首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 688 毫秒
1.
重组质粒pUDK-HGF 的中试纯化工艺   总被引:1,自引:0,他引:1  
pUDK-HGF是携带人肝细胞生长因子的裸质粒,目前已进入I期临床试验,因此需要大量符合药学规格的质粒DNA。文中建立了pUDK-HGF中试规模纯化制备的新工艺。流程包括:发酵、离心收获菌体、碱裂解、超滤浓缩碱裂解液、Sephacryl S-1000层析除去RNA并更换缓冲液、plasmidselect捕获超螺旋质粒DNA、琼脂糖凝胶6BFF除盐。新工艺可获得浓度为2.0 mg/mL、纯度在1.70以上的裸质粒原液,符合相关质量标准,并避免使用动物源性的酶及有毒试剂。  相似文献   

2.
目的:采用TritonX-114液相分离法去除质粒溶液中的内毒素,以保证实验动物的安全和结果的准确性。方法:通过碱裂解法提取质粒pVAX1和pVAX1-hLDHC,用聚乙二醇6000沉淀对质粒进一步纯化;用TritonX-114抽提的方法,去除质粒溶液中的内毒素。结果:通过3轮TritonX-114抽提,能够将质粒溶液中内毒素水平降至1.95EU/mL,质粒样品的回收率为79.8%,质量保持不变。结论:TritonX-114液相分离法是一种非常有效的去除质粒溶液中内毒素的方法。  相似文献   

3.
临床用DNA疫苗生产工艺研究进展   总被引:4,自引:0,他引:4  
DNA疫苗是继传统疫苗和基因工程蛋白亚单位疫苗之后的新一代疫苗,具有很好的市场潜力。DNA疫苗生产工艺的质粒DNA大规模制备技术对DNA疫苗的产业化具有重要意义。本文介绍了DNA疫苗生产工艺的研究进展包括提高质粒DNA产量的策略、发酵后处理工艺、有效去除杂质和分离超螺旋构象质粒DNA的纯化工艺以及DNA疫苗生产相关的质量控制体系等。  相似文献   

4.
目的:构建以减毒沙门氏菌为载体的小鼠肝炎病毒DNA疫苗,研究该疫苗的免疫原性。方法:以小鼠肝炎病毒S1基因的重组真核表达质粒pVAX1—S1免疫BALB/c小鼠,ELISA检测其诱导抗体产生情况;再将重组质粒pVAX1—S1电转化到减毒鼠伤寒沙门氏菌SL7207中,构建运送S1基因的重组减毒沙门氏菌SL7207(pVAX1—S1),口服免疫BALB/c小鼠,间接免疫荧光试验鉴定减毒沙门氏菌运送的DNA疫苗的免疫原性。结果:与pVAX1空载体对照组相比,重组真核表达质粒pVAX1—S1免疫组二免及三免后抗体水平分别存在显著性差异(P〈0.05)和极显著性差异(P〈0.01)。减毒沙门氏菌运送的DNA疫苗SL7207(pVAX1—S1)诱导小鼠产生了特异性的血清抗体。结论:构建的重组减毒沙门氏菌SL7207(pVAX1—S1)具有良好的免疫原性,可诱导小鼠产生特异性的体液免疫应答。这为进一步研制冠状病毒新型基因疫苗奠定了基础。  相似文献   

5.
理论上,游离的超螺旋DNA可以采取两种结构形式:互缠式超螺旋和螺线管型超螺旋。前者早已被透射电子显微镜和原子力显微术的研究所证实,而后者却仍然缺乏足够的证据。使用温和的清亮裂解液法,从DNA拓扑酶野生型大肠杆菌HB101细胞抽提质粒pUC18 DNA。经CsCl-EB平衡密度梯度超离心分离获得超螺旋pUC18 DNA和松弛型pUC18 DNA(DNA Ⅱ)。纯化DNA分别用疏水必不容放亲水性溶剂系统的细胞色素单分子层展开技术制备电子显微镜标本。观察结果显示:在疏水性的甲酰胺-水展开系统中,DNA采取通常的互缠式结构;在含有1.5mmol/L醋酸铵的水介质中制备的超螺旋DNA标本,DNA采取线圈型结构,测得pUC18 DNA(单体)分子这种结构的外直径约为43.8nm,内直径约为2nm。在相同亲水介质中松弛型pUC18 DNA采取典型的螺线管型结构,其单体平均外直径约为53.1nm,内直径约为17.2nm。表明:在疏水介质中超螺旋DNA趋向于采取互缠式结构,而在亲水介质中DNA则要取螺线管型结构。DNA链之间可能存在非共价相互作用以维持这种结构。螺线管型结构可能是水溶液中的超螺旋DNA分子普遍的存在形式。  相似文献   

6.
从大肠杆菌HB101细胞制备的质粒pUC18 DNA可被双向琼脂糖凝胶电泳分离成6组电泳行为不同的结构成分.超螺旋pUC18 DNA的两种结构形式:互缠型超螺旋与线圈型超螺旋构象同时存在于这种DNA样品中.在离子强度等环境条件改变时这两种DNA构象可以发生互变.DNA拓扑异构酶能改变线圈型DNA在样品中的含量.线圈型pUC18 DNA的电子显微镜表观为面包圈形,直径约45nm.实验事实表明线圈型超螺旋DNA是不依赖组蛋白而独立存在的一种结构实体.  相似文献   

7.
重组大肠杆菌碱裂解方法的改进   总被引:1,自引:0,他引:1  
为了降低质粒DNA的生产成本,对经典碱裂解法中的溶液III进行了改进,以表达溶菌酶基因的pcDNKLYZ重组质粒转化的大肠杆菌DH5α为指示菌,用标准碱裂解和改进碱裂解法提取质粒pcDNKLYZ,以提取的质粒产量和质量为指标,判断优化碱性裂解法的性价比,结果显示,用改进后的碱裂解法裂解重组菌,提取的pcDNKLYZ质粒产量和质量等指标与标准方法接近,而成本仅为标准方法的1/4,可用于重组质粒的大规模制备。  相似文献   

8.
一种碱裂解菌液直接电泳快速筛选重组子的方法   总被引:2,自引:2,他引:0  
目的:从碱裂解法提取质粒DNA的原理.经过实验摸索获得一种快速、经济、结果可靠的菌液直接碱裂解电泳筛选重组子的方法。方法:不需提取质粒DNA.只需将细菌培养液碱裂解后直接进行普通琼脂糖凝胶电泳分析,就可以快速筛选出转化重组子。结果:结果和提取质粒酶切鉴定鉴定结果一致。结论:经实验证明菌液直接碱裂解电泳筛选重组子是一种快速、经济、可靠的方法。  相似文献   

9.
本实验室构建的疟疾DNA疫苗经动物试验表明具有很好的免疫原性,为申请临床试验,进行了制备工艺的研究。本研究将含pcD-awte质粒的大肠杆菌DH5α在发酵罐中发酵培养,碱裂解法粗提质粒,再依次通过Sepharose 6FF分子筛层析、Plasmidselect 亲硫吸附层析和Source 30Q离子交换层析精制获得质粒纯品,并对纯品进行质量分析。结果每升培养液可获得质粒纯品43.9mg,质量符合Ferreira等推荐的药用标准。  相似文献   

10.
刘佳  张庆林 《生物技术通讯》2004,15(4):409-410,413
质粒DNA疫苗或基因治疗剂是生物制品的新品种。鉴于质粒DNA表达效率低、持续时间短,需建立一套大规模生产制备质粒DNA的工艺,即发酵、碱性裂解、分离纯化及质量控制。目前质粒DNA大规模生产已经达到千克级水平,一些产品正在进行临床实验。  相似文献   

11.
Mass balances were performed on an alkaline lysis operation for the primary recovery of supercoiled plasmid DNA as part of a process for plasmid gene preparation. Escherichia coli DH5alpha/pSVbeta was cultured in defined medium by fed-batch fermentation and harvested at the end of the exponential phase. Alkaline lysis of the recombinant cells was performed at fixed shear rates ranging between 46 and 461 s(-1), with neutralization 100 and 300 s after the initiation of the lysis. Mass balance calculations were used to optimize the operating conditions for carrying out the alkaline lysis operation. The results indicated that a plasmid yield of 75% and purity with respect to total DNA of 60% were achievable during the primary recovery operation. The influences of key contaminants, including the soluble proteins and the suspended solids, as they bear on the subsequent purification operations, were evaluated and discussed.  相似文献   

12.
Transient expression of recombinant proteins in mammalian cell culture in a 100-L scale requires a large quantity of plasmid that is very labour intensive to achieve with shake flask cultures and commercially available plasmid purification kits. In this paper we describe a process for plasmid production in 100-mg scale. The fermentation is carried out in a 4-L fed-batch culture with a minimal medium. The detection of the end of batch and triggering the exponential (0.1 h(-1)) feed profile was unattended and controlled by Multi-fermenter Control System. A restricted specific growth rate in fed-batch culture increased the specific plasmid yield compared to batch cultures with minimal and rich media. This together with high biomass concentration (68-107 g L(-1) wet weight) achieves high volumetric yields of plasmid (95-277 mg L(-1) depending on the construct). The purification process consisted of alkaline lysis, lysate clarification and ultrafiltration, two-phase extraction with Triton X-114 for endotoxin removal, anion-exchange chromatography as a polishing step, ultrafiltration and sterile filtration. Both fermentation and purification processes were used without optimisation for production of four plasmids yielding from 39 to 163 mg of plasmids with endotoxin content of 2.5 EU mg(-1) or less.  相似文献   

13.
Plasmid DNA for biopharmaceutical applications is produced easily in Escherichia coli bacteria. The cell lysis is the most crucial step for purification of plasmid DNA. In this paper, we describe a continuous cell alkaline lysis, neutralization, and clarification combination process for production of plasmid pUDK-HGF using hollow fiber ultrafiltration column as a lysis chamber and compare the plasmid DNA yield and homogeneity with the T-connector and manual processes, respectively. The results show that the plasmid pUDK-HGF yield of the combination process is 13% higher than manual lysis, twice higher than using T-connector. When the proportion of lysed cells and neutralization solution is 3:1, the plasmid pUDK-HGF yield can improve by 70%. This process could be easily scaled up to meet the industrial scale for cell lysis.  相似文献   

14.
A sensitive fluorescence-based method for monitoring plasmid DNA during production was investigated. This simple method of assaying for plasmid DNA allows rapid monitoring of plasmid yields from a recombinant Escherichia coli fed-batch fermentation. The assay has several advantages over traditional methods of plasmid DNA measurement. The fluorescent dye is highly specific and can measure total plasmid DNA concentration in about 5 min. The assay is sensitive over a wide range of plasmid concentrations of between 15 and 280 ng/mL, even in the presence of impurities that occur within alkaline lysate preparations. The technique can also be applied to monitoring fermentation and downstream purification steps.  相似文献   

15.
Gene therapy and DNA vaccination applications have increased the demand for highly purified plasmid DNA (pDNA) in the last years. One of the main problems related to the scale-up of pDNA purification is the degradation of the supercoiled (sc) isoforms during cell culture and multi-stage purification. In this work, a systematic study of the stability of two model plasmids (3,697 and 6,050 bp) during a mid-scale production process, which includes fermentation, alkaline lysis, isopropanol and ammonium sulphate precipitation and hydrophobic interaction chromatography, was performed. Results indicate that by extending cell culture (up to 26 h) and cell lysis (up to 2 h) it is possible to significantly reduce the amounts of RNA, without significantly compromising the yields of the sc pDNA isoform, a feature that could be conveniently exploited for downstream processing purposes. The stability of pDNA upon storage of E. coli pellets at different temperatures indicates that, differently from RNA, pDNA is remarkably stable when stored in cell pellets (>3 weeks at 4°C, >12 weeks at −20°C) prior to processing. With alkaline lysates, however, storage at −20°C is mandatory to avoid sc pDNA degradation within the first 8 weeks. Furthermore, the subsequent purification steps could be carried out at room temperature without significant pDNA degradation. Since the unit operations and process conditions studied in this work are similar to those generally used for plasmid DNA production, the results presented here may contribute to improve the current knowledge on plasmid stability and process optimization. Authors Freitas and Azzoni contributed equally to this work.  相似文献   

16.
A procedure is described for the isolation and purification of the DNA of plasmids that are indigenous to the agriculturally important nitrogen-fixing bacterium Rhizobium meliloti. The procedure involves the lysis of bacteria with an ionic detergent or a mixture of ionic and nonionic detergents, the extraction of total DNA from precipitated membrane-DNA complexes, the enrichment of supercoiled plasmid DNA by the selective alkaline denaturation of chromosomal DNA, and a further purification of plasmid DNA using cesium chloridepropidium diiodide gradients. This procedure yields pure plasmid DNA in amounts of 30 to 50 μg per liter of a culture of cell density of approximately one A550 unit. The DNA thus obtained has been found to be of sufficient purity to serve as substrate for the most commonly used restriction endonucleases.  相似文献   

17.
A fermentation process in Escherichia coli for production of supercoiled plasmid DNA for use as a DNA vaccine was developed using an automated feed-back control nutrient feeding strategy based on dissolved oxygen (DO) and pH. The process was further automated through a computer-aided data processing system to regulate the cell growth rate by controlling interactively both the nutrient feed rate and agitation speed based on DO. The process increased the total yield of the plasmid DNA by approximately 10-fold as compared to a manual fed-batch culture. The final cell yield from the automated process reached 60 g L−1 of dry cell weight (OD600 = 120) within 24 h. A plasmid DNA yield of 100 mg L−1 (1.7 mg g−1 cell weight) was achieved by using an alkaline cell lysis method. Plasmid yield was confirmed using High Performance Liquid Chromatography (HPLC) analysis. Because cells had been grown under carbon-limiting conditions in the automated process, acetic acid production was minimal (below 0.01 g L−1) throughout the fed-batch stage. In contrast, in the manual process, an acid accumulation rate as high as 0.36 g L−1 was observed, presumably due to the high nutrient feed rates used to maintain a maximum growth rate. The manual fed-batch process produced a low cell density averaging 10–12 g L−1 (OD600 = 25–30) and plasmid yields of 5–8 mg L−1 (approximately 0.7 mg g−1 cells). The improved plasmid DNA yields in the DO- and pH-based feed-back controlled process were assumed to be a result of a combination of increased cell density, reduced growth rate (μ) from 0.69 h−1 to 0.13 h−1 and the carbon/nitrogen limitation in the fed-batch stage. The DO- and pH-based feed-back control, fed-batch process has proven itself to be advantageous in regulating cell growth rate to achieve both high cell density and plasmid yield without having to use pure oxygen. The process was reproducible in triplicate fermentations at both 7-L and 80-L scales. Received 22 March 1996/ Accepted in revised form 20 September 1996  相似文献   

18.
质粒pcDNA3—HGF的大规模纯经制备研究   总被引:8,自引:2,他引:6  
质粒pcDNA3-HGF具有潜在的临床治疗缺血性疾病的应用前景。大规模纯化制备是质粒DNA应用于基因治疗的关键步骤。质粒大规模纯化制备流程包括:发酵、离心收集细胞、碱性裂解、Q-Sepharose XL捕获质粒DNA、Source 15Q精制质粒DNA,所得纯超螺旋质粒pcDNA3-HGF符合质量标准。该纯化制备方法避免使用动物源性的酶及有毒试剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号