首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
B Labrosse  O Pleskoff  N Sol  C Jones  Y Hnin    M Alizon 《Journal of virology》1997,71(11):8230-8236
A triterpene derived from betulinic acid (RPR103611) blocks human immunodeficiency virus type 1 (HIV-1) infection and fusion of CD4+ cells with cells expressing HIV-1 envelope proteins (gp120 and gp41), suggesting an effect on virus entry. This compound did not block infection by a subtype D HIV-1 strain (NDK) or cell-cell fusion mediated by the NDK envelope proteins. The genetic basis of drug resistance was therefore addressed by testing envelope chimeras derived from NDK and a drug-sensitive HIV-1 strain (LAI, subtype B). A drug-resistant phenotype was observed for all chimeras bearing the ectodomain of NDK gp41, while the origins of gp120 and of the membrane anchor and cytoplasmic domains of gp41 had no apparent role. The envelope gene of a LAI variant, fully resistant to the antiviral effect of RPR103611, was cloned and sequenced. Its product differed from the parental sequence at two positions in gp41, with changes of arginine 22 to alanine (R22A) and isoleucine 84 to serine (I84S), the gp120 being identical. In the context of LAI gp41, the I84S substitution was sufficient for drug resistance. Therefore, in two different systems, differences in gp41 were associated with sensitivity or resistance to RPR103611. Modifications of gp41 can affect the quaternary structure of gp120 and gp41 and the accessibility of gp120 to antiviral agents such as neutralizing antibodies. However, a direct effect of RPR103611 on a gp41 target must also be envisioned, in agreement with the blocking of apparently late steps of HIV-1 entry. This compound could be a valuable tool for structure-function studies of gp41.  相似文献   

3.
A chimeric virus library was designed whereby sequences corresponding to the V3 loop of human immunodeficiency virus type 1 (HIV-1) were presented on the surface of human rhinovirus 14. The V3 loop sequences consisted of a relatively conserved segment of seven amino acids and five adjacent residues that were allowed to vary in proportion to their seroprevalence among HIV-1 isolates of North America and Europe. A technique called random systematic mutagenesis was used to incorporate the composite V3 loop sequences flanked by zero to two randomized amino acids. This library could contain 2.7 x 10(8) members having diverse sequences and conformations. Immunoselection of a portion of this library by using two neutralizing V3 loop-directed monoclonal antibodies followed by selection for desirable growth and purification characteristics yielded a set of chimeric rhinoviruses, five of which are described. The inserted sequences in the five chimeras do not match those of any known isolate of HIV-1. Nonetheless, all five chimeras were neutralized by antibodies directed against different strains of HIV-1 and were able to elicit the production of antibodies that bind V3 loop peptides from diverse HIV-1 isolates. Moreover, antisera derived from four of the five chimeras were capable of neutralizing one or more strains of HIV-1 in cell culture. This study demonstrates that random systematic mutagenesis in conjunction with antibody screening is a powerful and efficient means to obtain antigenic chimeras with relevant immunogenic properties.  相似文献   

4.
Previous studies showed that the distribution of antigenic site specificity of neutralizing antibodies to type 3 poliovirus obtained with the inactivated poliovirus vaccine can be deficient as compared with that obtained following poliovirus infection. This observation was shown by the relatively low capacity of sera from inactivated-poliovirus-vaccine-immunized persons to neutralize poliovirus cleaved at antigenic site 1. We investigated possibilities for improving the situation in a mouse model. Balb/c mice were immunized with intact or trypsin-cleaved type 3 poliovirus (Saukett strain). Sera from mice immunized with the intact virus readily neutralized the intact virus but neutralized the cleaved virus only rarely. In contrast, cleaved-virus-immunized mice produced antibodies that were able to neutralize the cleaved virus as well as the intact one. Mice immunized with a 100-fold-higher dose of the intact virus produced significant levels of antibodies to the cleaved virus, too. Somewhat surprisingly, mice immunized with high doses of the cleaved virus produced antibodies specific for the intact loop between beta sheets B and C of VP1 (virion protein 1), which should be cleaved in the immunogen. This was shown by a higher titer of antibodies to intact Saukett virus than to the corresponding cleaved virus, as well as to a type 1/type 3 hybrid poliovirus in which only the BC loop amino acids were derived from type 3 poliovirus. The cleavage-induced enhanced availability of antigenic determinants residing outside the BC loop was also shown by increased neutralization titers of monoclonal antibodies specific for some of these other determinants. These results indicate that by using a trypsin-cleaved type 3 poliovirus as a parenteral immunogen, it is possible to change the distribution of antigenic site specificities of neutralizing antibodies to resemble that following poliovirus infection.  相似文献   

5.
In order to elucidate the antigenic structure of poliovirus, the reactivity of antibody produced with H antigenic particles of Mahoney strain (polio type 1) was investigated. Injection of H particles of Mahoney strain into rabbits yielded neutralizing antibody as well as CF-N and CF-H antibodies. This result coincided with the report by Hinuma and coworkers. Neutralization tests with inhibitor resistant Mahoney mutants revealed that the neutralizing antibody produced with H particles was of HN31 type, one of the five different kinds of polio neutralizing antibodies reported previously (14). Absorption experiments with H particles on different neutralizing antibodies and analysis of antibody eluted by acid dissociation from antiserum-treated H particles also showed that the HN31 type antibody specifically combined with H particles of Mahoney strain. Since the H particle of poliovirus is known to be deficient in VP4, these results seems to indicate that the HN31 type antibody reacts with a structural part(s) of poliovirus other than VP4.  相似文献   

6.
Immunity to poliomyelitis is largely dependent on humoral neutralizing antibodies, both after natural (wild virus or vaccine) infection and after inactivated poliovirus vaccine inoculation. Although the production of local secretory immunoglobulin A (IgA) antibody in the gut mucosa may play a major role in protection, most of information about the antigenic determinants involved in neutralization of polioviruses derives from studies conducted with humoral monoclonal antibodies (MAbs) generated from parenterally immunized mice. To investigate the specificity of the mucosal immune response to the virus, we have produced a library of IgA MAbs directed at Sabin type 1 poliovirus by oral immunization of mice with live virus in combination with cholera toxin. The epitopes recognized by 13 neutralizing MAbs were characterized by generating neutralization-escape virus mutants. Cross-neutralization analysis of viral mutants with MAbs allowed these epitopes to be divided into four groups of reactivity. To determine the epitope specificity of MAbs, virus variants were sequenced and the mutations responsible for resistance to the antibodies were located. Eight neutralizing MAbs were found to be directed at neutralization site N-AgIII in capsid protein VP3; four more MAbs recognized site N-AgII in VP1 or VP2. One IgA MAb selected a virus variant which presented a unique mutation at amino acid 138 in VP2, not previously described. This site appears to be partially related with site N-AgII and is located in a loop region facing the VP2 N-Ag-II loop around residue 164. Only 2 of 13 MAbs proved able to neutralize the wild-type Mahoney strain of poliovirus. The IgA antibodies studied were found to be produced in the dimeric form needed for recognition by the polyimmunoglobulin receptor mediating secretory antibody transport at the mucosal level.  相似文献   

7.
Cross-reactive epitopes (CREs) are similar epitopes on viruses that are recognized or neutralized by same antibodies. The S protein of SARS-CoV-2, similar to type I fusion proteins of viruses such as HIV-1 envelope (Env) and influenza hemagglutinin, is heavily glycosylated. Viral Env glycans, though host derived, are distinctly processed and thereby recognized or accommodated during antibody responses. In recent years, highly potent and/or broadly neutralizing human monoclonal antibodies (bnAbs) that are generated in chronic HIV-1 infections have been defined. These bnAbs exhibit atypical features such as extensive somatic hypermutations, long complementary determining region (CDR) lengths, tyrosine sulfation and presence of insertions/deletions, enabling them to effectively neutralize diverse HIV-1 viruses despite extensive variations within the core epitopes they recognize. As some of the HIV-1 bnAbs have evolved to recognize the dense viral glycans and cross-reactive epitopes (CREs), we assessed if these bnAbs cross-react with SARS-CoV-2. Several HIV-1 bnAbs showed cross-reactivity with SARS-CoV-2 while one HIV-1 CD4 binding site bnAb, N6, neutralized SARS-CoV-2. Furthermore, neutralizing plasma antibodies of chronically HIV-1 infected children showed cross neutralizing activity against SARS-CoV-2 pseudoviruses. Collectively, our observations suggest that human monoclonal antibodies tolerating extensive epitope variability can be leveraged to neutralize pathogens with related antigenic profile.  相似文献   

8.
Vaccines prepared from the envelope glycoprotein, gp120, of the common laboratory isolate of human immunodeficiency virus type 1 (HIV-1) (IIIB/LAV-1) elicit antibodies that neutralize the homologous virus but show little if any cross-neutralizing activity. This may be because the principal neutralizing determinant (PND) of gp120 is highly unusual in the IIIB/LAV-1 strain and is not representative of those found in the majority of field isolates. We have now examined the immunogenicity of recombinant gp120 prepared from the MN strain of HIV-1 (MN-rgp120), whose PND is thought to be representative of approximately 60% of the isolates in North America. Our results show that MN-rgp120 is a potent immunogen and elicits anti-gp120 titers comparable to those found in HIV-1-infected individuals. While both MN-rgp120 and IIIB-rgp120 induced antibodies able to block gp120 binding to CD4, strain-specific and type-common blocking antibodies were detected. Finally, antibodies to MN-rgp120 but not to IIIB-rgp120 were effective in neutralizing a broad range of laboratory and clinical isolates of HIV-1. These studies demonstrate that susceptibility or resistance to neutralization by antibodies to gp120 correlates with the PND sequence and suggest that the problem of antigenic variation may not be insurmountable in the development of an effective AIDS vaccine.  相似文献   

9.
Identifying the targets of broadly neutralizing antibodies to HIV-1 and understanding how these antibodies develop remain important goals in the quest to rationally develop an HIV-1 vaccine. We previously identified a participant in the CAPRISA Acute Infection Cohort (CAP257) whose plasma neutralized 84% of heterologous viruses. In this study we showed that breadth in CAP257 was largely due to the sequential, transient appearance of three distinct broadly neutralizing antibody specificities spanning the first 4.5 years of infection. The first specificity targeted an epitope in the V2 region of gp120 that was also recognized by strain-specific antibodies 7 weeks earlier. Specificity for the autologous virus was determined largely by a rare N167 antigenic variant of V2, with viral escape to the more common D167 immunotype coinciding with the development of the first wave of broadly neutralizing antibodies. Escape from these broadly neutralizing V2 antibodies through deletion of the glycan at N160 was associated with exposure of an epitope in the CD4 binding site that became the target for a second wave of broadly neutralizing antibodies. Neutralization by these CD4 binding site antibodies was almost entirely dependent on the glycan at position N276. Early viral escape mutations in the CD4 binding site drove an increase in wave two neutralization breadth, as this second wave of heterologous neutralization matured to recognize multiple immunotypes within this site. The third wave targeted a quaternary epitope that did not overlap any of the four known sites of vulnerability on the HIV-1 envelope and remains undefined. Altogether this study showed that the human immune system is capable of generating multiple broadly neutralizing antibodies in response to a constantly evolving viral population that exposes new targets as a consequence of escape from earlier neutralizing antibodies.  相似文献   

10.
Forty-six monoclonal antibodies (MAbs) able to bind to the native, monomeric gp120 glycoprotein of the human immunodeficiency virus type 1 (HIV-1) LAI (HXBc2) strain were used to generate a competition matrix. The data suggest the existence of two faces of the gp120 glycoprotein. The binding sites for the viral receptor, CD4, and neutralizing MAbs appear to cluster on one face, which is presumably exposed on the assembled, oligomeric envelope glycoprotein complex. A second gp120 face, which is presumably inaccessible on the envelope glycoprotein complex, contains a number of epitopes for nonneutralizing antibodies. This analysis should be useful for understanding both the interaction of antibodies with the HIV-1 gp120 glycoprotein and neutralization of HIV-1.  相似文献   

11.
The persistence of human immunodeficiency virus type 1 (HIV-1) infection in the presence of robust host immunity has been associated in part with variation in viral envelope proteins leading to antigenic variation and escape from neutralizing antibodies. Previous studies of natural neutralization escape mutants have predominantly focused on gp120 and gp41 ectodomain sequence variations that alter antibody binding via changes in conformation or glycosylation pattern of the Env, likely due to the immune pressure exerted on the exposed ectodomain component of the glycoprotein. Here, we show for the first time a novel mechanism by which point mutations in the intracytoplasmic tail of the transmembrane component (gp41) of envelope can render the virus resistant to neutralization by monoclonal antibodies and broadly neutralizing polyclonal serum antibodies. Point mutations in a highly conserved structural motif within the intracytoplasmic tail resulted in decreased binding of neutralizing antibodies to the Env ectodomain, evidently due to allosteric changes both in the gp41 ectodomain and in gp120. While receptor binding and infectivity of the mutant virus remained unaltered, the changes in Env antigenicity were associated with an increase in neutralization resistance of the mutant virus. These studies demonstrate the structurally integrated nature of gp120 and gp41 and underscore a previously unrecognized potentially critical role for even minor sequence variation of the intracytoplasmic tail in modulating the antigenicity of the ectodomain of HIV-1 envelope glycoprotein complex.  相似文献   

12.
The binding properties of seven CD4-blocking monoclonal antibodies raised against recombinant gp120 of human immunodeficiency virus type 1 strain MN (HIV-1MN) and two CD4-blocking monoclonal antibodies to recombinant envelope glycoproteins gp120 and gp160 of substrain IIIB of HIVLAI were analyzed. With a panel of recombinant gp120s from seven diverse HIV-1 isolates, eight of the nine antibodies were found to be strain specific and one was broadly cross-reactive. Epitope mapping revealed that all nine antibodies bound to epitopes located in the fourth conserved domain (C4) of gp120. Within this region, three distinct epitopes could be identified: two were polymorphic between HIV-1 strains, and one was highly conserved. Studies with synthetic peptides demonstrated that the conserved epitope, recognized by antibody 13H8, was located between residues 431 and 439. Site-directed mutagenesis of gp120 demonstrated that residue 429 and/or 432 was critical for the binding of the seven antibodies to gp120 from HIV-1MN. Similarly, residues 423 and 429 were essential for the binding of monoclonal antibody 5C2 raised against gp120 from HIV-1IIIB. The amino acids located at positions 423 and 429 were found to vary between strains of HIV-1 as well as between molecular clones derived from the MN and LAI isolates of HIV-1. Polymorphism at these positions prevented the binding of virus-neutralizing monoclonal antibodies and raised the possibility that HIV-1 neutralization serotypes may be defined on the basis of C4 domain sequences. Analysis of the binding characteristics of the CD4-blocking antibodies demonstrated that their virus-neutralizing activity was directly proportional to their gp120-binding affinity. These studies account for the strain specificity of antibodies to the C4 domain of gp120 and demonstrate for the first time that antibodies to this region can be as effective as those directed to the principal neutralizing determinant (V3 domain) in neutralizing HIV-1 infectivity.  相似文献   

13.
Plasma samples from individuals infected with human immunodeficiency virus type 1 (HIV-1) are known to be highly strain specific in their ability to neutralize HIV-1 infectivity. Such plasma samples exhibit significant neutralizing activity against autologous HIV-1 isolates but typically exhibit little or no activity against heterologous strains, although some cross-neutralizing activity can develop late in infection. Monkeys infected with the simian-human immunodeficiency virus (SHIV) clone DH12 generated antibodies that neutralized SHIV DH12, but not SHIV KB9. Conversely, antibodies from monkeys infected with the SHIV clone KB9 neutralized SHIV KB9, but not SHIV DH12. To investigate the role of the variable loops of the HIV-1 envelope glycoprotein gp120 in determining this strain specificity, variable loops 1 and 2 (V1/V2), V3, or V4 were exchanged individually or in combination between SHIV DH12 and SHIV KB9. Despite the fact that both parental viruses exhibited significant infectivity and good replication in the cell lines examined, 3 of the 10 variable-loop chimeras exhibited such poor infectivity that they could not be used further for neutralization assays. These results indicate that a variable loop that is functional in the context of one particular envelope background will not necessarily function within another. The remaining seven replication-competent chimeras allowed unambiguous assignment of the sequences principally responsible for the strain specificity of the neutralizing activity present in SHIV-positive plasma. Exchange of the V1/V2 loop sequences conferred a dominant loss of sensitivity to neutralization by autologous plasma and a gain of sensitivity to neutralization by heterologous plasma. Substitution of V3 or V4 had little or no effect on the sensitivity to neutralization. These data demonstrate that the V1/V2 region of HIV-1 gp120 is principally responsible for the strain specificity of the neutralizing antibody response in monkeys infected with these prototypic SHIVs.  相似文献   

14.
Deciphering antibody specificities that constrain human immunodeficiency virus type 1 (HIV-1) envelope (Env) diversity, limit virus replication, and contribute to neutralization breadth and potency is an important goal of current HIV/AIDS vaccine research. Transplantation of discrete HIV-1 neutralizing epitopes into HIV-2 scaffolds may provide a sensitive, biologically functional context by which to quantify specific antibody reactivities even in complex sera. Here, we describe a novel HIV-2 proviral scaffold (pHIV-2KR.X7) into which we substituted the complete variable region 3 (V3) of the env gene of HIV-1YU2 or HIV-1Ccon to yield the chimeric proviruses pHIV-2KR.X7 YU2 V3 and pHIV-2KR.X7 Ccon V3. These HIV-2/HIV-1 chimeras were replication competent and sensitive to selective pharmacological inhibitors of virus entry. V3 chimeric viruses were resistant to neutralization by HIV-1 monoclonal antibodies directed against the CD4 binding site, coreceptor binding site, and gp41 membrane proximal external region but exhibited striking sensitivity to HIV-1 V3-specific monoclonal antibodies, 447-52D and F425 B4e8 (50% inhibitory concentration of [IC50] <0.005 μg/ml for each). Plasma specimens from 11 HIV-1 clade B- and 10 HIV-1 clade C-infected subjects showed no neutralizing activity against HIV-2 but exhibited high-titer V3-specific neutralization against both HIV-2/HIV-1 V3 chimeras with IC50 measurements ranging from 1:50 to greater than 1:40,000. Neutralization titers of B clade plasmas were as much as 1,000-fold lower when tested against the primary HIV-1YU2 virus than with the HIV-2KR.X7 YU2 V3 chimera, demonstrating highly effective shielding of V3 epitopes in the native Env trimer. This finding was replicated using a second primary HIV-1 strain (HIV-1BORI) and the corresponding HIV-2KR.X7 BORI V3 chimera. We conclude that V3 is highly immunogenic in vivo, eliciting antibodies with substantial breadth of reactivity and neutralizing potential. These antibodies constrain HIV-1 Env to a structure(s) in which V3 epitopes are concealed prior to CD4 engagement but do not otherwise contribute to neutralization breadth and potency against most primary virus strains. Triggering of the viral spike to reveal V3 epitopes may be required if V3 immunogens are to be components of an effective HIV-1 vaccine.  相似文献   

15.
Twelve monoclonal antibodies neutralizing the CVS strain of rabies virus were used to characterize antigenic site II of the viral glycoprotein. Nineteen antigenic mutants resistant to neutralization by some of these antibodies were selected; some continued to normally or partially bind the antibody, whereas others did not. Mutations conferring resistance to neutralization by site II-specific monoclonal antibodies were localized into two clusters, the first between amino acids 34 and 42 (seven groups of mutants) and the second at amino acids 198 and 200 (three groups of mutants). Two intermediate mutations were identified at positions 147 and 184. Four mutations resulted in reduced pathogenicity after intramuscular inoculation of the virus in adult mice. One of the mutants, M23, was 300 times and the others were 10 to 30 times less pathogenic than CVS. In three cases the attenuated phenotype was related to an important modification of antigenic site II, whereas the other known antigenic sites were unchanged.  相似文献   

16.
Antigenic variants resistant to eight neutralizing monoclonal antibodies were selected from wild (Mahoney) and attenuated (Sabin) type 1 infectious poliovirions. Cross-immunoprecipitation revealed interrelationships between epitopes which were not detected by cross-neutralization. Operational analysis of antigenic variants showed that seven of eight neutralization epitopes studied were interrelated. Only one neutralization epitope, named Kc, varied independently from all the others. This latter, recognized by C3 neutralizing monoclonal antibody, was present not only on infectious virions but also on heat-denatured (C-antigenic) particles and on isolated capsid protein VP1. Loss of the neutralization function of an epitope did not necessary result from the loss of its antibody-binding capacity. Such potential, but not functional, neutralization epitopes exist naturally on Mahoney and Sabin 1 viruses. Their antibody-binding property could be disrupted by isolating antigenic variants in the presence of the nonneutralizing monoclonal antibody and anti-mouse immunoglobulin antibodies. Single-point mutations responsible for the acquisition of resistance to neutralization in the antigenic variants were located by sequence analyses of their genomes. Mutants selected in the presence of C3 neutralizing monoclonal antibody always had the mutation located inside the antibody-binding site (residues 93 through 103 of VP1) at the amino acid position 100 of VP1. On the contrary, antigenic variants selected in the presence of neutralizing monoclonal antibodies reacting only with D-antigenic particles had mutations situated in VP3, outside the antibody-binding site (residues 93 through 103 of VP1). The complete conversion of the Mahoney to the Sabin 1 epitope map resulted from a threonine-to-lysine substitution at position 60 of VP3.  相似文献   

17.
Poliovirus type 2 (PV-2) Lansing strain produces a fatal paralytic disease in mice after intracerebral injection, whereas poliovirus type 1 (PV-1) Mahoney strain causes disease only in primates. Atomic models derived from the three-dimensional crystal structure of the PV-1 Mahoney strain have been used to locate three antigenic sites on the surface of the virion. We report here the construction of type 1-type 2 chimaeric polioviruses in which antigenic site 1 from the PV-1 Mahoney strain was substituted by that of the PV-2 Lansing strain by nucleotide cassette exchange in a cloned PV-1 cDNA molecule. These chimaeras proved to have mosaic capsids with composite type 1 and type 2 antigenicity, and induced a neutralizing response against both PV-1 and PV-2 when injected into rabbits. Moreover, a six-amino-acid change in PV-1 antigenic site 1 was shown to be responsible for a remarkable host-range mutation in so far as one of the two type 1-type 2 chimaera was highly neurovirulent for mice.  相似文献   

18.
M J Crabbe  D J Evans  J W Almond 《FEBS letters》1990,271(1-2):194-198
We have used laboratory-based molecular modelling to identify structural features of antigen chimaeras of poliovirus expressing epitopes from human immunodeficiency virus (HIV-1) that may affect virus viability. Chimaeras were constructed by replacement of antigenic site 1 of VP1 by sequences corresponding to epitopes from HIV-1. Loop volume, estimated by approximating the loop to an ellipsoid was significantly (P less than 0.001) lower in viable (2062.1 A3 +/- 400.2) than in non-viable (3617 A3 +/- 650.7) constructs. Our results suggest that viable virus will only be formed when antigen chimeras modified at antigenic site of VP1 have a loop occupying a similar volume in space to that occupied by the antigenic site 1 loop. In addition, the modified loop must fit with the peptide bond angles and distances at the top of the beta-barrel of VP1.  相似文献   

19.
The human immunodeficiency virus type 1 (HIV-1) is an enveloped virus with a lipid bilayer that contains several glycoproteins that are anchored in, or closely associated with, the membrane surface. The envelope proteins have complex interactions with the lipids both on the host cells and on the target cells. The processes of budding from host cells and entry into target cells occur at sites on the plasma membrane, known as lipid rafts, that represent specialized regions that are rich in cholesterol and sphingolipids. Although the envelope glycoproteins are antigenic molecules that potentially might be used for development of broadly neutralizing antibodies in a vaccine to HIV-1, the development of such antibodies that have broad specificities against primary field isolates of virus has been largely thwarted to date by the ability of the envelope proteins to evade the immune system through various mechanisms. In this review, the interactions of HIV-1 with membrane lipids are summarized. Liposomes are commonly used as models for understanding interactions of proteins with membrane lipids; and liposomes have also been used both as carriers for vaccines, and as antigens for induction of antibodies to liposomal lipids. The possibility is proposed that liposomal lipids, or liposome-protein combinations, could be useful as antigens for inducing broadly neutralizing antibodies to HIV-1.  相似文献   

20.
The human immunodeficiency virus type 1 (HIV-1) is an enveloped virus with a lipid bilayer that contains several glycoproteins that are anchored in, or closely associated with, the membrane surface. The envelope proteins have complex interactions with the lipids both on the host cells and on the target cells. The processes of budding from host cells and entry into target cells occur at sites on the plasma membrane, known as lipid rafts, that represent specialized regions that are rich in cholesterol and sphingolipids. Although the envelope glycoproteins are antigenic molecules that potentially might be used for development of broadly neutralizing antibodies in a vaccine to HIV-1, the development of such antibodies that have broad specificities against primary field isolates of virus has been largely thwarted to date by the ability of the envelope proteins to evade the immune system through various mechanisms. In this review, the interactions of HIV-1 with membrane lipids are summarized. Liposomes are commonly used as models for understanding interactions of proteins with membrane lipids; and liposomes have also been used both as carriers for vaccines, and as antigens for induction of antibodies to liposomal lipids. The possibility is proposed that liposomal lipids, or liposome-protein combinations, could be useful as antigens for inducing broadly neutralizing antibodies to HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号