首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Valpha14 NKT cells produce large amounts of IFN-gamma and IL-4 upon recognition of their specific ligand alpha-galactosylceramide (alpha-GalCer) by their invariant TCR. We show here that NKT cells constitutively express CD28, and that blockade of CD28-CD80/CD86 interactions by anti-CD80 and anti-CD86 mAbs inhibits the alpha-GalCer-induced IFN-gamma and IL-4 production by splenic Valpha14 NKT cells. On the other, the blockade of CD40-CD154 interactions by anti-CD154 mAb inhibited alpha-GalCer-induced IFN-gamma production, but not IL-4 production. Consistent with these findings, CD28-deficient mice showed impaired IFN-gamma and IL-4 production in response to alpha-GalCer stimulation in vitro and in vivo, whereas production of IFN-gamma but not IL-4 was impaired in CD40-deficient mice. Moreover, alpha-GalCer-induced Th1-type responses, represented by enhanced cytotoxic activity of splenic or hepatic mononuclear cells and antimetastatic effect, were impaired in both CD28-deficient mice and CD40-deficient mice. In contrast, alpha-GalCer-induced Th2-type responses, represented by serum IgE and IgG1 elevation, were impaired in the absence of the CD28 costimulatory pathway but not in the absence of the CD40 costimulatory pathway. These results indicate that CD28-CD80/CD86 and CD40-CD154 costimulatory pathways differentially contribute to the regulation of Th1 and Th2 functions of Valpha14 NKT cells in vivo.  相似文献   

2.
NKT cells are a unique immunoregulatory T cell population that produces large amounts of cytokines. We have investigated whether stimulation of host NKT cells could modulate acute graft-vs-host disease (GVHD) in mice. Injection of the synthetic NKT cell ligand alpha-galactosylceramide (alpha-GalCer) to recipient mice on day 0 following allogeneic bone marrow transplantation promoted Th2 polarization of donor T cells and a dramatic reduction of serum TNF-alpha, a critical mediator of GVHD. A single injection of alpha-GalCer to recipient mice significantly reduced morbidity and mortality of GVHD. However, the same treatment was unable to confer protection against GVHD in NKT cell-deficient CD1d knockout (CD1d(-/-)) or IL-4(-/-) recipient mice or when STAT6(-/-) mice were used as donors, indicating the critical role of host NKT cells, host production of IL-4, and Th2 cytokine responses mediated by donor T cells on the protective effects of alpha-GalCer against GVHD. Thus, stimulation of host NKT cells through administration of NKT ligand can regulate acute GVHD by inducing Th2 polarization of donor T cells via STAT6-dependent mechanisms and might represent a novel strategy for prevention of acute GVHD.  相似文献   

3.
Valpha14 NKT cells exhibit various immune regulatory properties in vivo, but their precise mechanisms remain to be solved. In this study, we demonstrate the mechanisms of generation of regulatory dendritic cells (DCs) by stimulation of Valpha14 NKT cells in vivo. After repeated injection of alpha-galactosylceramide (alpha-GalCer) into mice, splenic DCs acquired properties of regulatory DCs in IL-10-dependent fashion, such as nonmatured phenotypes and increased IL-10 but reduced IL-12 production. The unique cytokine profile in these DCs appears to be regulated by ERK1/2 and IkappaB(NS). These DCs also showed an ability to suppress the development of experimental allergic encephalomyelitis by generating IL-10-producing regulatory CD4 T cells in vivo. These findings contribute to explaining how Valpha14 NKT cells regulate the immune responses in vivo.  相似文献   

4.
Although deficiencies in the NKT cell population have been observed in multiple sclerosis and mouse strains susceptible to experimental autoimmune encephalomyelitis (EAE), little is known about the function of these cells in CNS autoimmunity. In this work we report that TCR Valpha14-Jalpha281 transgenic nonobese diabetic mice, which are enriched in CD1d-restricted NKT cells, are protected from EAE. The protection is associated with a striking inhibition of Ag-specific IFN-gamma production in the spleen, implying modulation of the encephalitogenic Th1 response. This modulation is independent of IL-4 because IL-4-deficient Valpha14-Jalpha281 mice are still protected against EAE and independent of NKT cell-driven Th1 to Th2 deviation, because no increased autoantigen-specific Th2 response was observed in immunized Valpha14-Jalpha281 transgenic mice. Our findings indicate that enrichment and/or stimulation of CD1d-dependent NKT cells may be used as a novel strategy to treat CNS autoimmunity.  相似文献   

5.
LFA-1 (CD11a/CD18) plays a key role in various inflammatory responses. Here we show that the acquired immune response to Listeria monocytogenes is highly biased toward type 1 in the absence of LFA-1. At the early stage of listeriosis, numbers of IFN-gamma producers in the liver and spleen of LFA-1(-/-) mice were markedly increased compared with heterozygous littermates and Valpha14(+)NKT cell-deficient mice, and NK cells were major IFN-gamma producers. Numbers of IL-12 producers were also markedly elevated in LFA-1(-/-) mice compared with heterozygous littermates, and endogenous IL-12 neutralization impaired IFN-gamma production by NK cells. Granulocyte depletion diminished numbers of IL-12 producers and IFN-gamma-secreting NK cells in the liver of LFA-1(-/-) mice. Granulocytes from the liver of L. monocytogenes-infected LFA-1(-/-) mice were potent IL-12 producers. Thus, in the absence of LFA-1, granulocytes are a major source of IL-12 at the early stage of listeriosis. We assume that highly biased type 1 immune responses in LFA-1(-/-) mice are caused by increased levels of IL-12 from granulocytes and that granulocytes play a major role in IFN-gamma secretion by NK cells. In conclusion, LFA-1 regulates type 1 immune responses by controlling prompt infiltration of IL-12-producing granulocytes into sites of inflammation.  相似文献   

6.
NKT cells in donor bone marrow (BM) have been demonstrated to protect against graft-vs-host disease (GVHD) following BM transplantation. Murine NKT cells are divided into two distinct subsets based on the invariant Valpha14Jalpha18 TCR expression. However, details of the subset and mechanisms of the BM NKT cells involved in suppressing GVHD have not been clarified. Irradiated BALB/c or C3H/HeN mice administered B6 or Jalpha18(-/-) BM cells show attenuation of GVHD, whereas recipients given CD1d(-/-) BM cells did not show attenuation. Moreover, coinjection of BM non-Valpha14Jalpha18 CD1d-restricted (type II) NKT cells and CD1d(-/-) BM cells suppressed GVHD, whereas coinjection of BM Valpha14Jalpha18 TCR (type I) NKT cells did not. These protective effects on GVHD depended upon IFN-gamma-producing type II NKT cells, which induced the apoptosis of donor T cells. The splenocytes of mice administered BM cells from B6.IL-4(-/-) or Jalpha18(-/-)IL-4(-/-) mice produced lower levels of IL-4 and IL-10 than the splenocytes of mice transplanted with BM cells from B6, B6.IFN-gamma(-/-), Jalpha18(-/-), or Jalpha18(-/-)IFN-gamma(-/-) mice. Taken together, our results show that IFN-gamma-producing BM type II NKT cells suppress GVHD by inducing the apoptosis of donor T cells, while IL-4-producing BM type II NKT cells protect against GVHD by deviating the immune system toward a Th2-type response.  相似文献   

7.
Interaction of alpha-galactosylceramide (alpha-GalCer) presented by CD1d on dendritic cells (DCs) with the invariant TCR of NKT cells activates NKT cells. We have now investigated the role of Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1), a transmembrane protein abundantly expressed on DCs, in regulation of NKT cells with the use of mice that express a mutant form of SHPS-1. The suppression by alpha-GalCer of experimental lung metastasis was markedly attenuated in SHPS-1 mutant mice compared with that apparent in wild-type (WT) mice. The antimetastatic effect induced by adoptive transfer of alpha-GalCer-pulsed DCs from SHPS-1 mutant mice was also reduced compared with that apparent with WT DCs. Both the production of IFN-gamma and IL-4 as well as cell proliferation in response to alpha-GalCer in vitro were greatly attenuated in splenocytes or hepatic mononuclear cells from SHPS-1 mutant mice compared with the responses of WT cells. Moreover, CD4+ mononuclear cells incubated with alpha-GalCer and CD11c+ DCs from SHPS-1 mutant mice produced markedly smaller amounts of IFN-gamma and IL-4 than did those incubated with alpha-GalCer and CD11c+ DCs from WT mice. SHPS-1 on DCs thus appears to be essential for alpha-GalCer-induced antimetastatic activity and Th1 and Th2 responses of NKT cells. Moreover, our recent findings suggest that SHPS-1 on DCs is also essential for the priming of CD4+ T cells by DCs.  相似文献   

8.
Invariant Valpha14(+) NKT cells are a specialized CD1-reactive T cell subset implicated in innate and adaptive immunity. We assessed whether Valpha14(+) NKT cells participated in the immune response against enteric Listeria monocytogenes infection in vivo. Using CD1d tetramers loaded with the synthetic lipid alpha-galactosylceramide (CD1d/alphaGC), we found that splenic and hepatic Valpha14(+) NKT cells in C57BL/6 mice were early producers of IFN-gamma (but not IL-4) after L. monocytogenes infection. Adoptive transfer of Valpha14(+) NKT cells derived from TCRalpha degrees Valpha14-Jalpha18 transgenic (TCRalpha degrees Valpha14Tg) mice into alymphoid Rag(null) gamma(c)(null) mice demonstrated that Valpha14(+) NKT cells were capable of providing early protection against enteric L. monocytogenes infection with systemic production of IFN-gamma and reduction of the bacterial burden in the liver and spleen. Rechallenge experiments demonstrated that previously immunized wild-type and Jalpha18null mice, but not TCRalpha(null) or TCRalpha(null) Valpha14Tg mice, were able to mount adaptive responses to L. monocytogenes. These data demonstrate that Valpha14(+) NKT cells are able to participate in the early response against enteric L. monocytogenes through amplification of IFN-gamma production, but are not essential for, nor capable of, mediating memory responses required to sterilize the host.  相似文献   

9.
Multiple studies have demonstrated that 4-1BB (CD137), a member of the TNF receptor superfamily, is expressed on several immune cells including activated T cells. However, the expression and the role of 4-1BB on natural killer T (NKT) cells have not been fully characterized. In this study, it was shown that 4-1BB was not expressed on naive NKT cells but was rapidly induced on activated NKT cells by TCR engagement with alpha-galactosylceramide (alpha-GalCer). Also, 4-1BB signaling provided by 3H3, an agonistic anti-4-1BB mAb, promoted NKT cell activation resulting in enhanced cytokine production of NKT cells driven by alpha-GalCer. When NKT cell-driven airway immune responses were evaluated by intranasal administration of alpha-GalCer, airway hyperresponsiveness (AHR) and lung inflammation were significantly more aggravated in mice treated with 3H3 and alpha-GalCer than in mice treated with alpha-GalCer alone. These aggravations were accompanied by up-regulation of IL-4, IL-13, and IFN-gamma production. Interestingly, AHR was not developed in IL-4Ralpha-deficient mice treated with alpha-GalCer with or without 3H3 but was exacerbated in IFN-gamma-deficient mice. Our study suggests that 4-1BB on NKT cells functions as a costimulatory molecule and exacerbates the induction of NKT cell-mediated AHR, which is dependent on the IL-4Ralpha-mediated pathway.  相似文献   

10.
Previously, we demonstrated that Valpha14+ NKT cells and IFN-gamma are important upstream components in neutrophil-mediated host defense against infection with Streptococcus pneumoniae. In the present study, we extended these findings by elucidating the role of IFN-gamma in this Valpha14+ NKT cell-promoted process. Administration of recombinant IFN-gamma to Jalpha18KO mice prolonged the shortened survival, promoted the attenuated clearance of bacteria and improved the reduced accumulation of neutrophils and synthesis of MIP-2 and TNF-alpha in the lungs, in comparison to wild-type (WT) mice. In addition, intravenous transfer of liver mononuclear cells (LMNC) from WT mice into Jalpha18KO mice resulted in complete recovery of the depleted responses listed above, whereas such effects were not detected when LMNC were obtained from IFN-gammaKO or Jalpha18KO mice. Activation of Valpha14+ NKT cells by alpha-galactosylceramide (alpha-GalCer) significantly enhanced the clearance of bacteria, accumulation of neutrophils and synthesis of MIP-2 and TNF-alpha in the infected lungs; this effect was significantly inhibited by a neutralizing anti-IFN-gamma antibody. Finally, in a flow cytometric analysis, TNF-alpha synthesis was detected largely by CD11b(bright+) cells in the infected lungs. Our results demonstrated that IFN-gamma plays an important role in the neutrophil-mediated host protective responses against pneumococcal infection promoted by Valpha14+ NKT cells.  相似文献   

11.
The transmembrane chemokine CXCL 16 (CXCL16), which is the same molecule as the scavenger receptor that binds phosphatidylserine and oxidized lipoprotein (SR-PSOX), has been shown to mediate chemotaxis and adhesion of CXC chemokine receptor 6-expressing cells such as NKT and activated Th1 cells. We generated SR-PSOX/CXCL16-deficient mice and examined the role of this chemokine in vivo. The mutant mice showed a reduced number of liver NKT cells, and decreased production of IFN-gamma and IL-4 by administration of alpha-galactosylceramide (alphaGalCer). Of note, the alphaGalCer-induced production of IFN-gamma was more severely impaired than the production of IL-4 in SR-PSOX-deficient mice. In this context, SR-PSOX-deficient mice showed impaired sensitivity to alphaGalCer-induced anti-tumor effect mediated by IFN-gamma from NKT cells. NKT cells from wild-type mice showed impaired production of IFN-gamma, but not IL-4, after their culture with alphaGalCer and APCs from mutant mice. Moreover, Propionibacterium acnes-induced in vivo Th1 responses were severely impaired in SR-PSOX-deficient as well as NKT KO mice. Taken together, SR-PSOX/CXCL16 plays an important role in not only the production of IFN-gamma by NKT cells, but also promotion of Th1-inclined immune responses mediated by NKT cells.  相似文献   

12.
In the present report, we characterize a novel T cell subset that shares with the NKT cell lineage both CD1d-restriction and high reactivity in vivo and in vitro to the alpha-galactosylceramide (alpha-GalCer) glycolipid. These cells preferentially use the canonical Valpha14-Jalpha281 TCR-alpha-chain and Vbeta8 TCR-beta segments, and are stimulated by alpha-GalCer in a CD1d-dependent fashion. However, in contrast to classical NKT cells, they lack the NK1.1 marker and express high surface levels of CD1d molecules. In addition, this NK1.1(-) CD1d(high) T subset, further referred to as CD1d(high) NKT cells, can be distinguished by its unique functional features. Although NK1.1(+) NKT cells require exogenous CD1d-presenting cells to make them responsive to alpha-GalCer, CD1d(high) NKT cells can engage their own surface CD1d in an autocrine and/or paracrine manner. Furthermore, in response to alpha-GalCer, CD1d(high) NKT cells produce high amounts of IL-4 and moderate amounts of IFN-gamma, a cytokine profile more consistent with a Th2-like phenotype rather than the Th0-like phenotype typical of NK1.1(+) NKT cells. Our work reveals a far greater level of complexity within the NKT cell population than previously recognized and provides the first evidence for T cells that can be activated upon TCR ligation by CD1d-restricted recognition of their ligand in the absence of conventional APCs.  相似文献   

13.
Type 1 diabetes (T1D) in non-obese diabetic (NOD) mice may be favored by immune dysregulation leading to the hyporesponsiveness of regulatory T cells and activation of effector T-helper type 1 (Th1) cells. The immunoregulatory activity of natural killer T (NKT) cells is well documented, and both interleukin (IL)-4 and IL-10 secreted by NKT cells have important roles in mediating this activity. NKT cells are less frequent and display deficient IL-4 responses in both NOD mice and individuals at risk for T1D (ref. 8), and this deficiency may lead to T1D (refs. 1,6-9). Thus, given that NKT cells respond to the alpha-galactosylceramide (alpha-GalCer) glycolipid in a CD1d-restricted manner by secretion of Th2 cytokines, we reasoned that activation of NKT cells by alpha-GalCer might prevent the onset and/or recurrence of T1D. Here we show that alpha-GalCer treatment, even when initiated after the onset of insulitis, protects female NOD mice from T1D and prolongs the survival of pancreatic islets transplanted into newly diabetic NOD mice. In addition, when administered after the onset of insulitis, alpha-GalCer and IL-7 displayed synergistic effects, possibly via the ability of IL-7 to render NKT cells fully responsive to alpha-GalCer. Protection from T1D by alpha-GalCer was associated with the suppression of both T- and B-cell autoimmunity to islet beta cells and with a polarized Th2-like response in spleen and pancreas of these mice. These findings raise the possibility that alpha-GalCer treatment might be used therapeutically to prevent the onset and recurrence of human T1D.  相似文献   

14.
NKT cells are a remarkably versatile population whose functional capacities are determined by cytokines present in their microenvironment. In this study, we provide evidence for a new immunoregulatory effect of the proinflammatory cytokine IL-18 on NKT cells. We found that IL-18, mainly known for its involvement in NK cell activation and in Th 1 immune responses, substantially enhanced IL-4 production as well as the percentage of IL-4(+) cells among NKT lymphocytes activated by their specific ligand alpha-galactosylceramide (alpha-GalCer). The effect of IL-18 on IL-4 production by activated NKT cells took place both in vivo and in vitro and was not affected by IL-12 which increased IFN-gamma secretion in the same conditions. We show that NKT cells are the main targets for IL-18-induced IL-4 production since it occurred neither in NKT-deficient mice nor after stimulation of Th2 lymphocytes. Finally, we provide evidence that the IL-4 promptly generated by NKT cells in response to IL-18 plus alpha-galactosylceramide in vivo can effectively contribute to the adaptive Th2 immune response by up-regulating the early activation marker CD69 on B cells. Our data support the notion that, in contrast to the exclusive IFN-gamma inducer IL-12, IL-18 acts in a more subtle manner as a costimulatory factor in both pro-Th1 and pro-Th2 responses depending on the nature of the stimulation and the target cells.  相似文献   

15.
NKT cells expressing phenotypic markers of both T and NK cells seem to be pivotal in murine models of immune-mediated liver injury, e.g., in Con A-induced hepatitis. Also alpha-galactosylceramide (alpha-GalCer), a specific ligand for invariant Valpha14 NKT cells, induces hepatic injury. To improve the comprehension of NKT-cell mediated liver injury, we investigated concomitants and prerequisites of alpha-GalCer-induced hepatitis in mice. Liver injury induced by alpha-GalCer injection into C57BL/6 mice was accompanied by intrahepatic caspase-3 activity but appeared independent thereof. alpha-GalCer injection also induces pronounced cytokine responses, including TNF-alpha, IFN-gamma, IL-2, IL-4, and IL-6. We provide a detailed time course for the expression of these cytokines, both in liver and plasma. Cytokine neutralization revealed that, unlike Con A-induced hepatitis, IFN-gamma is not only dispensable for alpha-GalCer-induced hepatotoxicity but even appears to exert protective effects. In contrast, TNF-alpha was clearly identified as an important mediator for hepatic injury in this model that increased Fas ligand expression on NKT cells. Whereas intrahepatic Kupffer cells are known as a pivotal source for TNF-alpha in Con A-induced hepatitis, they were nonessential for alpha-GalCer-mediated hepatotoxicity. In alpha-GalCer-treated mice, TNF-alpha was produced by intrahepatic lymphocytes, in particular NKT cells. BALB/c mice were significantly less susceptible to alpha-GalCer-induced liver injury than C57BL/6 mice, in particular upon pretreatment with d-galactosamine, a hepatocyte-specific sensitizer to TNF-alpha-mediated injury. Finally, we demonstrate resemblance of murine alpha-GalCer-induced hepatitis to human autoimmune-like liver disorders. The particular features of this model compared with other immune-mediated hepatitis models may enhance comprehension of basic mechanisms in the etiopathogenesis of NKT cell-comprising liver disorders.  相似文献   

16.
A unique lymphoid lineage, Valpha14 NKT cells, bearing an invariant Ag receptor encoded by Valpha14 and Jalpha281 gene segments, play crucial roles in various immune responses, including protective immunity against malignant tumors. A specific ligand of Valpha14 NKT cells is determined to be alpha-galactosylceramide (alpha-GalCer) which is presented by the CD1d molecule. Here, we report that dendritic cells (DCs) pulsed with alpha-GalCer effectively induce potent antitumor cytotoxic activity by specific activation of Valpha14 NKT cells, resulting in the inhibition of tumor metastasis in vivo. Moreover, a complete inhibition of B16 melanoma metastasis in the liver was observed when alpha-GalCer-pulsed DCs were injected even 7 days after transfer of tumor cells to syngeneic mice where small but multiple metastatic nodules were already formed. The potential utility of DCs pulsed with alpha-GalCer for tumor immunotherapy is discussed.  相似文献   

17.
alpha-Galactosylceramide (alpha-GalCer) is a ligand of invariant Valpha14+ NKT cells and is presented by CD1d molecule on APC. NKT cells produce a large amount of Th1 and Th2 cytokines in response to alpha-GalCer-presented APC. In this study, we assessed whether alpha-GalCer could act as an effective nasal vaccine adjuvant for mucosal vaccine that would be capable of inducing systemic as well as mucosal immune responses. When alpha-GalCer was administered with OVA via the intranasal route to C57BL/6 and BALB/c mice, significant OVA-specific mucosal secretory IgA, systemic IgG, and CTL responses were induced with mixed Th1 and Th2 cytokine profiles seen in both strains of mice. Interestingly, as BALB/c mice were intranasally immunized with PR8 hemagglutinin Ag isolated from influenza virus A/PR/8/34 together with alpha-GalCer, significant protection was afforded against influenza viral infection. When alpha-GalCer was coimmunized with a replication-deficient live adenovirus to BALB/c mice, it significantly induced both humoral and cellular immune responses. In addition, intranasal administration of OVA with alpha-GalCer showed complete protection against EG7 tumor challenge in C57BL/6. The adjuvant effects induced by intranasal coadministration with alpha-GalCer were blocked in CD1d-/- mice, indicating that the immune responses were exclusively mediated by CD1d molecule on APC. Most interestingly, intranasally coadministered alpha-GalCer activated naive T cells and triggered them to differentiate into functional effector T cells when CFSE-labeled OT-1 cells were adoptively transferred into syngeneic mice. Overall, our results are the first to show that alpha-GalCer can act as a nasal vaccine adjuvant inducing protective immune responses against viral infections and tumors.  相似文献   

18.
NKT cells play important roles in the regulation of diverse immune responses. Therefore, chemokine receptor expression and chemotactic responses of murine TCRalphabeta NKT cells were examined to define their homing potential. Most NKT cells stained for the chemokine receptor CXCR3, while >90% of Valpha14i-positive and approximately 50% of Valpha14i-negative NKT cells expressed CXCR6 via an enhanced green fluorescent protein reporter construct. CXCR4 expression was higher on Valpha14i-negative than Valpha14i-positive NKT cells. In spleen only, subsets of Valpha14i-positive and -negative NKT cells also expressed CXCR5. NKT cell subsets migrated in response to ligands for the inflammatory chemokine receptors CXCR3 (monokine induced by IFN-gamma/CXC ligand (CXCL)9) and CXCR6 (CXCL16), and regulatory chemokine receptors CCR7 (secondary lymphoid-tissue chemokine (SLC)/CC ligand (CCL)21), CXCR4 (stromal cell-derived factor-1/CXCL12), and CXCR5 (B cell-attracting chemokine-1/CXCL13); but not to ligands for other chemokine receptors. Two NKT cell subsets migrated in response to the lymphoid homing chemokine SLC/CCL21: CD4(-) Valpha14i-negative NKT cells that were L-selectin(high) and enriched for expression of Ly49G2 (consistent with the phenotype of most NKT cells found in peripheral lymph nodes); and immature Valpha14i-positive cells lacking NK1.1 and L-selectin. Mature NK1.1(+) Valpha14i-positive NKT cells did not migrate to SLC/CCL21. BCA-1/CXCL13, which mediates homing to B cell zones, elicited migration of Valpha14i-positive and -negative NKT cells in the spleen. These cells were primarily CD4(+) or CD4(-)CD8(-) and were enriched for Ly49C/I, but not Ly49G2. Low levels of chemotaxis to CXCL16 were only detected in Valpha14i-positive NKT cell subsets. Our results identify subsets of NKT cells with distinct homing and localization patterns, suggesting that these populations play specialized roles in immunological processes in vivo.  相似文献   

19.
Mouse CD1d-restricted Valpha14 NKT cells are a unique subset of lymphocytes, which play important roles in immune regulation, tumor surveillance and host defense against pathogens. DOCK2, a mammalian homolog of Caenorhabditis elegans CED-5 and Drosophila melanogaster myoblast city, is critical for lymphocyte migration and regulates T cell responsiveness through immunological synapse formation, yet its role in Valpha14 NKT cells remains unknown. We found that DOCK2 deficiency causes marked reduction of Valpha14 NKT cells in the thymus, liver, and spleen. When alpha-galactosylceramide (alpha-GalCer), a ligand for Valpha14 NKT cells, was administrated, cytokine production was scarcely detected in DOCK2-deficient mice, suggesting that DOCK2 deficiency primarily affects generation of Valpha14 NKT cells. Supporting this idea, staining with CD1d/alpha-GalCer tetramers revealed that CD44- NK1.1- Valpha14 NKT cell precursors are severely reduced in the thymuses of DOCK2-deficient mice. In addition, studies using bone marrow chimeras indicated that development of Valpha14 NKT cells requires DOCK2 expression in T cell precursors, but not in APCs. These results indicate that DOCK2 is required for positive selection of Valpha14 NKT cells in a cell-autonomous manner, thereby suggesting that avidity-based selection also governs development of this unique subset of lymphocytes in the thymus.  相似文献   

20.
Airway hyperreactivity (AHR), eosinophilic inflammation with a Th2-type cytokine profile, and specific Th2-mediated IgE production characterize allergic asthma. In this paper, we show that OVA-immunized Jalpha18(-/-) mice, which are exclusively deficient in the invariant Valpha14(+) (iValpha14), CD1d-restricted NKT cells, exhibit impaired AHR and airway eosinophilia, decreased IL-4 and IL-5 production in bronchoalveolar lavage fluid, and reduced OVA-specific IgE compared with wild-type (WT) littermates. Adoptive transfer of WT iValpha14 NKT cells fully reconstitutes the capacity of Jalpha18(-/-) mice to develop allergic asthma. Also, specific tetramer staining shows that OVA-immunized WT mice have activated (CD69(+)) iValpha14 NKT cells. Importantly, anti-CD1d mAb treatment blocked the ability of iValpha14 T cells to amplify eosinophil recruitment to airways, and both Th2 cytokine and IgE production following OVA challenge. In conclusion, these findings clearly demonstrate that iValpha14 NKT cells are required to participate in allergen-induced Th2 airway inflammation through a CD1d-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号