首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
一般认为仅是原核生物才具有的氢酶,在一系列的光合和非光合固氮生物中也相继被发现。它在这些生物机体中执行着除固氮酶和可逆性氢酶(reversible hydrogenase)放氢以外的催化氢代谢的功能,并能回收固氮酶放氢中失去的氢,提高固氮效率,从而和  相似文献   

2.
蓝藻和光合细菌一类光合固氮生物的放氢,由于与能源开发和固氮效率有密切联系而受到研究者的注视。以前我们在结合固氮研究放氢的实验中,不仅观察到蓝藻放氢对光有明显的依赖关系,体现了放氢对光合作  相似文献   

3.
固氮生物普遍存在着氢酶,氢酶能催化最简单分子,即氢的可逆氧还化原反应。氢酶是生物固氮在能量利用过程中的关键酶。这一过程可以回收因固氮酶催化需ATP的放氢而消耗掉的部分能量。由于它涉及到生物固氨的效率,因此倍受  相似文献   

4.
光合作用所吸收的日光能,首先贮存于ATP和NADPH_2两种称为同化力之中,然后除了用于CO_2还原外,在某些光合生物中还可用于还原H_2O或有机物分子中,并以分子态氢的形式释放出来,后者就是某些植物(主要是藻类)和细菌的光合放氢作用。现在已知,几乎所有的光合细菌都可以放氢,50%以上的藻类在一定条件下也可以放氢。如蓝绿藻既能进行光合固氮,又能进行光合放氢。这不仅说明了光  相似文献   

5.
测定氢酶吸氢活性的光谱分析法   总被引:1,自引:0,他引:1  
固氮酶催化放氢是影响生物固氮效率的重要因素之一。经过吸氢酶吸收固氮酶释放的氢,一方面可以增加还原力来源,同时经氧化后可以消除系统内的氧,保护固氮酶免受氧伤害,从而提高固氮效率。测定氢酶吸氢的方法有多种,例如:同位素氚与水的交换法、检压法、电极法、气相层析法和光谱分析法。由于前三种方法操作较繁琐,目前国内较多的是使用气相层析法。而用光谱分析法定量地测定氢酶的吸氢活性是一种比气相法更为快速和灵敏的  相似文献   

6.
光合细菌产氢因子的研究进展   总被引:11,自引:0,他引:11  
光合细菌在固氮的同时释放氢气。产氢与固氮是同步进行的。固氮酶与氢酶共同影响光合细菌的产氢活性,而外源生理条件又影响着固氮酶与氢酶的活性,其中有机碳阻抑吸氢酶表达,促进产氢;氨则抑制固氮活性而降低产氢量;氧气的存在使固氮酶与氢酶都失活,从而抑制放氢反应的进行。  相似文献   

7.
研究了混养型光合细菌Rhodopseudomonas capsulata N-3 氢酶与固氮酶之间的联系,观察到:1.以苹果酸(30毫克分子)为碳源,谷氨酸(5毫克分子)为氮源,营光合异养生长的菌体由固氮酶催化释放出大量的分子氢,光合放氢的过程完全依赖于光和外加电子供体,NH_4~ 对这一过程有明显抑制作用。2.营光合异养生长的光合细菌具活跃的氢酶,是膜结合态,能以多种生理活性物质,如NADP,反丁烯二酸,硝酸盐,氧及一些氧化还原染料为受体,吸取分子氢,这一过程显著地被NH_4~ 所促进。3.氢酶催化分子氢,支持光合固氮活性,这一固氮活性对氧的酶感性显著下降。4.当有机底物浓度不足时,分子氢所支持的固氮活性更为有效,有机底物浓度处于过量时,分子氢不再支持固氮。5.乙炔对氢酶活性具不可逆的抑止作用,氢酶被抑止后,固氮酶所催化的光合放氢显著剧增。 基于上述结果,对氢酶和固氮酶在细菌光合固氮中相互联系及其对光合细菌光能异养和光能自养两种生长方式间的转换的可能作用进行了讨论。  相似文献   

8.
接种不同大豆根瘤菌株的根瘤放氢和吸氢的研究   总被引:2,自引:0,他引:2  
本实验测定和比较了七株大豆根瘤菌与三个大豆品种共生时的放氢和固氮效率。证明了大多数菌株接种不同寄主,其根瘤的放氢、吸氢和固氮效率的差异均明显。但USDA110在三个品种上所结根瘤不放氢或极少放氢;它的固氮量最高。根瘤的能量利用率与植株的氮积累及产量的相关性尚需进一步验证。  相似文献   

9.
培养液中缺钼时,蓝藻Anabaena 7120的放氢受到削弱,其削弱程度比固氮活性的削弱小。此种蓝藻的放氢对CO和氧都敏感,预先以乙炔处理时,其放氢即受抑制,而在光下以分子氢预处理则促进放氢。这类蓝藻光下放氢比暗中高,当添加光合抑制剂或氯化铵于反应系统时,其放氢便明显下降。  相似文献   

10.
本文研究了固氮螺菌(Azosptrillum brastlense)的放氢现象和吸氢酶活性以及与固氮作用的关系。测定了57株固氮螺菌的放氢现象及其固氮酶活性,其中不放氢41株,微放氢14株,其放氢量为2·63—31.00n mol C2H4/ml菌液·小时。放氢量较多的2株R38{和R256A都是从水稻根表上分离获得,其放氢量分别为185.75n mol H2/ml 菌液·小时和547.00 moIH2/ml 菌液·小时。测定了53株螺菌的吸氢酶活性,它们均具有吸氢能力,其吸氢量各异,0-63-27·38n mol H2/ml菌液。小时。生长在含有NH4CI培养基上的固氮螺菌既没有固氮能力,也不产氢。在无氮培养基上所产生的氢是固氮过程中放出的氢。实验结果指出,C2H2抑制氢酶的活性。当吸氢的菌株与放氢菌株混合培养时,其固氮酶活性比单株纯培养高,有氢存在时,固氮酶活性比不加氢时高。  相似文献   

11.
海洋生物固氮因可以支持初级生产所需的氮而在全球碳氮循环中具有重要作用。从二十世纪九十年代分子生物学和15N2同位素示踪法应用于固氮研究领域以来, 逐渐发现了单细胞固氮蓝藻和异养固氮细菌的重要性, 是近年来海洋固氮研究领域的最大进展之一, 表明以前基于束毛藻为主要固氮生物估算的固氮量可能低估了生物固氮在全球海洋生物地球化学循环中的地位。另一方面, 传统的海洋生物固氮研究仅局限于热带亚热带的寡营养盐区域, 对高营养盐区域如上升流、河口等高营养盐区域较少关注, 因此有必要对这些区域的生物固氮进行重新评估和再认识。综述了国际固氮研究的最近进展, 主要包括固氮生物多样性及分布特征、生物固氮的限制性因素、研究方法以及存在的问题。同时综述了南海生物固氮方面的最新进展和问题。  相似文献   

12.
固氮蓝藻高光放氢突变种的筛选和放氢特点   总被引:1,自引:1,他引:0  
作者以前报道过几种快速生长的固氮蓝藻在某种条件下能好气光放氢,其速度可以达到光合放氧速度的10—15%,但这种活性只有在不积累氢气的流动气相下或在短时间内发生。本文报道用亚硝基胍诱变所得到的Anabaena spp。Strain CA的高光放氢突变种——N9A和18A——的筛选和氢代谢特点。在达生长饱和光照以后,野生型的光放氢活性与光照强度的增加成正相关,而其吸氢活性则与之成负相关,显示高光照强度可能抑制吸氢酶的活性。无论在什么光强下,均测不到两个突变种的吸氢活性,暗示在突变种中,吸氢酶或有关系统受损伤。把细胞固相化在琼脂上,在密闭系统中,高光强下培养50个小时,两个突变种光释放和积累的氢分别为野生型的2倍(N9A)和6倍(18A),后者等于氢占气相(1%CO_2的空气)的1.8%。两个突变种在生长速度、叶绿素含量、乙炔还原活性以及光合放氧方面与野生型无明显不同。当以含50—100nM的镍离子的培养基培养时,野生型的好气净产氢活性完全丢失,其吸氢活性却增加约10倍。培养基中镍离子的存在,对两个突变种的高光放氢活性则毫无影响,而且在此情况下,仍测不出其吸氢活性。实验结果表明,这两个突变种系吸氢酶缺陷型突变种。  相似文献   

13.
不产氧光合细菌Rhodobacter sphaeroides产氢影响因子研究   总被引:1,自引:0,他引:1  
对不产氧光合细菌球形红细菌Rhodobacter sphaeroides产氢的影响因子进行了初步研究。结果表明,处于不同生长期的球形红细菌接种后的产氢速率略有差异,稳定期的菌株的产氢能力相对较低。苹果酸钠、乳酸钠、丙酮酸钠和葡萄糖都是球形红细菌产氢的良好碳源,这表明球形红细菌具有利用食品工业等高浓度废水为底物产氢的可能性。以葡萄糖和谷氨酸钠为C源和N源产氢时,适宜的葡萄糖浓度在25~50mmol/L之间,谷氨酸钠浓度在2~10mmol/L之间。球形红细菌产氢的适宜pH值在7.0~8.0范围内,酸性环境明显不利于该菌的催化放氢,适宜的温度在30~35℃范围内。光照强度在5000~7000lx之间适合于产氢。球形红细菌的固氮酶活性和放氢活性之间呈正相关性。吸氢酶虽然可在无固氮酶和无放氢活性的状态下独立表达,但多数情况下仍受氢气浓度的调节。以氮气为氮源时,固氮酶活性和放氢活性较低,铵的浓度高于0.5mmol/L时,固氮酶活性完全受到抑制,进而抑制产氢。  相似文献   

14.
蓝细菌红萍鱼腥藻的两种固氮酶系统的放氢特点   总被引:8,自引:0,他引:8  
已知在固氮生物中,固氮酶在催化氮还原为按的过程中,同时还原H+成为H2,所生成的H2部分为固氮生物体内的氢酶回收再利用,部分放出体外.显然,催化放H2作用也是固氮酶的重要特性之一.    相似文献   

15.
检测了四株大豆根瘤菌在不同的大豆品种上形成根瘤的放氢、吸氢、固氮活性及豆血红蛋白的含量;同时测定了植株干物质的积累。结果表明,所有固氮根瘤都放氢,自生条件下Hup~-根瘤菌形成的根瘤仍不具吸氢活性,相对固氮率在0.75左右。而Hup~(?)菌株根瘤的相对固氮率在0.91~1之间。寄主植物对Hup~(?)菌株的吸氢活性有影响。相关分析表明,根瘤的豆血红蛋白与吸氢活性呈负相关。干物质积累与固氮酶活性关系最密切,氢酶活性的影响是次要的。  相似文献   

16.
光合细菌是水生的革兰氏阴性的微生物,广泛分布于海洋、河川、湖泊、小溪和水塘中。因它含有细菌叶绿素和类胡萝卜素等光合色素,因此可以利用光能通过光合作用而生长繁殖。光合细菌在进行光合作用的同时,还能够行使固氮功能。光合作用形成的高还原物质和高能量物质,除了供给固氮酶的固氮需要外,也用于支持固氮酶的产氢反应,氢气的吸收则由氢酶执行。大量的研究工作表明,通过捕获光能产生氢气,从而将太阳能转化为稳定的化学能,是光合细菌的一个普遍特征。  相似文献   

17.
固氮生物在固氮过程中不可避免地将产生电子的消耗和能量的损失;固氮酶每转化一分子儿为氨需消耗4对电子和16个ATP,同时释放出一分子H2。而吸氢酶对所产生氢气的氧化作用可提供固氮过程中所需的还原力,从而提高了固氮微生物的固氮效率。通过分子生物学的实验手段可进行巴西固氮螺菌吸氢酶基因(hup基因)的定位和分离克隆,并进一步构建含多拷贝hup基因的固氮基因工程菌,为提高固氮效率,增加农作物经济产量提供一种有效的氮素营养供给手段。氛是植物生长发育不可缺少的元素。氮气虽然占空气重量的75.54畅,但植物和大多数微生物都不…  相似文献   

18.
分子氮和二氧化碳对蓝藻Anabaena 7120固氮的抑制作用可因反应系统中pH值的提高以及对蓝藻进行预照光处理而削弱或消除。分子氢对经预照光处理的蓝藻固氮活性不但不支持,且有削弱。预暗处理的效应恰好相反。蓝藻经低温(4℃)预处理后,分子氢对其固氮活性支持减弱,甚至抑制。蓝藻放氢对分子氢和同化力水平的反应规律在趋势上与固氮基本相同。  相似文献   

19.
非共生生物固氮微生物分子生态学研究进展   总被引:3,自引:0,他引:3  
氮是限制生态系统生产力的主要元素,生物固氮是自然生态系统中氮的主要来源.生物固氮包括共生、联合和自生固氮3种类型,其中联合固氮和自生固氮统称为非共生固氮.相对于共生固氮而言,非共生固氮速率虽然较低,但其不需要与其他生物形成共生体系就可以生存并进行固氮,在时空分布上更加广泛,因此对生态系统氮循环特别是素输入具有重要贡献.本文对近年有关非共生固氮微生物的多样性、土壤和叶际固氮微生物的分布特征及影响因素等研究进展进行了综述,并在此基础上阐述了现有研究中存在的问题和发展前景.  相似文献   

20.
研究生物固氮已有100年历史,自从1888年发现固氮生物以来,在固氮生态,生理、生化以及近年来迅速发展的分子遗传研究等方面做了很多工作。生物固氮研究,在近20年,几乎是发达国家的重要研究项目,不少发展中国家也给予重视,并积极开展研究。从七十年代中期召开第一次国际生物固氮会议,至今有七次。为了纪念发现固氮生物的德国科学家起见,1988年3月在西德科隆大学,暨该校成立600周年之际,召开了第七届国际生物固氮会议,有43个国家和地区的617名科学家参加。会议回顾了历史,展现了生物固氮研究现状和发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号