate reductase, was severely impeded, when plants were grown on NO 3 ? as the sole N-source. In these experiments, the root/shoot-ratio was correlated with the Glutamate/Glutamine-ratio of roots. In the present study we tested the hypothesis that high internal Glu contents (in relation to Gln) inhibit root growth. Wild type and transformed tobacco plants were given access to both NH4 and NO3, and were cultivated at ambient and elevated pCO2 in order to vary carbon availability. The uptake and assimilation of NH 4 + by the root was significantly higher in transformed than in wild type tobacco, in particular at elevated pCO2. Consequently, the Glu/Gln-ratio in the root of transformants was significantly lower than in NO 3 ? -grown plants, and was, in the present study, not different from the wild type. However, we failed to observe a correlation between plant architecture and the Glu/Gln-ratio of roots, suggesting that signals arising from the immediate products of nitrate reduction (nitrite) are involved in the systemic control of root growth. Furthermore the synthesis of root-derived signals, which affect N-turnover, starch re-mobilization and the growth of leaves, appears to be associated with root nitrate reduction. This enzymatic step seems to be indispensable for the systemic control of biomass partitioning, and plays a crucial role for the integration of carbon and nitrogen metabolism at the whole plant level.  相似文献   

11.
A fast-growing normal and a slow-growing gibberellin-deficient mutant of Lycopersicon esculentum (L.) Mill. cv. Moneymaker were used to test the hypothesis that slow-growing plants reduce NO3? in the root to a greater extent than do fast-growing plants. Plants that reduce NO3? in the root may grow more slowly due to the higher energetic and carbon costs associated with root-based NO3? reduction compared to photosynthetically driven shoot NO3? reduction. The plants were grown hydroponically with a complete nutrient solution containing 10 mM NO3? and the biomass production, gas exchange characteristics, root respiratory O2 consumption, nitrate reductase activity and translocation of N in the xylem were measured. The gibberellin-deficient mutants accumulated more total N unit?1 dry weight than did the faster-growing normal plants. There were no significant differences between the genotypes in the rates of photosynthesis expressed on a leaf dry weight basis. The plants differed in the proportion of photosynthetic carbon available to growth due to a greater proportion of daily photo-synthate production being consumed by respiration in the slow-growing genotype. This difference in allocation of carbon was associated with differences in the specific leaf area and specific root length. In addition, a greater leaf weight ratio in the fast-growing than in the slow-growing plants indicates a greater investment of carbon into biomass supporting photosynthetic production in the former. We did not find differences in the activity or distribution of nitrate reductase or in the N composition of the xylem sap between the genotypes. We thus conclude that the growth rate was determined by the efficiency of carbon partitioning and that the site of NO3? reduction and assimilation was not related to the growth rate of these plants.  相似文献   

12.
The effect of elevated atmospheric CO2 on water distribution in the intact roots of Vicia faba L. bean seedlings grown in natural soil was studied noninvasively with proton (1H) nuclear magnetic resonance (NMR) imaging. Exposure of 24-d-old plants to atmospheric CO2-enriched air at 650 cm3 m?3 produced significant increases in water imaged in upper roots, hypogeal cotyledons and lower stems in response to a short-term drying-stress cycle. Above ground, drying produced negligible stem shrinkage and stomatal resistance was unchanged. In contrast, the same drying cycle caused significant depletion of water imaged in the same upper root structures in control plants subject to ambient CO2 (350 m3 m?3), and stem shrinkage and increased stomatal resistance. The results suggest that inhibition of transpiration caused by elevated CO2 does not necessarily result in attenuation of water transport from lower root structures. Inhibition of water loss from upper roots and lower stem in elevated CO2 environments may be a mitigating factor in assessing deleterious effects of greenhouse changes on crops during periods of dry climate.  相似文献   

13.
Role of sugars in nitrate utilization by roots of dwarf bean   总被引:4,自引:0,他引:4  
Nitrate uptake and in vivo, nitrate reductase activity (NRA) in roots of Phaseolus vulgaris, L. cv. Witte Krombek were measured in nitrogen-depleted plants of varying sugar status, Variation in sugar status was achieved at the start of nitrate nutrition by excision, ringing, darkness or administration of sugars to the root medium. The shape of the apparent induction pattern of nitrate uptake was not influenced by the sugar status of the absorbing tissue. When measured after 6 h of nitrate nutrition (0.1 mol m?3), steady state nitrate uptake and root NRA were in the order intact>dark>ringed>excised. Exogenous sucrose restored NRA in excised roots to the level of intact plants. The nitrate uptake rate of excised roots, however, was not fully restored by sucrose (0.03–300 mol m?3). When plants were decapitated after an 18 h NO3? pretreatment, the net uptake rate declined gradually to become negative after three hours. This decline was slowed down by exogenous fructose, whilst glucose rapidly (sometimes within 5 min) stimulated NG?3 uptake. Presumably due to a difference in NO3? due to a difference in NO3? uptake, the NRA of excised roots was also higher in the presence of glucose than in the presence of fructose after 6 h of nitrate nutrition. The sugar-stimulation of, oxygen consumption as well as the release of 14CO2 from freshly absorbed (U-14C) sugar was the same for glucose and fructose. Therefore, we propose a glucose-specific effect on NO3? uptake that is due to the presence of glucose rather than to its utilization in root respiration. A differential glucose-fructose effect on nitrate reductase activity independent of the effect on NO3? uptake was not indicated. A constant level of NRA occurred in roots of NO3? induced plants. Removal of nutrient nitrate from these plants caused an exponential NRA decay with an approximate half-life of 12 h in intact plants and 5.5 h in excised roots. The latter value was also found in roots that were excised in the presence of nitrate, indicating that the sugar status primarily determines the apparent rate of nitrate reductase decay in excised roots.  相似文献   

14.
Atmospheric CO2 enrichment is expected to often benefit plant growth, despite causing global warming and nitrogen (N) dilution in plants. Most plants primarily procure N as inorganic nitrate (NO3?) or ammonium (NH4+), using membrane‐localized transport proteins in roots, which are key targets for improving N use. Although interactive effects of elevated CO2, chronic warming and N form on N relations are expected, these have not been studied. In this study, tomato (Solanum lycopersicum) plants were grown at two levels of CO2 (400 or 700 ppm) and two temperature regimes (30 or 37°C), with NO3? or NH4+ as the N source. Elevated CO2 plus chronic warming severely inhibited plant growth, regardless of N form, while individually they had smaller effects on growth. Although %N in roots was similar among all treatments, elevated CO2 plus warming decreased (1) N‐uptake rate by roots, (2) total protein concentration in roots, indicating an inhibition of N assimilation and (3) shoot %N, indicating a potential inhibition of N translocation from roots to shoots. Under elevated CO2 plus warming, reduced NO3?‐uptake rate per g root was correlated with a decrease in the concentration of NO3?‐uptake proteins per g root, reduced NH4+ uptake was correlated with decreased activity of NH4+‐uptake proteins and reduced N assimilation was correlated with decreased concentration of N‐assimilatory proteins. These results indicate that elevated CO2 and chronic warming can act synergistically to decrease plant N uptake and assimilation; hence, future global warming may decrease both plant growth and food quality (%N).  相似文献   

15.
Atmospheric CO2 concentration is rising and it has been suggested that a portion of the additional carbon is being sequestered in terrestrial vegetation and much of that in below-ground structures. The objective of the present study was to quantify the effects of elevated atmospheric CO2 on fine root length and distribution with depth with minirhizotrons in an open-top chamber experiment in an oak-palmetto scrub ecosystem at Kennedy Space Centre, Florida, USA. Observations were made five times over a period of one and a half years in three ambient chambers (350 p.p.m. CO2), three CO2 enriched chambers (700 p.p.m. CO2), and three unchambered plots. Greater root length densities were produced in the elevated CO2 chambers (14.2 mm cm?2) compared to the ambient chambers (8.7 mm cm?2). More roots may presumably lead to more efficient acquisition of resources. Fine root abundance varied significantly with soil depth, and there appeared to be enhanced proliferation of fine roots near the surface (0–12 cm) and at greater depth (49–61 cm) in the elevated CO2 chambers. The vertical root distribution pattern may be a response to availability of nutrients and water. More studies are needed to determine if increased root length under CO2 enriched conditions actually results in greater sequestering of carbon below ground.  相似文献   

16.
We examined the hypothesis that elevated CO2 concentration would increase NO3 absorption and assimilation using intact wheat canopies (Triticum aestivum cv. Veery 10). Nitrate consumption, the sum of plant absorption and nitrogen loss, was continuously monitored for 23 d following germination under two CO2 concentrations (360 and 1000 μmol mol–1 CO2) and two root zone NO3 concentrations (100 and 1000 mmol m3 NO3). The plants were grown at high density (1780 m–2) in a 28 m3 controlled environment chamber using solution culture techniques. Wheat responded to 1000 μmol mol–1 CO2 by increasing carbon allocation to root biomass production. Elevated CO2 also increased root zone NO3 consumption, but most of this increase did not result in higher biomass nitrogen. Rather, nitrogen loss accounted for the greatest part of the difference in NO3 consumption between the elevated and ambient [CO2] treatments. The total amount of NO3-N absorbed by roots or the amount of NO3-N assimilated per unit area did not significantly differ between elevated and ambient [CO2] treatments. Instead, specific leaf organic nitrogen content declined, and NO3 accumulated in canopies growing under 1000 μmol mol–1 CO2. Our results indicated that 1000 μmol mol–1 CO2 diminished NO3 assimilation. If NO3 assimilation were impaired by high [CO2], then this offers an explanation for why organic nitrogen contents are often observed to decline in elevated [CO2] environments.  相似文献   

17.
To test the predictions that plants will have a larger flavonoid concentration in a future world with a CO2-enriched atmosphere, wheat (Triticum aestivum L. cv. Yecora Rojo) was grown in a field experiment using FACE (free-air CO2 enrichment) technology under two levels of atmospheric CO2 concentration: ambient (370 μmol mol?1) and enriched (550 μmol mol?1), and under two levels of irrigation: well-watered (100% replacement of potential evapotranspiration) and half-watered. We also studied the effects of CO2 on the concentration of total non-structural carbohydrates (TNC) and nitrogen (N), two parameters hypothesized to be linked to flavonoid metabolism. Throughout the growth cycle the concentration of isoorientin, the most abundant flavonoid, decreased by 62% (from an average of 12.5 mg g?1 on day of year (DOY) 41 to an average of 4.8 mg g?1 on DOY 123), whereas the concentration of tricin, another characteristic flavone, increased by two orders of magnitude (from an average of 0.007 mg g?1 of isoorientin equivalents on DOY 41 to an average of 0.6 mg g?1 of isoorientin equivalents on DOY 123). Although flavonoid concentration was dependent on growth stage, the effects of treatments on phenology did not invalidate the comparisons between treatments. CO2-enriched plants had higher flavonoid concentrations (14% more isoorientin, an average of 7.0 mg g?1 for ambient CO2 vs an average of 8.0 mg g?1 for enriched CO2), higher TNC concentrations and lower N concentrations in ukpper canopy leaves throughout the growth cycle. Well-irrigated plants had higher flavonoid concentrations (11% more isoorientin, an average of 7.1 mg g?1 for half watered vs an average of 7.9 mg g?1 for well-watered) throughout the growth cycle, whereas the effect of irrigation treatments on TNC and N was more variable. These results are in accordance with the hypotheses that higher carbon availability promoted by CO2-enrichment provides carbon that can be invested in carbon-based secondary compounds such as flavonoids. The rise in atmospheric CO2 may thus indirectly affect wheat-pest relations, alter the pathogen predisposition and improve the UV-B protection by changing flavonoid concentrations.  相似文献   

18.
NO3?-dependent O2 in synchronous Scenedesmus obtusiusculus Chod. in the absence of CO2 is stoichiometric with NH4+ excretion, indicating a close coupling of NO3? reduction to non-cyclic electron flow. Also in the presence of CO2, NO3? stimulates O2 evolution as manifested by an increase in the O2/CO2 ratio from 0.96 to 1.11. This quotient was increased to 1.36 by addition of NO2?, without competitive interaction with CO2 fixation, indicating that the capacity for non-cyclic electron transport at saturating light is non-limiting for simultaneous reduction of NO3? and CO2 at high rates. During incubation with NO3?+ CO2, no NH4+ is released to the outer medium, whereas during incubation with NO2?+ CO2, excess NH4+ is formed and excreted. NO3? uptake is stimulated by CO2, and this stimulation is also significant when the cellular energy metabolism is restricted by moderate concentrations of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, whereas NO3? uptake in the absence of CO2 is severely inhibited by the uncoupler. Also under energy-restricted conditions NO3? uptake is not competitive with CO2 fixation. Antimycin A is inhibitory for NO3? uptake in the absence of CO2, and there is no enhancement of NO3? uptake by CO2 in the presence of antimycin A. It is assumed that the energy demand for NO3? uptake is met by energy fixed as triosephosphates in the Calvin cycle. Antimycin A possibly affects the transfer of reduced triose phosphates from the chloroplast to the cytoplasm. Active carbon metabolism also seems to exert a control effect on NO3? assimilation, inducing complete incorporation of all NO3? taken up into amino acids. This control effect is not functional when NO2? is the nitrogen source. Active carbon metabolism thus seems to be essential both for provision of energy for NO3? uptake and for regulation of the process.  相似文献   

19.
Abstract. Wild radish plants deprived of, and continuously supplied with solution NO?3 for 7 d following 3 weeks growth at high NO?3 supply were compared in terms of changes in dry weight, leaf area, photosynthesis and the partitioning of carbon and nitrogen (NH2-N and NO?3-N) among individual organs. Initial levels of NO?3-N accounted for 25% of total plant N. Following termination of NO?3 supply, whole plant dry weight growth was not significantly reduced for 3 d, during which time plant NH2-N concentration declined by about 25% relative to NO?3-supplied plants, and endogenous NO?3-N content was reduced to nearly zero. Older leaves lost NO?3 and NH2-N, and roots and young leaves gained NH2-N in response to N stress. Relative growth rate declined due both to decreased net assimilation rate and a decrease in leaf area ratio. A rapid increase in specific leaf weight was indicative of a greater sensitivity to N stress of leaf expansion compared to carbon gain. In response to N stress, photosynthesis per unit leaf area was more severely inhibited in older leaves, whereas weight-based rates were equally inhibited among all leaf ages. Net photosynthesis was strongly correlated with leaf NH2-N concentration, and the relationship was not significantly different for leaves of NO3?-supplied compared to NO?3-deprived plants. Simulations of the time course of NO?3 depletion for plants of various NH2-N and NO?3 compositions and relative growth rates indicated that environmental conditions may influence the importance of NO?3 accumulation as a buffer against fluctuations in the N supply to demand ratio.  相似文献   

20.
The possibility that an enhanced supply of dissolved inorganic carbon (DIC=CO2+HCO3-) to the root solution could increase the growth of Lycopersicon esculentum (L.) Mill. cv. F144 was investigated under both saline and non-saline root medium conditions. Tomato seedlings were grown in hydroponic culture with and without NaCl and the root solution was aerated with CO2 concentrations in the range between 0 and 5000 mol mol-1. The biomass of both control and salinity-stressed plants grown at high temperatures (daily maximum of 37C) and an irradiance of 1500 mol m-2 s-1 was increased by up to 200% by enriched rhizosphere DIC. The growth rates of plants grown with irradiances of less than 100 mol m-2 s-1 were increased by elevated rhizosphere DIC concentrations only when grown at high shoot temperatures (35C) or with salinity 28°C). At high light intensities, the photosynthetic rate, the CO2 and light-saturated photosynthetic rate (jmax) and the stomatal conductance of plants grown at high light intensity were lower in plants supplied with enriched compared to ambient DIC. This was interpreted as 'down-regulation' of the photosynthetic system in plants supplied with elevated DIC. Labelled organic carbon in the xylem sap derived from root DI14C incorporation was found to be sufficient to deliver carbon to the shoot at rates equivalent to 1% and 10% of the photosynthetic rate of the plants supplied with ambient- and enriched-DIC, respectively. It was concluded that organic carbon derived from DIC incorporation and translocated in the xylem from the root to the shoot may provide a source of carbon for the shoots, especially under conditions where low stomatal conductance may be advantageous, such as salinity stress, high shoot temperatures and high light intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号