首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antifreeze proteins in Alaskan insects and spiders   总被引:13,自引:0,他引:13  
Prior to this study, antifreeze proteins (AFPs) had not been identified in terrestrial arthropods from the Arctic or anywhere in Alaska. The hemolymph of 75 species of insects and six spiders from interior and arctic Alaska were screened for thermal hysteresis (a difference between the freezing and melting points), characteristic of the presence of AFPs. Eighteen species of insects and three spiders were shown to have AFPs. Ten of the insects with AFPs were beetles including the first species from the families Chrysomelidae, Pythidae, Silphidae and Carabidae. In addition, the first Neuropteran to have AFPs was identified, the lacewing Hemerobius simulans together with the second and third Diptera (the first Tipulids) and the second and third Hemiptera, the stinkbug Elasmostethus interstinctus (the first Pentatomid), and the water strider Limnoporus dissortis (the first Gerrid). Prior to this study, 33 species of insects and three spiders had been reported to have AFPs. Most AFP-producing terrestrial arthropods are freeze avoiding, and the AFPs function to prevent freezing. However, some of the AFP- producing insects identified in this study are known to be freeze tolerant (able to survive freezing) to very low temperatures (-40 to -70 degrees C).  相似文献   

2.
Overwintering larvae of the Cucujid beetle, Cucujus clavipes, were freeze tolerant, able to survive the freezing of their extracellular body fluids, during the winter of 1978–1979. These larvae had high levels of polyols (glycerol and sorbitol), thermal hysteresis proteins and haemolymph ice nucleators that prevented extensive supercooling (the supercooling points of the larvae were ? 10°C), thus preventing lethal intracellular ice formation. In contrast, C. clavipes larvae were freeze suspectible, died if frozen, during the winter of 1982–1983, but supercooled to ~ ? 30°C. The absence of the ice nucleators in the 1982–1983 larvae, obviously essential in the now freeze-susceptible insects, was the major detected difference in the larvae from the 2 years. However, experiments in which the larvae were artifically seeded at ? 10°C (the temperature at which the natural haemolymph ice nucleators produced spontaneous nucleation in the 1978–1979 freeze tolerant larvae) demonstrated that the absence of the ice nucleators was not the critical factor, or at least not the only critical factor, responsible for the loss of freeze tolerance in the 1982–1983 larvae. The lower lethal temperatures for the larvae were approximately the same during the 2 winters in spite of the change in overwintering strategy.  相似文献   

3.
Antifreeze proteins (AFPs) lower the freezing point of water by a non-colligative mechanism, but do not lower the melting point, therefore producing a difference between the freezing and melting points termed thermal hysteresis. Thermal hysteresis activity (THA) of AFPs from overwintering larvae of the beetle Dendroides canadensis is dependent upon AFP concentration and the presence of enhancers of THA which may be either other proteins or low molecular mass enhancers. The purpose of this study was to determine the relative contributions of endogenous enhancers in winter D. canadensis hemolymph.Winter hemolymph collected over four successive winters (1997-1998 to 2000-2001) was tested. The first three of these winters were the warmest on record in this area, while December of the final year was the coldest on record. Protein and low molecular mass enhancers raised hemolymph THA 60-97% and 35-55%, respectively, based on hemolymph with peak THA for each year collected over the four successive winters. However, the hemolymph AFPs were not maximally enhanced since addition of the potent enhancer citrate (at non-physiologically high levels) resulted in large increases in THA. 13NMR showed that glycerol was the only low molecular mass solute present in sufficiently high concentrations in the hemolymph to function as an enhancer. Maximum THA appears to be ∼8.5 °C.  相似文献   

4.
Antifreeze proteins are secreted by winter rye cells in suspension culture   总被引:3,自引:0,他引:3  
During cold-acclimation, winter rye ( Secale cereale L) leaves secrete antifreeze proteins (AFPs) into the apoplast. The AFPs bind to ice and modify its growth, which is easily observed in vitro . However, it is not yet known whether in planta AFPs interact with ice or whether they exert cryoprotective effects. These experiments are difficult to conduct with intact plants, so the aim of this work was to determine whether AFPs are produced in response to cold temperature in cell culture and to examine their function by using suspension cells. We showed that suspension cells secreted three of the six known winter rye AFPs into the culture medium during acclimation at 4°C. These AFPs were not present in washed suspension cells, thus indicating that they are not firmly bound to the cell walls. In order to examine the function of extracellular AFPs, non-acclimated (NA) winter rye suspension cells and protoplasts isolated from NA winter rye leaves were then frozen and thawed in the presence of AFPs extracted from cold-acclimated winter rye leaves. The AFPs had no effect on the survival of NA protoplasts after freezing; however, they lowered the lethal temperature at which 50% of the cells are killed by freezing (LT50) of NA suspension cells by 2.5°C. We conclude that low above-zero temperatures induce winter rye suspension cells to secrete AFPs free in solution where they can protect intact suspension cells, but not protoplasts, from freezing injury, presumably by interacting with extracellular ice.  相似文献   

5.
The sub-Antarctic beetle Hydromedion sparsutum (Coleoptera, Perimylopidae) is common locally on the island of South Georgia where sub-zero temperatures can be experienced in any month of the year. Larvae were known to be weakly freeze tolerant in summer with a mean supercooling point (SCP) around -4 degrees C and a lower lethal temperature of -10 degrees C (15min exposure). This study investigated the effects of successive freezing exposures on the SCP and subsequent survival of summer acclimatised larvae. The mean SCP of field fresh larvae was -4.2+/-0.2 degrees C with a range from -1.0 to -6.1 degrees C. When larvae were cooled to -6.5 degrees C on 10 occasions at intervals of 30min and one and four days, survival was 44, 70 and 68%, respectively. The 'end of experiment' SCP of larvae surviving 10 exposures at -6.5 degrees C showed distinct changes and patterns from the original field population depending on the interval between exposure. In the 30min interval group, most larvae froze between -6 and -8 degrees C, a depression of up to 6 degrees C from the original sample; all larvae were dead when cooling was continued below the SCP to -12 degrees C. In the one and four day interval groups, most larvae froze above -6 degrees C, showing no change as a result of the 10 exposures at -6.5 degrees C. As with the 30min interval group, some larvae froze below -6 degrees C, but with a wider range, and again, all were dead when cooled to -12 degrees C. However, in the one and four day interval groups, some larvae remained unfrozen when cooled to -12 degrees C, a depression of their individual SCP of at least 6 degrees C, and were alive 24h after cooling. In a further experiment, larvae were cooled to their individual SCP temperature at daily intervals on 10 occasions to ensure that every larva froze every day. Most larvae which showed a depression of their SCP of 2-4 degrees C from their day one value became moribund or died after six or seven freezing events. Survival was highest in larvae with SCPs of -2 to -3 degrees C on day one and which froze at this level on all 10 occasions. The results indicate that in larvae in which the SCP is lowered following sub-zero exposure, the depression of the SCP is greatest in individuals that do not actually freeze. Further, the data suggest that after successive frost exposures in early winter the larval population may become segregated into two sub-populations with different overwintering strategies. One group consists of larvae that freeze consistently in the temperature range from -1 to -3 degrees C and can survive multiple freeze-thaw cycles. A second group with lower initial SCPs (around -6 degrees C), or which fall to this level or lower (down to -12 degrees C) after freezing on one or more occasions, are less likely to freeze through extended supercooling, but more likely to die if freezing occurs.  相似文献   

6.
During cold acclimation, winter rye (Secale cereale L. cv Musketeer) plants accumulate antifreeze proteins (AFPs) in the apoplast of leaves and crowns. The goal of this study was to determine whether these AFPs influence survival at subzero temperatures by modifying the freezing process or by acting as cryoprotectants. In order to inhibit the growth of ice, AFPs must be mobile so that they can bind to specific sites on the ice crystal lattice. Guttate obtained from cold-acclimated winter rye leaves exhibited antifreeze activity, indicating that the AFPs are free in solution. Infrared video thermography was used to observe freezing in winter rye leaves. In the absence of an ice nucleator, AFPs had no effect on the supercooling temperature of the leaves. However, in the presence of an ice nucleator, AFPs lowered the temperature at which the leaves froze by 0.3 degrees C to 1.2 degrees C. In vitro studies showed that apoplastic proteins extracted from cold-acclimated winter rye leaves inhibited the recrystallization of ice and also slowed the rate of migration of ice through solution-saturated filter paper. When we examined the possible role of winter rye AFPs in cryoprotection, we found that lactate dehydrogenase activity was higher after freezing in the presence of AFPs compared with buffer, but the same effect was obtained by adding bovine serum albumin. AFPs had no effect on unstacked thylakoid volume after freezing, but did inhibit stacking of the thylakoids, thus indicating a loss of thylakoid function. We conclude that rye AFPs have no specific cryoprotective activity; rather, they interact directly with ice in planta and reduce freezing injury by slowing the growth and recrystallization of ice.  相似文献   

7.
Summary Overwintering larvae and adults of the stag beetle,Ceruchus piceus, are freeze sensitive (i.e. cannot survive internal freezing). The most commonly described cold adaptation of freeze susceptible insects involves the production of antifreezes to promote supercooling, butCeruchus piceus larvae produced only low levels of antifreezes in the winter. However, by removing ice nucleators from the gut and hemolymph in the winter the larvae were able to depress their supercooling points from approximately –7°C in the summer to near –25°C in mid-winter. The ice nucleators present in the non-winter hemolymph were identified as lipoproteins. One of these lipoproteins with ice nucleator activity was purified using flotation ultracentrifugation and anion exchange (DEAE-Sephadex) chromatography.Removal of ice nucleators to promote supercooling in winter may be energetically preferable to costly production and maintenance of high, of-ten molar, concentrations of antifreeze. Obviously the ice nucleator must normally perform a function which the insect can spare over the winter. Hemolymph lipoproteins, which generally function in lipid transport, may fit this criterion during the winter period of reduced metabolic activity.Abbreviations LP I very low density lipoprotein - LP II low density lipoprotein - PAGE polyacrylamide gel electrophoresis - SCP supercooling point  相似文献   

8.
We examined seasonal changes in freeze tolerance and the susceptibility of larvae of the gall fly, Eurosta solidaginis to inoculative freezing within the goldenrod gall (Solidago sp.). In late September, when the water content of the galls was high (approximately 55%), more than half of the larvae froze within their galls when held at -2.5 degrees C for 24 h, and nearly all larvae froze at -4 or -6 degrees C. At this time, most larvae survived freezing at > or = -4 degrees C. By October plants had senesced, and their water content had decreased to 33%. Correspondingly, the number of larvae that froze by inoculation at -4 and -6 degrees C also decreased, however the proportion of larvae that survived freezing increased markedly. Gall water content reached its lowest value (10%) in November, when few larvae froze during exposure to subzero temperatures > or = -6 degrees C. In winter, rain and melting snow transiently increased gall water content to values as high as 64% causing many larvae to freeze when exposed to temperatures as high as -4 degrees C. However, in the absence of precipitation, gall tissues dried and, as before, larvae were not likely to freeze by inoculation. Consequently, in nature larvae freeze earlier in the autumn and/or at higher temperatures than would be predicted based on the temperature of crystallization (T(c)) of isolated larvae. However, even in early September when environmental temperatures are relatively high, larvae exhibited limited levels of freezing tolerance sufficient to protect them if they did freeze.  相似文献   

9.
Antifreeze proteins (AFPs) were obtained from intercellular spaces of spruce needles Picea abies (L.) Karst. and Picea pungens Engelm. by vacuum infiltration with ascorbic acid, followed by centrifugation to recover the infiltrate. As shown by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE), apoplastic proteins are accumulated in these spruce species as a group of 5–9 polypeptide bands. These proteins have a molecular mass of 7–80 kDa. The spruce AFPs have the ability to modify the growth of ice and thermal hysteresis, TH, caused by these AFPs was close to 2.0 °C at a concentration of 400 μg/ml. The antifreeze activity of proteins from these winter-hardy coniferous species showed a positive correlation with the concentration of proteins after cold acclimation of needle tissues. Apoplastic proteins from winter spruce needles exhibited antifreeze activity, whereas no such activity was observed in extracts from summer needles. When we examined the possible role of spruce AFPs in cryoprotection, we found that lactate dehydrogenase, LDH, activity was higher after freezing in the presence of AFPs compared with bovine serum albumin. Amino-terminal sequence comparisons indicated that a 27-kDa protein from both P. abies and P. pungens was similar to some pathogenesis-related proteins namely chitinases, also from conifer species. These results show that spruces produce AFPs that are secreted into the apoplast of needles. The accumulation of AFPs in extracellular spaces caused by seasonal cold acclimation during winter indicates that these proteins may play a role in the acquisition of freezing tolerance of needle cells in coniferous species.  相似文献   

10.
11.
During cold acclimation, winter rye (Secale cereale) plants accumulate pathogenesis-related proteins that are also antifreeze proteins (AFPs) because they adsorb onto ice and inhibit its growth. Although they promote winter survival in planta, these dual-function AFPs proteins lose activity when stored at subzero temperatures in vitro, so we examined their stability in solutions containing CaCl2, MgCl2, or NaCl. Antifreeze activity was unaffected by salts before freezing, but decreased after freezing and thawing in CaCl2 and was recovered by adding a chelator. Ca2+ enhanced chitinase activity 3- to 5-fold in unfrozen samples, although hydrolytic activity also decreased after freezing and thawing in CaCl2. Native PAGE, circular dichroism, and Trp fluorescence experiments showed that the AFPs partially unfold after freezing and thawing, but they fold more compactly or aggregate in CaCl2. Ruthenium red, which binds to Ca(2+)-binding sites, readily stained AFPs in the absence of Ca2+, but less stain was visible after freezing and thawing AFPs in CaCl2. We conclude that the structure of AFPs changes during freezing and thawing, creating new Ca(2+)-binding sites. Once Ca2+ binds to those sites, antifreeze activity, chitinase activity and ruthenium red binding are all inhibited. Because free Ca2+ concentrations are typically low in the apoplast, antifreeze activity is probably stable to freezing and thawing in planta. Ca2+ may regulate chitinase activity if concentrations are increased locally by release from pectin or interaction with Ca(2+)-binding proteins. Furthermore, antifreeze activity can be easily maintained in vitro by including a chelator during frozen storage.  相似文献   

12.
Insects that tolerate severe cold during winter may either supercool or tolerate ice forming within the tissues of the body. To compare the relative advantages of freezing and supercooling, we measured rates of CO(2) production and water loss in frozen and supercooled goldenrod gall fly larvae (Eurosta solidaginis). As an important first step, we measured the time required for ice content and metabolic rate to stabilize upon freezing. Ice content stabilized after only three hours of freezing at -5 degrees C, whereas CO(2) production required 12 hours to stabilize. Subsequent experiments found that freezing greatly reduced both water loss and metabolic rate. Comparisons of supercooled and frozen larvae at -5 degrees C indicated that CO(2) production fell 47% with freezing and water loss decreased 35%. As temperature decreased to -10 and -15 degrees C, CO(2) production fell exponentially and was no longer detectable at -20 degrees C with our measurement system. Our results demonstrate that freezing significantly reduces energy consumption during the winter and may therefore improve winter survival and spring fecundity. The advantages of freezing over supercooling would drive selection toward insect freeze tolerance and also toward higher supercooling points to increase the duration of freezing each winter.  相似文献   

13.
Antifreeze proteins in winter rye leaves form oligomeric complexes   总被引:5,自引:3,他引:2       下载免费PDF全文
Yu XM  Griffith M 《Plant physiology》1999,119(4):1361-1370
Antifreeze proteins (AFPs) similar to three pathogenesis-related proteins, a glucanase-like protein (GLP), a chitinase-like protein (CLP), and a thaumatin-like protein (TLP), accumulate during cold acclimation in winter rye (Secale cereale) leaves, where they are thought to modify the growth of intercellular ice during freezing. The objective of this study was to characterize the rye AFPs in their native forms, and our results show that these proteins form oligomeric complexes in vivo. Nine proteins were separated by native-polyacrylamide gel electrophoresis from apoplastic extracts of cold-acclimated winter rye leaves. Seven of these proteins exhibited multiple polypeptides when denatured and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After isolation of the individual proteins, six were shown by immunoblotting to contain various combinations of GLP, CLP, and TLP in addition to other unidentified proteins. Antisera produced against individual cold-induced winter rye GLP, CLP, and TLP all dramatically inhibited glucanase activity in apoplastic extracts from cold-acclimated winter rye leaves, and each antiserum precipitated all three proteins. These results indicate that each of the polypeptides may be exposed on the surface of the protein complexes. By forming oligomeric complexes, AFPs may form larger surfaces to interact with ice, or they may simply increase the mass of the protein bound to ice. In either case, the complexes of AFPs may inhibit ice growth and recrystallization more effectively than the individual polypeptides.  相似文献   

14.
The Japanese pine sawyer, Monochamus alternatus , is an important pine forest pest and vector transmitting the pine wilt nematode that causes pine wilt disease. Low temperatures in autumn, winter and spring often differentially affect mortality of M. alternatus larvae. In this paper, we mainly compared the differences of mortality and cold hardening of larvae from different seasons, based on supercooling point (SCP) and cumulative probability of individuals freezing (CPIF). The cold hardening of the larvae from autumn, winter and spring seasons were largely different. Correlations between mortality and CPIF of autumn and spring larvae were highest on day 1/4, and gradually decreased with prolonged exposure duration. This beetle's death mainly resulted from freezing in short exposure duration. However, the correlation between mortality and CPIF of winter larvae increased gradually with the prolonged exposure duration. Death did not mainly result from freezing in long exposure duration. Autumn larvae are more susceptible and adaptable than winter and spring larvae. Winter larvae have a slight freeze-tolerance trend. Our research showed that M. alternatus came into complex cold-hardening strategies under natural selection. Freeze avoidance is the primary strategy; with prolonged exposure duration to above SCP or < 0 °C, chill tolerance is more important; this is followed by freeze tolerance during harsh winters.  相似文献   

15.
Abstract The sugarbeet root maggot Tetanops myopaeformis (Röder) overwinters as a freeze‐tolerant third‐instar larva. Although most larvae are considered to overwinter for only 1 year, some may exhibit prolonged diapause in the field. In the laboratory, they can live for over 5 years using a combination of diapause and post‐diapause quiescence. In the present study, the cold survival strategies of these larvae during storage is investigated by measuring their supercooling points in combination with survival data. Supercooling points (SCPs) change significantly during storage, highlighted by a marked increase in the range of SCPs recorded, although the ability to tolerate freezing is not affected. Additionally, a freezing event ‘re‐focuses’ the SCPs of aged larvae to levels similar to those seen at diapause initiation. This change in SCPs is dependant not only on the initial freezing event, but also on the parameters of the incubation period between freezing events. Finally, the temperatures of larval overwintering microhabitats are monitored during the 2007–2008 boreal winter. The results indicate that, although overwintering larva are physiologically freeze‐tolerant, they may essentially be freeze avoidant during overwintering via microhabitat selection.  相似文献   

16.
The study of mechanisms by which animals tolerate environmental extremes may provide strategies for preservation of living mammalian materials. Animals employ a variety of compounds to enhance their survival, including production of disaccharides, glycerol, and antifreeze compounds. The cryoprotectant glycerol was discovered before its role in amphibian survival. In the last decade, trehalose has made an impact on freezing and drying methods for mammalian cells. Investigation of disaccharides was stimulated by the variety of organisms that tolerate dehydration stress by accumulation of disaccharides. Several methods have been developed for the loading of trehalose into mammalian cells, including inducing membrane lipid-phase transitions, genetically engineered pores, endocytosis, and prolonged cell culture with trehalose. In contrast, the many antifreeze proteins (AFPs) identified in a variety of organisms have had little impact. The first AFPs to be discovered were found in cold water fish; their AFPs have not found a medical application. Insect AFPs function by similar mechanisms, but they are more active and recombinant AFPs may offer the best opportunity for success in medical applications. For example, in contrast to fish AFPs, transgenic organisms expressing insect AFPs exhibit reduced ice nucleation. However, we must remember that nature's survival strategies may include production of AFPs, antifreeze glycolipids, ice nucleators, polyols, disaccharides, depletion of ice nucleators, and partial desiccation in synchrony with the onset of winter. We anticipate that it is only by combining several natural low temperature survival strategies that the full potential benefits for mammalian cell survival and medical applications can be achieved.  相似文献   

17.
Supercooling points, lower lethal temperatures, and the effect of short-term exposures to low temperatures were examined during both winter and summer in the adults of six weevil species from three different habitats on Marion Island. Upper lethal limits and the effects of short-term exposure to high temperatures were also examined in summer-acclimatized adult individuals of these species. Bothrometopus elongatus, B. parvulus, B. randi, Ectemnorhinus marioni, and E. similis were freeze tolerant, but had high lower lethal temperatures (−7 to −10°C). Seasonal variation in these parameters was not pronounced. Physical conditions of the habitat appeared to have little effect on cold hardiness parameters because the Ectemnorhinus species occur in very wet habitats, whereas the Bothrometopus species inhabit drier areas. The adults of these weevil species are similar to other high southern latitude insects in that they are freeze tolerant, but with high lower lethal temperatures. In contrast, Palirhoeus eatoni, a supra-littoral species, avoided freezing and had a mean supercooling point of −15.5 ± 0.94°C (SE) in winter and −11.8 ± 0.98°C in summer. Survival of a constant low temperature of −8°C also increased in this species from 6 h in summer to 27 h in winter. It is suggested that this strategy may be a consequence of the osmoregulatory requirements imposed on this species by its supra-littoral habitat. Upper lethal temperatures (31–34°C) corresponded closely with maximum microclimate temperatures in all of the species. This indicates that the pronounced warming, accompanied by the increased insolation that has been recorded at Marion Island, may reduce survival of these species. These effects may be compounded as a consequence of predation by feral house mice on the weevils. Received: 4 February 1997 / Accepted: 3 May 1997  相似文献   

18.
EffectofPlantAntifreezeProteinsonPorcineEmbryotoCryopreservaton¥FEIYun-biao(费云标);WEILing-bo(魏令波);GAOsu-qin(高素琴);ZHAOShu-hui(赵...  相似文献   

19.
Summary The effects of extracellular freezing on intracellular metabolism were monitored over both a short (9 h) and long (12 weeks) time course using the freeze tolerant larvae of the gall fly,Eurosta solidaginis.The process of freezing, monitored over the short time course, had no effect upon cellular energy levels (adenylates, arginine phosphate) but initiated a rise in glucose-6-P and lactate levels. This suggests that freezing initiates a shift towards glycolysis as the predominant mode of energy production. The process of thawing at 3°C (after 24 h at –16°C) also had no effect, even transient, on cellular energy levels demonstrating that thawing and the rapid redistribution of water and solutes which must accompany it does not disrupt cellular metabolism. During thawing accumulated lactate was quickly cleared with a t 1/2 of 20–30 min.Long term freezing at –16°C had dramatic effects on energy metabolism. Freezing for up to 1 week had minimal effects with only a small drop in arginine phosphate reserves and an increase in lactate content noted. Between 1 and 2 weeks of freezing, however, larvae showed strong signs of energy stress. The arginine phosphate pool fell from 75% to 30% of control levels, ATP content dropped by 50% and energy charge dropped to 0.75. This state, with continued lactate accumulation, was maintained through 4 weeks of freezing. Between 6 and 12 weeks of freezing energy stress became even greater. Phosphagen and ATP contents dropped to 5 and 25% of control values and energy charge decreased to about 0.50. Despite this stress, however, 94% of larvae survived 12 weeks of freezing with an 86% hatch rate of adults. The data demonstrate that the larvae can survive prolonged periods of winter freezing drawing upon glycolysis and phosphagen reserves to supply the continued basal energy demands of the cell.  相似文献   

20.
During cold acclimation, antifreeze proteins (AFPs) that are similar to pathogenesis-related proteins accumulate in the apoplast of winter rye (Secale cereale L. cv Musketeer) leaves. AFPs have the ability to modify the growth of ice. To elucidate the role of AFPs in the freezing process, they were assayed and immunolocalized in winter rye leaves, crowns, and roots. Each of the total soluble protein extracts from cold-acclimated rye leaves, crowns, and roots exhibited antifreeze activity, whereas no antifreeze activity was observed in extracts from nonacclimated rye plants. Antibodies raised against three apoplastic rye AFPs, corresponding to a glucanase-like protein (GLP, 32 kD), a chitinase-like protein (CLP, 35 kD), and a thaumatin-like protein (TLP, 25 kD), were used in tissue printing to show that the AFPs are localized in the epidermis and in cells surrounding intercellular spaces in cold-acclimated plants. Although GLPs, CLPs, and TLPs were present in nonacclimated plants, they were found in different locations and did not exhibit antifreeze activity, which suggests that different isoforms of pathogenesis-related proteins are produced at low temperature. The location of rye AFPs may prevent secondary nucleation of cells by epiphytic ice or by ice propagating through the xylem. The distributions of pathogenesis-induced and cold-accumulated GLPs, CLPs, and TLPs are similar and may reflect the common pathways by which both pathogens and ice enter and propagate through plant tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号