首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 151 毫秒
1.
孙谷畴   《广西植物》1987,(3):239-243
亚热带季雨林林下阴生植物罗伞(Ardisia quinquegona)叶片的气体交换速率(PN.μmol.m~(-2),s~(-1))随光强(PFD,μmol,m~(-2),s~(-1))增高而增大。在光强低于80μmol,m~(-2),s~(-1),PN=29.21PFD×10~(-3)+0.36。在光强150μmol,m~(-2),s~(-1)对出现气体交换的光饱和现象。在低光强下,气孔传导率(G,m mol,m~(-2),s~(-1)与光强(m mol,m~(-2),s~(-1)的关系为G=265.6 PFD+4.6。在低光强下。开阔地的阳生灌木桃金娘(Rhodmyrtus tomentosa)的气体交换速率和气孔传导率与光强关系曲线的直线部分斜率皆较罗伞的低,在红光上,罗伞叶片气体交换速率(μmol,m~(-2),s~(-1)与光强(μmol,m~(-2),s~(-1)的关系为PN=32.4 PFD×10~(-3)-0.04。气孔传导率(m mol,m~(-2),s~(-1)与光强(m mol,m~(-2),s~(-1)的关系为G=339.08 PFD+7.37。同时气体交换速率的饱和红光光强亦较白光的高。在蓝光光强低时,气体交换速率(μmol,m~(-2),s~(-1))与光强(μmol,m~(-2),s~(-1))的关系为PN=13.54 PFD×10~(-3)—0.17,而气孔传导率(m mol,m~(-2),s~(-1))与光强(mμmol,m~(-2),s~(-1))的关系为G=80.5 PFD+4.35。在低的蓝光下,体交换速率和气孔传导率与光强关系曲线的直线部分斜率显著较在白光和红光下的低。罗伞叶片气体交换对红光的反应敏感。  相似文献   

2.
荔枝的光合特性   总被引:4,自引:1,他引:3  
在低光强(0至0.15m mol m~(-2)s~(-1))下,荔枝叶子的光合速率随光入射量子通量的增高而增大。在光强0.7m mol m~(-2)s~(-1)时光合速率为1.76μmol m~(-2)s~(-1)。光合作用的光补偿点约为0.02 m mol m~(-2)s~(-1)光量子。荔技叶子具有低的气孔对水分传导率。气孔对水分传导率和蒸腾速率在低光强时随入射量子通量增高而增大:而细胞间CO_2浓度随光强增高而下降。在光强高于0.2m mol m~(-2) s~(-1)光量子时,细胞间CO_2浓度变化较少。在低光强时,叶子的水分利用效率(光合/蒸腾)随光强增高而增大。在光强高于0.2m mol m~(-2) s~(-1)光量子时,水分利用效率明显降低。荔枝叶子的最适光合作用叶温为22-26℃。可能表明在华南夏季中午的高温限制荔枝的田间光合作用。外界CO_2浓度增高相应增高细胞间CO_2浓度。当细胞间CO_2浓度约低于230μ1.1~(-1)时,光合速率随细胞间CO_2浓度增高而增大。在更高的细胞间CO_2浓度对,光合速率变化则较少。荔枝叶子光合速率对叶子/空气水蒸汽压陡度的变化响应不敏感。气孔对水分传导率和细胞间CO_2浓度随叶子/空气水蒸汽压陡度增大略有降低。  相似文献   

3.
为探究自然条件下中熟籼稻初穗期剑叶光合作用的气孔与非气孔限制特征,利用LI-6400光合仪测定了4个水稻品种(恢复系R7-35,不育系井大3S,杂交F_1代井大3S/R7-35和对照品种9311)的气体交换数据,获得了它们的净光合速率、气孔导度、胞间CO_2浓度和气孔限制值对光的响应曲线。结果表明:与最大净光合速率相对应的饱和光强(I_(sat))分别为1500、1800、1200和1200μmol·m~(-2)·s~(-1);除井大3S/R7-35外,其他3个水稻品种的气孔导度随光强的增加而非线性增加,由此可知,在较高光强处限制这4个水稻叶片光合作用的因素是非气孔限制。与最小胞间CO_2浓度(C_i)相对应的光强分别为1600、1600、1400和1600μmol·m~(-2)·s~(-1),与最大气孔限制值(L_s)相对应的饱和光强分别为1400、1200、1400和600μmol·m~(-2)·s~(-1)。根据Ci降低和Ls升高作为判断叶片光合速率降低的主要原因是气孔因素的判据标准,品种9311则在光强小于1600μmol·m~(-2)·s~(-1)时,Ci随光强的增加而降低,在光强小于600μmol·m~(-2)·s~(-1)时,Ls随光强的增加而升高,但该品种在光强小于1200μmol·m~(-2)·s~(-1)时,其光合能力随光强的增加而非线性增加。这个结果与以Ci降低和Ls升高作为判断准则相互矛盾。为此,提出用植物叶片是否存在I_(sat)作为判断光合速率下降的非气孔限制因素准则,用气孔导度是否存在最大值作为植物叶片的气孔限制因素准则。  相似文献   

4.
利用低氧法(2% O_2)研究了大豆叶片光呼吸速率(R_p)对光强和CO_2浓度的响应。结果表明:当光合有效辐射强度(PAR)小于600μmol·m~(-2)·s~(-1)时,大豆叶片的R_p随光强的升高而几乎直线增加;当PAR约为1200μmol·m~(-2)·s~(-1)时,R_p达到最大值(12.69·mol CO_2·m~(-2)·s~(-1)),随后R_p随PAR的升高呈下降趋势;构建的光呼吸速率与光强的方程式拟合结果表明,大豆叶片最大光呼吸速率为13.42·mol CO_2·m~(-2)·s~(-1),其对应的光强为1207.74·mol·m~(-2)·s~(-1),该拟合值与实际测量值极为吻合(P0.05);当PAR一定(2000μmol·m~(-2)·s~(-1))时,随着CO_2浓度的增加(0~1200μmol·mol~(-1)),大豆叶片的R_p呈先升高后下降变化,在600μmol·mol~(-1)时达到最大值(9.97·mol CO_2·m~(-2)·s~(-1));构建的光呼吸速率与CO_2浓度的方程式拟合结果表明,大豆叶片最大光呼吸速率为10.21·mol CO_2·m~(-2)·s~(-1),其对应的外界CO_2浓度为625.74·mol·mol~(-1)。该拟合值也与实际测量值极为吻合(P"0.05)。本文所构建的方程式可较好地拟合光呼吸速率对不同光强和不同CO_2浓度的响应,这对定量研究光呼吸提供了强有力的手段。  相似文献   

5.
亚热带季风阔叶林不同林地几种植物光合作用的比较研究   总被引:4,自引:0,他引:4  
孙谷畴   《广西植物》1991,(1):51-57
比较了亚热带季风阔叶林不同林地几种植物的叶特性、叶含氮量、叶绿素含量、光合速率和气孔对CO_2的传导率,表明疏林的桃金娘(Rhodomyrtus tomentoso)和荷树(Schima superba)的叶厚和栅栏组织厚度较九节(Psychotria rubra)小,但单位面积干重较九节大,叶含氮量(N mg/g干重)较密林的罗伞(Ardisia quinquegona)低,疏林的桃金娘和荷树的光合作用饱和光强为600和550 μmol 光量子m~(-2),S~(-1),光补偿点分别为12和20 μmol,光量子m~(-2),s~(-1),两种植物的平均最大光合速率分别为11.9±0.4和7.5±1.8 μol CO_2,m~(-2),S~(-1),光合量子产率分别为0.056和0.048,而密林的罗伞光合速率变化对光强变化反应敏感,暗呼吸速率较低。光补偿点为5μmol,光量子m~(-2),S~(-1),显著低于疏林植物,疏林植物有着较高的Ci/Ca值和水分利用效率。亚热带季风阔叶林的不同林地的植物有着不同的光合作用特性,这可能与植物生境的光状况有关。  相似文献   

6.
热带雨林和亚热带季雨林灌木光合作用对水分胁迫的反应   总被引:1,自引:0,他引:1  
生长在热带植物温室的热带雨林植物Piper hispidum和亚热带季风常绿阔叶林植物九节(Psychotria rubra),在灌水、环境的CO_2浓度和26℃下,饱和光强的最大光合速率(PN)分别为6.3和9.8μmol·m~(-2)·s~(-1)。在低的叶片/空气水蒸汽压陡度(△w=10毫巴·巴~(-1))情况下,每降低叶片水势(ψ)1巴,P.hispidum的PN降低0.38μmol·m~(-2)·s~(-1);当ψ为-8巴时,PN随△w增高而降低,其关系PN=7.02-0.06△w(r~2=0.7);ψ为—13巴时,PN与△w关系的直线斜率变小(0.02)。对于九节,PN对△w变化的反应更为敏感。在ψ为-8.75巴时,PN=11.16—0.1△w(r~2=0.65)。在高ψ(-8和-8.75巴)情况下,两种灌木的气孔传导率(g)随△w的变化而相近;但ψ降低时,九节的g对△w的变化反应较P.hispidum敏感。ψ降低导致两种灌木的水分利用效率(WUE,μmol·m~(-2)·s~(-1)CO_2同化/mmol·m~(-2)·s~(-1)水散失)增高;而△w增高,WUE降低。九节的PN对△w增高的反应较P.hispidum敏感。  相似文献   

7.
了解植物光合作用参数季节动态及其与叶性状的关系对于准确模拟生态系统碳循环具有重要的意义。本研究在生长季内原位测定了毛乌素沙地油蒿(Artemisia ordosica)光合作用CO_2响应和光响应曲线,分析了油蒿光合参数与叶氮含量(N_(mass))和比叶面积(SLA)的关系。结果表明:整个生长季内油蒿最大净光合速率(P_(nmax))、表观量子效率(α)和光饱和点(LSP)都是在春季后期和初秋时期值比较高,在夏季波动较大,光补偿点(LCP)和暗呼吸速率(Rd)变化趋势不明显,P_(nmax)的变化范围为13.79~33.31μmol CO_2·m~(-2)·s~(-1),平均值为23.77μmol CO_2·m~(-2)·s~(-1),其中5月达到最大值,P_(nmax)季节变化显著;羧化速率(φ)、最大羧化速率(V_(cmax))、最大电子传递速率(J_(max))和光下暗呼吸(Rp)的季节动态变化也是呈现春季后期和初秋时期值比较高、在夏季波动较大的趋势,CO_2补偿点(Co)在整个生长季季节动态明显;CO_2饱和点(Cisat)的季节动态变化不明显;V_(cmax)在5月达到最大值(89.10μmol·m~(-2)·s~(-1)),在8月达到最小值(27.25μmol·m~(-2)·s~(-1)),平均值为56.29μmol·m~(-2)·s~(-1),J_(max)在9月达到最大值(78.86μmol CO_2·m~(-2)·s~(-1)),在8月达到最小值(24.19μmol CO_2·m~(-2)·s~(-1)),平均值为46.24μmol CO_2·m~(-2)·s~(-1),V_(cmax)和J_(max)季节变化显著;P_(nmax)、V_(cmax)、J_(max)和Rp与N_(mass)存在显著线性正相关,P_(nmax)、V_(cmax)和J_(max)与SLA存在显著线性正相关。本研究结果进一步证实,叶氮含量和比叶面积是影响油蒿光合能力的重要因素。研究获得的光合参数与叶性状的关系可为构建参数化生态系统过程模型提供帮助。  相似文献   

8.
对镇江北固山湿地优势植物——虉草的光合作用进行了试验研究。结果表明,春夏季晴天虉草净光合速率(Pn)的日变化为双峰曲线,有明显的光合“午休”现象;多云天虉草的Pn主要受光强制约,随光合有效辐射(PAR)变化而变化。经统计学验证,虉草的Pn与PAR、气孔导度(Gs)有显著正相关关系,而与细胞间隙CO_2浓度(Ci)呈显著负相关。用一元二次方程拟合了虉草的光响应曲线,得到光补偿点为38.572μmol·m~(-2)·s~(-1),光饱和点为2087.5μmol·m~(-2)·s~(-1)。  相似文献   

9.
报道了美国生物圈二号内生长在高CO_2浓度下(>2200μmol·mol~(-1))4.5年后的5种热带雨林植物和5种荒漠植物气孔导度、蒸腾速率和水分利用效率的变化。结果表明:热带雨林植物在CO_2浓度为350~400μmol·mol~(-1)时的气孔导度、蒸腾速率和水分利用效率分别为:(127.4±65.6)mmol·m~(-2)·s~(-1)、(2.04±0.61)mmol·m~(-2)·s~(-1)和(2.90±0.55)μmol CO_2·mmol~(-1) H_2O,而在700~820μmol·mol~(-1)时为(61.3±30.5)mmol·m~(-2)·s~(-1)、(1.54±0.65)mmol·m~(-2)·s~(-1)和(8.45±2.71)μmol CO_2·mmol~(-1) H_2O;荒漠植物气孔导度和蒸腾速率则分别由CO_2 320~400μmol·mol~(-1)时的(142.8±94.6)和(2.09±0.71)下降到820~850μmol·mol~(-1)时的(57.7±35.8)和(1.36±0.52)mmol·m~(-2)·s~(-1),水分利用效率由(4.69±1.39)上升到(9.68±1.61)μmol CO_2·mmol~(-1) H_20。在低CO_2浓度时植物的气孔导度、蒸腾速率和水分利用效率受光照强度的影响较高CO_2浓度时明显,一般雨林植物三项指标在光照强度为500μmol·m~(-2)·s~(-1)时达到饱和,而荒漠植物在1000μmol·m~(-2)·s~(-1)时达到饱和。不同植物中,以荒漠C_3植物粉蓝烟草(Nicotiana glau-ca Grah.)的气孔导度、蒸腾速率和水分利用效率  相似文献   

10.
为了解红松光合特性的遗传变异规律,本研究利用Lico-6400光合仪,对50个红松无性系的光合指标进行测定和分析。对PK27无性系进行光合指标日变化测定分析,发现PK27的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)日变化曲线均呈现典型双峰曲线,胞间CO2浓度(Ci)日变化曲线呈"V"字型曲线。对3个红松无性系的光响应和二氧化碳响应曲线测定表明,各曲线均呈"S"型,并且符合二次曲线模型。在饱和光强下,3个无性系的最大Pn变化范围为P27(15.00μmol·m~(-2)·s~(-1))~PK15(15.99μmol·m~(-2)·s~(-1))。饱和光强和饱和环境二氧化碳条件下(Ca),3个无性系最大Pn变化范围为25.08~27.35μmol·m~(-2)·s~(-1)。对50个红松无性系瞬时光合指标测定结果表明,50个无性系间Pn、Gs、Ci和Tr间均达极显著差异水平(p0.01),各光合指标表型变异系数变化范围为9.04%~38.25%,重复力变化范围为0.57~0.94,属于高重复力。相关性分析表明红松无性系光合指标间、光合指标与环境因子间均呈现极显著相关水平。该研究为红松遗传改良提供了理论依据。  相似文献   

11.
北方粳稻光合速率、气孔导度对光强和CO2浓度的响应   总被引:25,自引:0,他引:25       下载免费PDF全文
 以东北地区主栽的粳稻(Oryza sativa var. japonica)品种为对象,用美国LI-cor公司生产的Li 6400光合作用测定仪控制光强、CO2浓度和温度等环境条件,阐述了光合作用和气孔导度对光和CO2浓度的响应特征及其耦合关系。结果表明,光合速率随光强或CO2浓度的提高而增大,均遵循米氏响应;在不同CO2浓度下,表观量子效率随CO2浓度的提高而增大,但CO2浓度达到800 μmol•mol-1以上时,表观量子效率有所减小;在不同光强下,表观羧化效率也随光的增强而增大,但光强达到1 600 μmol•m-2•s-1以上时,表观羧化效率也有所减小;在光强和CO2浓度协同作用下,光合速率的响应遵循双底物的米氏方程,在光强和CO2浓度均趋于饱和时,北方粳稻(品种:辽粳294)剑叶的潜在最大光合速率为71.737 8 μmol•m-2•s-1,表观量子效率为0.056 0 μmolCO2•μmol-1 photons,表观羧化效率为0.103 1 μmol•m-2•s-1/μmol•mol-1。气孔导度也随光的增强而增大,对光强的响应规律也可以用Michaelis-Menten曲线模拟,而叶面CO2浓度的提高会使气孔导度减小,气孔导度(Gs)对叶面CO2浓度(Cs)的响应可以用Gs=Gmax,c/(1+Cs/Cs0)的双曲线方程模拟。在光强(PFD)和CO2浓度协同作用下,气孔导度可以用式Gs=Gmax(PFD/PFDc)/[(1+PFD/PFDc)(1+Cs/Cs0)]+Gct估算,当CO2浓度趋于0而光强趋于饱和时,北方粳稻的潜在最大气孔导度(Gmax)为0.670 9 mol•m-2•s-1。在光强和CO2浓度协同作用下,Ball-Berry模型及其修正形式依然能很好地表达气孔导度-光合速率的耦合关系,并且用叶面饱和水汽压差(Ds)修正耦合关系中的相对湿度可以提高模拟精度。  相似文献   

12.
 在人工控制光照强度和CO2浓度条件下,测量了禾本科C4植物狗尾草(Setaria viridis)的光合速率(Pn),蒸腾速率(Tr),胞间CO2浓度(Ci),气孔导度(Gs)和叶面饱和水汽压亏缺(Vpdl)对不同模拟光辐射(SPR)强度与CO2浓度的响应。结果表明:Pn, Tr 及Gs均随SPR的升高而增大,增幅趋缓,最终趋于动态平衡。SPR增强的起始阶段,水分利用率(WUE)逐渐增大,在SPR为1200 μmol·m-2·s-1时达到最大值,然后逐渐降低。Ci与Vpdl则随SPR的增强而减小,SPR高于600 μmol·m-2·s-1之后,两者均达到平衡状态。CO2浓度从300增至600 μmol·mol-1的过程中,狗尾草Pn逐渐增大,从600增至1 000 μmol·mol-1过程中,其Pn逐渐降低。Ci、Vpdl和WUE随CO2浓度的升高而增大,Gs和Tr则随CO2浓度的升高而减小。即禾本科一年生C4植物的光合作用对CO2浓度升高响应不敏感,水分蒸腾消耗的减少和WUE的提高对CO2浓度升高的响应极显著。可见,CO2浓度升高对C4植物光合作用的直接促进作用有限,但是却能从提高现有水分利用效率途径促进植物的第一性生产。  相似文献   

13.
在低光强(0至0.15m mol m-2s-1)下,荔枝叶子的光合速率随光入射量子通量的增高而增大。在光强0.7m mol m-2s-1时光合速率为1.76μmol m-2s-1。光合作用的光补偿点约为0.02 m mol m-2s-1光量子。荔技叶子具有低的气孔对水分传导率。气孔对水分传导率和蒸腾速率在低光强时随入射量子通量增高而增大:而细胞间CO2浓度随光强增高而下降。在光强高于0.2m mol m-2 s-1光量子时,细胞间CO2浓度变化较少。在低光强时,叶子的水分利用效率(光合/蒸腾)随光强增高而增大。在光强高于0.2m mol m-2 s-1光量子时,水分利用效率明显降低。荔枝叶子的最适光合作用叶温为22-26℃。可能表明在华南夏季中午的高温限制荔枝的田间光合作用。外界CO2浓度增高相应增高细胞间CO2浓度。当细胞间CO2浓度约低于230μ1.1-1时,光合速率随细胞间CO2浓度增高而增大。在更高的细胞间CO2浓度对,光合速率变化则较少。荔枝叶子光合速率对叶子/空气水蒸汽压陡度的变化响应不敏感。气孔对水分传导率和细胞间CO2浓度随叶子/空气水蒸汽压陡度增大略有降低。  相似文献   

14.
 胡杨(Populus euphratica Oliv.)叶形多变化,大致归纳为杨树叶(卵圆形叶)和柳树叶(披针形叶)两大类。在内蒙古额济纳旗胡杨林自然保护区,选择成年树同时具有卵圆形叶和披针形叶的标准株,将枝条拉至同一高度,通过活体测定,比较了其光合特征、水分利用效率及对CO2加富的响应。结果表明:在目前大气CO2浓度下,当光强为1 000 μmol·m-2·s-1时,卵圆形叶(成年树主要叶片)(A)和披针形叶(成年树下部萌条叶片)(B)的净光合速率(Pn)分别为16.40 μmol CO2·m-2·s-1和9.38 μmol CO2·m-2·s-1;水分利用效率(WUE)分别为1.52 mmol CO2·mol-1 H2O和1.18 mmol CO2·mol-1 H2O;A的光饱和点和补偿点分别为1 600 μmol·m-2·s-1和79 μmol·m-2·s-1,B的相对应值则为1 500 μmol·m m-2·s-1和168 μmol·m-2·s-1。当CO2浓度加富到450 μmol·mol-1时,A的光饱和点升高了150 μmol·m-2·s-1,光补偿点降低了36 μmol·m-2·s-1;而B的光饱和点降低了272 μmol·m-2·s-1,光补偿点则升高了32 μmol·m-2·s-1。这表明,柳树叶的光合效率较低,以维持生长为主;随着树体长大,柳树叶难以维系其生长,出现杨树叶,杨树叶更能耐大气干旱,光合效率高,通过积累光合产物,使胡杨在极端逆境下得以生存并能达到较高的生长量,这就是胡杨从幼苗到成年树叶形变化的原因。随着CO2加富,两种叶片表现出截然相反的响应,柳树叶的光合时间缩短,光能利用率减小;而杨树叶的光合时间延长,光能利用率提高。如果地下水位下降,近地层空气变干燥,或随着大气CO2浓度升高,气候变暖,柳树叶可能会逐渐减少以至消失。  相似文献   

15.
杂草稻是一类重要的稻属种质资源,具有耐寒、耐旱、耐瘠薄等优良特性.本文以88份中国北方杂草稻资源和4份栽培稻为材料,研究了中国北方杂草稻的光合速率、蒸腾速率、气孔导度等光合与水分生理特性及其相互关系.结果表明: 北方杂草稻资源的光合和水分生理特性存在较大差异,具有丰富的多样性.杂草稻的光合速率变化范围在12.47~28.67 μmol CO2·m-2·s-1,瞬时水分利用效率的变化范围在1.39~3.40 mg·g-1.光合参数中,胞间CO2浓度的变异系数最小,气孔导度的变异系数最大.光合速率与蒸腾速率、气孔导度呈极显著的二次曲线关系,光合速率与胞间CO2浓度呈显著的直线关系,瞬时水分利用效率与蒸腾速率、气孔导度呈极显著的二次曲线关系.可用杂草稻材料的优越性能对栽培稻进行品种改良.  相似文献   

16.
唐峰  梁惠凌  王满莲 《广西植物》2016,36(5):570-573
为了解濒危植物广西八角莲对环境光强的适应性,该研究以广西八角莲同属渐危种八角莲为对照,采用Li-6400便携式光合测定系统对两种植物的光合光响应特性进行了比较研究,进而探讨广西八角莲的濒危机制。结果表明:广西八角莲与的八角莲的光饱和点分别为440和530μmol·m~(-2)·s~(-1),光补偿点为13.25和13.10μmol·m~(-2)·s~(-1),最大净光合速率为3.62和6.81μmol·m~(-2)·s~(-1),表观量子效率为0.065和0.042μmol·μmol~(-1),两种八角莲均具阴生草本植物的光合特性,但其光补偿点与饱和点均高于一般阴生草本,10%~30%阴蔽度的林下生境有利于两种八角莲的生长;两种植物相比较,广西八角莲的光合能力较弱,光饱和点较低,但其弱光下的量子效率较高。大部分光强下,八角莲的净光合速率、气孔导度和蒸腾速率均高于广西八角莲,但广西八角莲的瞬时水分利用效率却高于八角莲,表明广西八角莲的光合策略比较保守,以较低的光合积累为代价来维持较高的水分利用效率,以保持体内水分平衡。  相似文献   

17.
Photosynthetic rate and quatum efficiency of grapevine (Vitis vinifera L. cv. Sauvignon blanc) leaves were measured under the field with ample soil water supply, and in phytotron with ample supply of water and mineral nutrients, constant air humidity and CO2 concentration, and optimum air temperature, respectively. Under field conditions CO2 assimilation quantum efficiency of leaves reached its maximum in the morning, which was followed by continuous decrease and midday depression. The leaves intercepting more light energy in the morning showed a higher quantum efficiency. Those leaves subjected continuously to strong irradiance exhibited a more obvious and longer midday depression. Reduction of leaf light interception around midday could reduce midday depression. Shaded leaves had a higher quantum efficiency than leaves under direct sunlight. The diurnal changes in photosynthetic rate and quantum efficiency of leaves were shown to be closely related to the variations in mesophyll resistance to CO2. In phytotron experiments the photosynthetic quantum efficiency of leaves was reduced after a certain period of illumination not only at 1200 μmol · m-2 · s-1 PFD, higher than the saturating light of vine leaves (≈1000 μmol · m-2 · s-1), which was caused by "photoinhibition”, but also at 800 and 200μmol · m-2 · s-1, which was similar to "photoinhibition”. But photosynthetic quantum efficiency of leaves exposed continuously to a very weak PFD (100 μmol · m -2 · s-1) remained contant. The diurnal changes in mesophyll resistance to CO2 of vine leaves could be partly related to photoinhibition. It is considered that, under field conditions without soil water limitation, midday depression of vine leaf photosynthesis could be a result of an increase of the mesophyll resistance induced by multiple effects of strong light, high temperature and low humidity. A higher light interception by canopy plane in the morning may be advantageous to exploit higher photosynthetic potentiality of leaves, but a lower light interception in the middle of day may reduce midday depression. The north-south orientation plane can provide optimum light regime and improve photosynthetic environment in vineyards.  相似文献   

18.
西藏高原田间冬小麦旗叶光合作用研究   总被引:9,自引:0,他引:9       下载免费PDF全文
 西藏高原冬小麦旗叶光合速率日变化曲线为平坦或单峰型,没有明显“午睡”现象。净光合速率日最高值可与平原接近。光合日总量最高值出现在灌浆中期,其值比平原低4%~34%。净光合速率达20μmolCO2·m-2·s-1以上的环境因子组合是光合有效辐射光量子通量密度2000μmol·m-2·s-1以上,气温25~29℃,近地层大气CO2密度0.41mg·dm-3以上,0cm地温18~23℃、5cm地温15~19℃。这样的因子组合在高原同时满足的机率不高,由于CO2浓度与光温因子高值出现时间不同步,更由于CO2密度比内陆平原低1/3,严重制约了光合日总量值,高原冬小麦旗叶光合作用的特点是净光合速率日最高值可与平原接近,但光合日总量却明显低于平原。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号