首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The taxonomy of the amphi‐Atlantic tree genus Carapa (Meliaceae) has long been controversial. Of the three species currently recognized in the genus, two are known to present substantial morphological variation that has been used in the past to distinguish several taxa, most of which are currently placed in synonymy. Here, a combination of field observations, univariate analyses of leaf, floral and seed characters and principal coordinate analyses of floral characters in the context of a molecular phylogenetic analysis was used to investigate the patterns of variation and delimit morphological species anew in the genus. These results support the recognition of 27 species in Carapa, of which 16 are previously described and 11 are new. In general, phylogenetically related species occurred in the same geographical area, but were morphologically distinct. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 165 , 186–221.  相似文献   

2.
3.
Parthenocissus (the Virginia creeper genus, Vitaceae) consists of 13 species and shows a disjunct distribution between Asia and North America. We investigated the inflorescence structure, calyx morphology, appendages on the inner side of petals, leaf epidermis, pollen and seed characters throughout the genus. A combined phylogenetic analysis with 27 morphological and 4137 molecular characters was conducted and the result was largely congruent with that of the previous molecular work, but with higher resolution. The combined analysis identified two clades corresponding to the Asian and North American taxa. Parthenocissus feddei was resolved as closely related to the clade containing P. cuspidifera, P. heterophylla and P. semicordata. The four species share synapomorphies of having conspicuously raised veinlets, an obscurely five‐ (to eight‐) lobed calyx, appendages on the inner side of petals covering the entire length of anthers and foveolate pollen exine ornamentation. Within the Old World clade, the pentafoliolate species were weakly supported as more closely related to species with both simple and trifoliolate leaves. Furthermore, the ancestral states of tendril apices, inflorescence structure, appendages on the inner side of petals and exine ornamentation of pollen grains were reconstructed on the molecular strict consensus tree. The appendages on the inner side of petals and exine ornamentation of pollen grains were suggested to be important characters in the taxonomy of Parthenocissus, especially for species with trifoliolate leaves. Finally, the previous classifications of Parthenocissus were evaluated within the phylogenetic framework. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, ?? , ??–??.  相似文献   

4.
Blue‐tailed skinks (genus Plestiodon) are a common component of the terrestrial herpetofauna throughout their range in eastern Eurasia and North and Middle America. Plestiodon species are also frequent subjects of ecological and evolutionary research, yet a comprehensive, well‐supported phylogenetic framework does not yet exist for this genus. We construct a comprehensive molecular phylogeny of Plestiodon using Bayesian phylogenetic analyses of a nine‐locus data set comprising 8308 base pairs of DNA, sampled from 38 of the 43 species in the genus. We evaluate potential gene tree/species tree discordance by conducting phylogenetic analyses of the concatenated and individual locus data sets, as well as employing coalescent‐based methods. Specifically, we address the placement of Plestiodon within the evolutionary tree of Scincidae, as well as the phylogenetic relationships between Plestiodon species, and their taxonomy. Given our sampling of major Scincidae lineages, we also re‐evaluate ‘deep’ relationships within the family, with the goal of resolving relationships that have been ambiguous in recent molecular phylogenetic analyses. We infer strong support for several scincid relationships, including a major clade of ‘scincines’ and the inter‐relationships of major Mediterranean and southern African genera. Although we could not estimate the precise phylogenetic affinities of Plestiodon with statistically significant support, we nonetheless infer significant support for its inclusion in a large ‘scincine’ clade exclusive of Acontinae, Lygosominae, Brachymeles, and Ophiomorus. Plestiodon comprises three major geographically cohesive clades. One of these clades is composed of mostly large‐bodied species inhabiting northern Indochina, south‐eastern China (including Taiwan), and the southern Ryukyu Islands of Japan. The second clade comprises species inhabiting central China (including Taiwan) and the entire Japanese archipelago. The third clade exclusively inhabits North and Middle America and the island of Bermuda. A vast majority of interspecific relationships are strongly supported in the concatenated data analysis, but there is nonetheless significant conflict amongst the individual gene trees. Coalescent‐based gene tree/species tree analyses indicate that incongruence amongst the nuclear loci may severely obscure the phylogenetic inter‐relationships of the primarily small‐bodied Plestiodon species that inhabit the central Mexican highlands. These same analyses do support the sister relationship between Plestiodon marginatus Hallowell, 1861 and Plestiodon stimpsonii (Thompson, 1912), and differ with the mitochondrial DNA analysis that supports Plestiodon elegans (Boulenger, 1887) + P. stimpsonii. Finally, because the existing Plestiodon taxonomy is a poor representation of evolutionary relationships, we replace the existing supraspecific taxonomy with one congruent with our phylogenetic results. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 163–189.  相似文献   

5.
In this study, we evaluated the genetic diversity of the Petunia integrifolia species group using a phylogeographical approach, and attempted to understand better its diversification and taxonomy. Plants from five morphological groups were collected, covering a large part of the geographical distribution of most of the species. Two major clades were found in the phylogenetic tree, and an additional lineage, corresponding to P. inflata, was found in the haplotype network obtained for plastid markers. All three lineages are clearly delimited geographically, but, with the exception of P. inflata, the morphological groups were not genetically distinct. Our results suggest that a population expansion after a size reduction resulted in the establishment of two distinct and allopatric groups c. 0.5 Mya, one group occurring in a geologically ancient area, and the other occurring in areas that were under the influence of a series of marine transgressions/regressions at the end of the Pleistocene. These two clades are evolutionarily significant units with significantly different allele frequencies in their nuclear genome and reciprocal monophyly in maternal, uniparentally inherited markers. All our results suggest that the morphology‐based taxonomy in this group does not reflect its evolutionary history, and revision of its species limits should incorporate the distribution of the genetic diversity. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 199–213.  相似文献   

6.
Plant clades may exhibit little or wide morphological variation as a result of (1) the retention of ancestral characteristics or phylogenetic signal, (2) character displacement, or (3) random phenotypic drift or convergence. Understanding the taxonomy and systematics of many plant lineages has been challenging due to continuous intra‐ and interspecific morphological variation. To assess which evolutionary hypothesis could explain the morphological diversity in the genus Geonoma (Arecaceae), we performed a Mantel test between phylogenetic and morphological distances of 54 taxa, and tested for phylogenetic signal using Blomberg's K‐statistic on continuous variables, and a randomization of character states. To obtain a phylogenetic (patristic) distance matrix for Geonoma, we constructed a molecular phylogeny of tribe Geonomateae using three nuclear DNA regions. A positive relationship between the patristic and a 26‐discrete‐character distance matrix (R2 = 0.55, P < 0.001) supported the phylogenetic signal hypothesis. The randomization test showed that signal was present in 16 characters. No relationship was evident using a 17‐quantitative‐variable distance matrix (R2 = 0.07, P = 0.13), supporting the random drift hypothesis or convergence, and all 17 K‐values were close to 0, suggesting less phylogenetic signal than under the Brownian model. If most morphological variables traditionally used to classify Geonoma evolved randomly or convergently, it might explain Geonoma's challenging taxonomy. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 528–539.  相似文献   

7.
Modern coral taxonomy has begun to resolve many long‐standing problems in traditional systematics stemming from its reliance on skeletal macromorphology. By integrating examinations of colony, corallite, and subcorallite morphology with the molecular sequence data that have proliferated in the last decade, many taxa spread across the scleractinian tree of life have been incorporated into a rigorous classification underpinned by greater phylogenetic understanding. This monograph focuses on one of the most challenging clades recovered to date – its disarray epitomized by the informal name ‘Bigmessidae’. This group of predominantly Indo‐Pacific species previously comprised families Merulinidae, Faviidae, Pectiniidae, and Trachyphylliidae, but in a recent study these have been incorporated within Merulinidae. We studied 84 living merulinid species by examining morphological traits at three different scales of coral skeletal structure ? macromorphology, micromorphology, and microstructure ? to construct a morphological matrix comprising 44 characters. Data were analysed via maximum parsimony and also transformed onto a robust molecular phylogeny under the parsimony and maximum likelihood criteria. Comparisons amongst morphological character types suggest that although many characters at every scale are homoplastic, some to a greater extent than others, several can aid in distinguishing genus‐level clades. Our resulting trees and character analyses form the basis of a revised classification that spans a total of 139 species contained within 24 genera. The tree topologies necessitate the synonymization of Barabattoia as Dipsastraea, and Phymastrea as Favites. Furthermore, Astrea and Coelastrea are resurrected, and one new genus, P aramontastraea Huang & Budd gen. nov. , is described. All the genera in Merulinidae, along with the monotypic Montastraeidae and Diploastraeidae, are diagnosed based on the characters examined. The integrative classification system proposed here will form the framework for more accurate biodiversity estimates and guide the taxonomic placement of extinct species. © 2014 The Linnean Society of London  相似文献   

8.
With c. 85 species, the genus Micranthes is among the larger genera of the Saxifragaceae. It is only distantly related to the morphologically similar genus Saxifraga, in which it has frequently been included as Saxifraga section Micranthes. To study the molecular evolution of Micranthes, we analysed nuclear ribosomal (internal transcribed spacer, ITS) and plastid (trnLtrnF) DNA sequences in a comprehensive set of taxa comprising c. 75% of the species. The molecular phylogenetic tree from the combined dataset revealed eight well‐supported clades of Micranthes. These clades agree in part with previously acknowledged subsections or series of Saxifraga section Micranthes. As these eight groups can also be delineated morphologically, we suggest that they should be recognized as sections of Micranthes. New relationships were also detected for some species and species groups, e.g. section Davuricae sister to sections Intermediae and Merkianae, and M. micranthidifolia as a member of section Micranthes. Species proposed to be excluded from the genus Micranthes for morphological reasons were resolved in the molecular tree in Saxifraga. Many morphological characters surveyed were homoplasious to varying extents. Micromorphological characters support comparatively well the clades in the phylogenetic tree. An updated nomenclature and a taxonomic conspectus of sections and species of Micranthes are provided. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 47–66.  相似文献   

9.
We studied the taxonomy, distribution, and ecology of species within Praomys, a common rodent genus present in rainforests and montane forests in sub‐Saharan Africa. The taxonomy of the group is problematic, and for the sampled region of Kisangani (Democratic Republic of Congo) no prior genetic study has been published. We used a combination of molecular (cyt b sequencing) and craniometric techniques (canonical analyses of skull measurements) for the species identification of a total of 654 specimens. We confirm the presence of Praomys minor in the region, up to now only known from the type and paratype specimens. At least seven species are present in the Kisangani region, and two clades occur along both banks of the Congo River. The present‐day distribution of the genus seems to be influenced by large‐scale rainforest fragmentation related to drier periods in geological history. The Congo River could in this case constitute a modern barrier to gene flow when the climate enabled rainforest expansion. The tributaries of the Congo River play no role in limiting Praomys species distribution, apart from the Aruwimi River for Praomys jacksoni s.l. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 983–1002.  相似文献   

10.
Photosynthetic euglenids acquired chloroplasts by secondary endosymbiosis, which resulted in changes to their mode of nutrition and affected the evolution of their morphological characters. Mapping morphological characters onto a reliable molecular tree could elucidate major trends of those changes. We analyzed nucleotide sequence data from regions of three nuclear‐encoded genes (nSSU, nLSU, hsp90), one chloroplast‐encoded gene (cpSSU) and one nuclear‐encoded chloroplast gene (psbO) to estimate phylogenetic relationships among 59 photosynthetic euglenid species. Our results were consistent with previous works; most genera were monophyletic, except for the polyphyletic genus Euglena, and the paraphyletic genus Phacus. We also analyzed character evolution in photosynthetic euglenids using our phylogenetic tree and eight morphological traits commonly used for generic and species diagnoses, including: characters corresponding to well‐defined clades, apomorphies like presence of lorica and mucilaginous stalks, and homoplastic characters like rigid cells and presence of large paramylon grains. This research indicated that pyrenoids were lost twice during the evolution of phototrophic euglenids, and that mucocysts, which only occur in the genus Euglena, evolved independently at least twice. In contrast, the evolution of cell shape and chloroplast morphology was difficult to elucidate, and could not be unambiguously reconstructed in our analyses.  相似文献   

11.
12.
The bee genus Paratetrapedia represents a commonly collected group of bees and is especially diverse in forested areas of the Neotropics. Its taxonomy has remained poorly understood because of a lack of modern revisionary work and numerous species described as Tetrapedia whose type specimens have not been re‐examined in recent times. Here, a comprehensive study was carried out to review the taxonomy of the genus Paratetrapedia and to investigate cladistically the relationships amongst its species. Eighteen new species of Paratetrapedia are described, giving a total of 32 species in the genus. A phylogenetic analysis of the species of Paratetrapedia was carried out using 61 morphological characters for 41 terminal taxa. The phylogenetic results confirmed the monophyly of Paratetrapedia and allowed the recognition of five species groups: the lugubris, moesta, bicolor, lineata, and flavipennis groups. Nasutopedia gen. nov. , recognized as the sister group of Paratetrapedia and with its distribution restricted to the western forested portions of the Andean highlands, is proposed based on distinct morphology, its placement in the phylogenetic tree, and biogeographical patterns. Species of Paratetrapedia are especially diverse in the Amazon Forest; the eastern Brazilian Atlantic Forest contains four endemic species, and one species is endemic to the Cerrado of central Brazil. Paratetrapedia shows a biogeographical pattern similar to other Neotropical groups of bees and birds, with wide distribution and high diversity in lowland forests and whose sister taxon occurs on highlands of north‐western portions of the Andean cordillera. Identification keys for males and females of all species are provided, as well as distribution maps and illustrations of general external morphology and genitalia. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 351–442.  相似文献   

13.
A phylogenetic reconstruction of the Neotropical electric fish genus Hypopygus based on 47 parsimony‐informative morphological characters is presented. A series of synapomorphies support the hypothesis of monophyly of Hypopygus, and partially resolve species‐level relationships within the genus. Hypopygus species are recognized here as miniaturized fishes based on two criteria; first, a derived condition of diminutive body size, and; second, the presence of a suite of reductive morphological characters, including partial or total losses, simplifications, and reductions of the anal‐fin rays, scales, cranial bones, and laterosensory canal system. Reductive characters associated with miniaturization comprise 45% of the total number of characters in the phylogenetic reconstruction of the genus. Miniaturization and reductive morphological evolution in Hypopygus are discussed here in the phylogenetic context. A taxonomic revision of Hypopygus is presented, in which five new species are described, two species previously assigned to the genus are redescribed, and a single known species of Stegostenopos is redescribed and included in Hypopygus as a junior synonym. Distribution maps and a key for all eight valid species of Hypopygus are provided, based on the examination of 5014 catalogued museum specimens. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 1096–1156.  相似文献   

14.
This paper studies the phylogeny of the rove beetle subtribe Philonthina, to test its hypothetical monophyly and to unravel the evolutionary relationships of the subtribe and its included genus‐level taxa, with emphasis on the genus Pseudohesperus and its close‐allied relatives. The phylogenetic analyses are based on 105 adult morphological characters and 66 terminal taxa, i.e., all six members of Pseudohesperus, 51 species to represent 29 other genera of the subtribe Philonthina, seven species to represent the other six subtribes of Staphylinini, one species of the tribes Arrowinini, and one of the Platyprosopini. According to the phylogenetic results obtained, the genus Erichsonius should move out from the hitherto‐defined subtribe Philonthina and thus the monophyly of this taxon is challenged. The phylogenetic tree suggests that the genera Hesperus and Belonuchus might not be monophyletic, but the monophyly of Pseudohesperus and the sister relationship between it and Bisnius are well supported. The species‐level phylogenetic relationships of the genus Pseudohesperus reveal a clear pattern of species diversification that can be correlated well with the species' zoogeographical patterns. The paper also revises the taxonomy of Pseudohesperus and describes five new species from China: Pseudohesperus luteus Li & Zhou sp. nov. , Pseudohesperus pedatiformis Li & Zhou sp. nov. , Pseudohesperus tripartitus Li & Zhou sp. nov. , Pseudohesperus sparsipunctatus Li & Zhou sp. nov. , and Bisnius lubricus Li & Zhou sp. nov. An identification key to the species of Pseudohesperus is provided and their geographical distributions are mapped. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 679–722.  相似文献   

15.
Pontomyia Edwards, 1926 (Diptera: Chironomidae) is a genus of exclusively marine flightless midges. There are four described species from the Indo‐Pacific, and one undescribed species known only from females, pupal skins, and larvae from the Atlantic/Caribbean. They are poorly known owing to their small size (~1.0 mm), extremely short adult life (< 3 h), and unusual habitat for an insect (coastal lagoons, bays, or rock pools). We reviewed scattered literature on their biology and systematics, presented photomicrographs of the male hypogium, and updated the geographic distribution of each species. We carried out the first molecular study to elucidate relationships among and within three of the species. Results from our four‐gene phylogenetic reconstruction using combined gene tree and species tree approaches showed that Pontomyia natans, Pontomyia oceana, and Pontomyia pacifica are each well‐supported clades, with P. natans as sister to P. oceana + P. pacifica. Genetic distances based on mitochondrial cytochrome oxidase I are extraordinarily large within P. natans and P. pacifica, which suggests that they may be cryptic species complexes. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 443–456.  相似文献   

16.
Recent phylogenies of Procyonidae based on molecular data differ significantly from previous morphology‐based phylogenies in all generic sister taxon relationships. I have compiled the most comprehensive dataset of craniodental morphology that incorporates previous morphological characters, and with the aid of high‐resolution X‐ray computed tomography, new characters. This expanded craniodental analysis is based on 78 characters and yields new phylogenetic results regarding the ingroup relationships of Procyonidae. These results include Bassariscus astutus as the least derived member of Procyonidae and Ailurus fulgens nested well within the clade. Additionally, there are some similarities to previous morphological analyses of Procyonidae. Although the characters used to unite and diagnose Procyonidae vary depending on the phylogenetic analysis and have ambiguous taxonomic distribution amongst both Procyonidae and Musteloidea, there is significant morphological support for clades within Procyonidae. In addition to the strength of the morphological support within the clade, the disparate topographical regions of the skull from which the characters are derived may indicate that these synapomorphies are indeed the result of homology rather than adaptive convergence, as suggested by analyses based on molecular data. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 669–713.  相似文献   

17.
18.
In recent times, evolution has become a central tenet of taxonomy, but nomenclature has consistently been decoupled from the tree‐thinking process, often leading to significant issues in reconciling traditional (Linnaean) names with clades in the Tree of Life. Recent evolutionary studies on the Roucela clade, a group of endemic plants found in the Mediterranean Basin, motivated the establishment of phylogenetic concepts to formally anchor clade names on the Campanuloideae (Campanulaceae) tree. These concepts facilitate communication of clades that approximate traditionally defined groups, in addition to naming newly discovered cryptic diversity in a phylogenetic framework.  相似文献   

19.
We investigated the biogeographic history of antelope squirrels, genus Ammospermophilus, which are widely distributed across the deserts and other arid lands of western North America. We combined range‐wide sampling of all currently recognized species of Ammospermophilus with a multilocus data set to infer phylogenetic relationships. We then estimated divergence times within identified clades of Ammospermophilus using fossil‐calibrated and rate‐calibrated molecular clocks. Lastly, we explored generalized distributional changes of Ammospermophilus since the last glacial maximum using species distribution models, and assessed responses to Quaternary climate change by generating demographic parameter estimates for the three wide‐ranging clades of A. leucurus. From our phylogenetic estimates we inferred strong phylogeographic structure within Ammospermophilus and the presence of three well‐supported major clades. Initial patterns of historical divergence were coincident with dynamic alterations in the landscape of western North America, and the formation of regional deserts during the Late Miocene and Pliocene. Species distribution models and demographic parameter estimates revealed patterns of recent population expansion in response to glacial retreat. When combined with evidence from co‐distributed taxa, the historical biogeography of Ammospermophilus provides additional insight into the mechanisms that impacted diversification of arid‐adapted taxa across the arid lands of western North America. We propose species recognition of populations of the southern Baja California peninsula to best represent our current understanding of evolutionary relationships among genetic units of Ammospermophilus. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 949–967.  相似文献   

20.
We present a phylogenetic and taxonomic study of the morphology and biology of the terminal‐instar larval stage of 19 species representing all the genera of Torymidae parasitoids of gall wasps in Europe, with the single exception of Megastigmus. The genera studied include Adontomerus Nikol'skaya, Idiomacromerus Crawford, Chalcimerus Steffan & Andriescu, Glyphomerus Förster, Pseudotorymus Masi and Torymus Dalman. We primarily used chaetotaxy and some head structures. The terminal‐instar larvae of all studied species are thoroughly described for the first time and illustrated with SEM images. We provide diagnostic characters for the family and the genera studied, and keys to genera and species for the identification of torymid larvae associated with cynipid galls. The majority of the torymid larvae studied are solitary monophagous parasitoids. Finally, to assess the potential use of larval characters in systematic studies of the family, a phylogenetic analysis of the studied taxa based on 42 larval morphological characters is proposed and compared with the current taxonomy of Torymidae. Our results suggest that body chaetotaxy, and characters of the head and mouthparts could be used for genera and species discrimination. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 676–721.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号