首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
该研究以2株野生沙枣(Elaeagnus angustifolia Linn.)嫩枝经温室水培后的嫩叶为材料,采用CTAB法分别提取总DNA,并利用第二代测序技术进行总DNA从头测序,组装后得到2株沙枣叶绿体基因组全序列,并详细分析了其蛋白质编码基因密码子使用的偏好性及其原因,为沙枣叶绿体基因工程和分子系统进化等研究奠定基础。结果显示:(1)组装得到沙枣叶绿体基因组序列全长150 546 bp,由长度为81 113 bp的长单拷贝(LSC)区域和25 494 bp的短单拷贝(SSC)区域,以及1对分隔开它们的长18 445 bp的反向重复序列(IRS)组成;注释共得到132个基因,包括86个蛋白编码基因、38个tRNA基因和8个rRNA基因。(2)沙枣叶绿体基因组蛋白编码基因密码子的第三位碱基GC含量(GC_3)为28.47%,明显低于整个叶绿体基因组GC含量(37%),也低于第一位(GC_1)和第二位(GC_2)碱基的GC含量,说明密码子对AT碱基结尾有偏好性;其中, UCU、CCU、UGU、GCU、CUU、GAU、UCA和UAA为最优密码子。(3)同义密码子相对使用频率(RSCU)分析发现,影响密码子使用模式的因素并不单一,密码子的偏好性受到突变、选择及其他因素的共同影响,并且自然选择表达引起的序列差异比突变对密码子偏好性的影响要显著;中性绘图分析、有效密码子数(ENC-plot)分析和奇偶偏好性(PR2-plot)分析表明,沙枣叶绿体基因组使用密码子的偏性受选择的影响更大。(4)通过最大似然法、最大简约法和贝叶斯方法对胡颓子科6个物种和1个枣的叶绿体基因序列构建系统发育树,与它们使用密码子偏性聚类的结果一致,表明叶绿体基因组使用密码子偏性与物种的亲缘关系相关。  相似文献   

2.
从不结球白菜抗病品种短白梗中克隆到一个抗芜菁花叶病毒(TuMV)相关基因,命名为BcTuRsO(Gen-Bank登录号FJ600376).该基因核苷酸序列全长650 bp,编码194个氨基酸,与已克隆的抗病基因有不同程度的同源性.系统进化树分析表明,该基因在不同物种之间具有保守性.基因组DNA杂交表明,BcTuRsO基因可能以单拷贝形式存在,其表达是组成型的.实时定量PCR检测表明,芜菁花叶病毒能够诱导不结球白菜BcTuRsO基因的转录表达,其在不结球白菜叶片中的表达特征说明它可能参与寄主对病毒的抗性.  相似文献   

3.
本研究对2001年广东省急性弛缓性麻痹(Acute flaccid paralysis,AFP)病例中分离到的一株肠道病毒AFP341_GD-CHN_2001株进行了高通量测序后,获取该全基因组序列,经鉴定该毒株为EV-B83。为了解该广东省首株EV-B83分离株的全基因组特征及其重组特点,本研究对AFP341_GD-CHN_2001毒株通过最大似然法构建系统进化树,利用bootscanning分析该毒株与其它型别肠道病毒的重组位点,最后根据该重组位点分区段构建系统进化树,进一步验证重组分析结果。全长VP1序列构建的分子进化树表明,AFP341_GD-CHN_2001毒株与EV-B83原型株及柬埔寨SEP025_KH_2012分离株形成一簇;初步构建P1、P2、P3编码区序列系统进化树,提示该分离株在其分子进化中可能存在基因重组,而bootscanning分析表明非结构蛋白编码区是其发生基因重组的区域。根据bootscanning分析的断裂点对该毒株的全基因组序列分成3段构建系统进化树,该系统进化分析结果进一步明确该分离株于2B、2C、3D非结构编码区存在型间重组,与AFP341_GD-CHN_2001发生重组的毒株为CV-A9分离株NSW-V20_AU_2008、CV-B2分离株NSW-V53_AU_2010以及CV-B3分离株SSM_JL-CHN_2006。当前GenBank数据库中仅有来自美国以及中国云南的两株EV-B83全基因组序列,缺乏对该基因型的分子进化特征描述,本研究中的AFP341_GD-CHN_2001毒株为广东省首株EV-B83分离株,扩展了EV-B83数据信息,为今后EV-B83的研究提供了基础性资料。  相似文献   

4.
从不结球白菜抗芜菁花叶病毒(TuMV)品种‘短白梗'中克隆到一个抗TuMV相关基因,命名为BcTuR1(GenBank登录号FJ600374).该基因核苷酸序列全长1 019 bp,编码162个氨基酸.BcTuR1基因与芥菜抗病毒基因相似性最高为96%,其它没有与该基因相似性高于50%的序列.基因组DNA杂交表明,BcTuR1可能属于一个较小的多基因家族.实时定量PCR检测表明,芜菁花叶病毒能够诱导不结球白菜BcTuR1基因的转录表达,其在不结球白菜叶片中的表达特征说明它可能参与寄主对病毒的抗性.  相似文献   

5.
家蚕核型多角体病毒水平转移基因分析   总被引:1,自引:0,他引:1  
Duan HR  Qiu DB  Gong CL  Huang ML 《遗传》2011,33(6):636-647
为了探讨杆状病毒基因组的遗传进化模式,文章利用家蚕核型多角体病毒(BmNPV)和其宿主家蚕全基因组数据,进行了全基因组的同源性搜索和系统进化分析,结果显示,BmNPV的几丁质酶(Chi)基因、凋亡抑制蛋白3(IAP3)基因和尿苷二磷酸葡萄糖转移酶(UGT)基因为水平转移基因。这3个基因都来源于其宿主昆虫。通过核苷酸组成、密码子偏好性、选择压力等基因特征分析,发现BmNPV水平转移基因与其基因组序列存在明显差异,进一步验证水平转移基因的外源性。对3个水平转移基因的功能分析发现它们有利于杆状病毒在宿主昆虫中的侵染与繁殖,并提高杆状病毒在昆虫中的生存能力。  相似文献   

6.
采用常规PCR扩增并测序获得了齿缘摄龟(Cyclemys dentata)线粒体DNA(mtDNA)全序列,并研究了其基因组结构特点;根据20种龟的线粒体基因组重链蛋白编码基因序列,分别利用最大简约法(MP)、最大似然法(ML)和贝叶斯法(Bayesian)构建系统进化树,探讨这些龟鳖物种之间的系统进化关系。结果显示,齿缘摄龟线粒体基因组全序列长为16489 bp(GenBank登录号为JX455823),A+T含量为61.51%,编码37个基因,包括13个蛋白质编码基因,2个rRNA,22个tRNA和1个控制区(Dloop),基因组成与其他龟鳖类动物相似;非编码区D-loop长973 bp,包含1个中央保守区(CD),2个扩展终止结合序列区(ETASs),3个保守盒(CSBs);构建的MP树、ML树和Bayesian树的拓扑结构相似,闭壳龟属7种龟聚为一枝,拟水龟属6种龟聚为一枝,齿缘摄龟与黑桥摄龟聚在一枝,3种进化树均支持这些龟鳖物种现有的分类学地位。  相似文献   

7.
基于DNA序列K-tuple分布的一种非序列比对分析   总被引:1,自引:0,他引:1  
沈娟  吴文武  解小莉  郭满才  袁志发 《遗传》2010,32(6):606-612
文章在基因组K-tuple分布的基础上, 给出了一种推测生物序列差异大小的非序列比对方法。该方法可用于衡量真实DNA序列和随机重排序列在K-tuple分布上的差异。将此方法用于构建含有26种胎盘哺乳动物线粒体全基因组的系统树时, 随着K的增大, 系统树的分类效果与生物学一致公认的结果愈加匹配。结果表明, 用此方法构建的系统进化树比用其他非序列比对分析方法构建的更加合理。  相似文献   

8.
目的:克隆芜菁花叶病毒(Turnip mosaic virus,TuMV)的3'末端序列,并进行CP基因序列分析.方法:以TuMV杭州榨菜分离物(TuMv-HZZC)接种病叶为材料,利用病毒粒子吸附法制备病毒RNA模板,经RT-PCR扩增获得了TuMV-HZZC 3'末端序列,将其克隆到PMD 18-T质粒上进行序列分析.结果:TuMV-HZZC分离物3'末端序列包括部分的Nib基因、完整的TuMVCP基因和3'-UTR,CP基因为864bp,分别编码288个氨基酸,3'-UTR序列(不包括PolyA尾巴)为213bp.经过与其他TuMV分离物的CP基因核苷酸和氨基酸比较,同源性分别达到88.0%~97.6%和91.0%-96.5%.结论:TuMV的系统进化具有典型的地域和寄主关联性.  相似文献   

9.
目的:对保存的WJBC株波瓦生病毒进行全基因组序列测定和分析,阐明其与已报道毒株之间的关系。方法:将波瓦生病毒基因组编码区分11段进行RT-PCR扩增,扩增产物直接进行测序,非编码区采用RACE法进行扩增,扩增产物纯化并连接pGEM-Teasy载体后转化大肠杆菌DH5ct感受态细胞,挑取阳性克隆鉴定后进行测序,用DNAstar软件将测序结果拼接得到全基因组序列。下载波瓦生病毒全基因组核苷酸序列,利用MEGA5.0软件构建系统进化发生树。结果与结论:WJBC株波瓦生病毒全基因组共11839nt,编码3415个氨基酸残基,病毒基因组5’端和3’端分别有111、483nt的非编码区;进化树结果显示,WJBC株波瓦生病毒与LB株波瓦生病毒的亲缘性最高,可能为同一病毒株..  相似文献   

10.
用经芜菁花叶病毒(TuMV)免疫的BALB/c小鼠脾细胞与骨髓瘤细胞(Sp2/0-Agl4)融合,经3次克隆化培养和ELISA筛选,建立了5类分泌抗TuMV的单克隆抗体(McAb)的杂交瘤细胞株。其中4类分别对TuMV-CI株系、TuMV—C3株系、TuMV—C4株系和TuMV-c5株系具有特异性反应,第5类对TuMV 5个株系均有反应。以双抗体夹心ELISA和间接ELISA检测,上述McAb同CaMV、CMV、TMV、PVX和PVY等均不产生交叉反应,小鼠腹水McAb的滴度在1:256000--2048000之间,多为1:1024000,比常规多抗血清高400倍左右。对上述杂交瘤细胞系和McAb的生物学特性及理化性质进行了鉴定。用SDS—PAGE、Western—blotting对TuMV外壳蛋白亚基、McAb识别位点进行了分析,并就McAb区分TuMV株系进行了讨。  相似文献   

11.
Newcastle disease is highly pathogenic to poultry and many other avian species. However, the Newcastle disease virus (NDV) has also been reported from many non-avian species. The NDV fusion protein (F) is a major determinant of its pathogenicity and virulence. The functionalities of F gene have been explored for the development of vaccine and diagnostics against NDV. Although the F protein is well studied but the codon usage and its nucleotide composition from NDV isolated from different species have not yet been explored. In present study, we have analyzed the factors responsible for the determination of codon usage in NDV isolated from four major avian host species. The F gene of NDV is analyzed for its base composition and its correlation with the bias in codon usage. Our result showed that random mutational pressure is responsible for codon usage bias in F protein of NDV isolates. Aromaticity, GC3s, and aliphatic index were not found responsible for species based synonymous codon usage bias in F gene of NDV. Moreover, the low amount of codon usage bias and expression level was further confirmed by a low CAI value. The phylogenetic analysis of isolates was found in corroboration with the relatedness of species based on codon usage bias. The relationship between the host species and the NDV isolates from the host does not represent a significant correlation in our study. The present study provides a basic understanding of the mechanism involved in codon usage among species.  相似文献   

12.
Zhao S  Zhang Q  Liu X  Wang X  Zhang H  Wu Y  Jiang F 《Bio Systems》2008,92(3):207-214
Human Bocavirus (HBoV) is a novel virus which can cause respiratory tract disease in infants or children. In this study, the codon usage bias and the base composition variations in the available 11 complete HBoV genome sequences have been investigated. Although, there is a significant variation in codon usage bias among different HBoV genes, codon usage bias in HBoV is a little slight, which is mainly determined by the base compositions on the third codon position and the effective number of codons (ENC) value. The results of correspondence analysis (COA) and Spearman's rank correlation analysis reveals that the G + C compositional constraint is the main factor that determines the codon usage bias in HBoV and the gene's function also contributes to the codon usage in this virus. Moreover, it was found that the hydrophobicity of each protein and the gene length are also critical in affecting these viruses’ codon usage, although they were less important than that of the mutational bias and the genes’ function. At last, the relative synonymous codon usage (RSCU) of 44 genes from these 11 HBoV isolates is analyzed using a hierarchical cluster method. The result suggests that genes with same function yet from different isolates are classified into the same lineage and it does not depend on geographical location. These conclusions not only can offer an insight into the codon usage patterns and gene classification of HBoV, but also may help in increasing the efficiency of gene delivery/expression systems.  相似文献   

13.
Y.-P. Tian  X.-P. Zhu  J.-L. Liu    X.-Q. Yu    J. Du    J. Kreuze    X.-D. Li 《Journal of Phytopathology》2007,155(6):333-341
Turnip mosaic virus (TuMV; genus Potyvirus, family Potyviridae) causes great losses to cruciferous crop production worldwide. The 3′‐terminal genomic sequences of eight TuMV isolates from eastern China were compared with those of 74 other Chinese TuMV isolates of known host origin in the GenBank and isolated during the past 25 years. The reported sequences of the eight TuMV isolates are 1125 or 1126‐nucleotides (nt) long excluding the poly(A) tail. They all contain one partial open reading frame of 912 nt, encoding 304 amino acids, followed by a stop codon and a non‐translated region of 209–210 nt. Results of phylogenetic analyses showed that Chinese TuMV isolates clustered into three groups: basal‐BR, Asian‐BR and world‐B. The ratios of non‐synonymous and synonymous substitutions and results of amino acid alignment provided evidence for purifying or negative selection in TuMV populations of China.  相似文献   

14.
Two species of the DNA virus Torque teno sus virus (TTSuV), TTSuV1 and TTSuV2, have become widely distributed in pig-farming countries in recent years. In this study, we performed a comprehensive analysis of synonymous codon usage bias in 41 available TTSuV2 coding sequences (CDS), and compared the codon usage patterns of TTSuV2 and TTSuV1. TTSuV codon usage patterns were found to be phylogenetically conserved. Values for the effective number of codons (ENC) indicated that the overall extent of codon usage bias in both TTSuV2 and TTSuV1 was not significant, the most frequently occurring codons had an A or C at the third codon position. Correspondence analysis (COA) was performed and TTSuV2 and TTSuV1 sequences were located in different quadrants of the first two major axes. A plot of the ENC revealed that compositional constraint was the major factor determining the codon usage bias for TTSuV2. In addition, hierarchical cluster analysis of 41 TTSuV2 isolates based on relative synonymous codon usage (RSCU) values suggested that there was no association between geographic distribution and codon bias of TTSuV2 sequences. Finally, the comparison of RSCU for TTSuV2, TTSuV1 and the corresponding host sequence indicated that the codon usage pattern of TTSuV2 was similar to that of TTSuV1. However the similarity was low for each virus and its host. These conclusions provide important insight into the synonymous codon usage pattern of TTSuV2, as well as better understangding of the molecular evolution of TTSuV2 genomes.  相似文献   

15.
Four avian metapneumovirus (AMPV) subgroups (A–D) have been reported previously based on genetic and antigenic differences. However, until now full length sequences of the only known isolates of European subgroup C and subgroup D viruses (duck and turkey origin, respectively) have been unavailable. These full length sequences were determined and compared with other full length AMPV and human metapneumoviruses (HMPV) sequences reported previously, using phylogenetics, comparisons of nucleic and amino acid sequences and study of codon usage bias. Results confirmed that subgroup C viruses were more closely related to HMPV than they were to the other AMPV subgroups in the study. This was consistent with previous findings using partial genome sequences. Closer relationships between AMPV-A, B and D were also evident throughout the majority of results. Three metapneumovirus “clusters” HMPV, AMPV-C and AMPV-A, B and D were further supported by codon bias and phylogenetics. The data presented here together with those of previous studies describing antigenic relationships also between AMPV-A, B and D and between AMPV-C and HMPV may call for a subclassification of metapneumoviruses similar to that used for avian paramyxoviruses, grouping AMPV-A, B and D as type I metapneumoviruses and AMPV-C and HMPV as type II.  相似文献   

16.
《Genomics》2020,112(6):4657-4665
Given the high therapeutic value of the staphylococcal phage, the genome co-evolution of the phage and the host has gained great attention. Though the genome-wide AT richness in staphylococcal phages has been well-studied with nucleotide usage bias, here we proved that host factor, lifestyle and taxonomy are also important factors in understanding the phage nucleotide usages bias using information entropy formula. Such correlation is especially prominent when it comes to the synonymous codon usages of staphylococcal phages, despite the overall scattered codon usage pattern represented by principal component analysis. This strong relationship is explained by nucleotide skew which testified that the usage biases of nucleotide at different codon positions are acting on synonymous codons. Therefore, our study reveals a hidden relationship of genome evolution with host limitation and phagic phenotype, providing new insight into phage genome evolution at genetic level.  相似文献   

17.
The "expression measure" of a gene, E(g), is a statistic devised to predict the level of gene expression from codon usage bias. E(g) has been used extensively to analyze prokaryotic genome sequences. We discuss 2 problems with this approach. First, the formulation of E(g) is such that genes with the strongest selected codon usage bias are not likely to have the highest predicted expression levels; indeed the correlation between E(g) and expression level is weak among moderate to highly expressed genes. Second, in some species, highly expressed genes do not have unusual codon usage, and so codon usage cannot be used to predict expression levels. We outline a simple approach, first to check whether a genome shows evidence of selected codon usage bias and then to assess the strength of bias in genes as a guide to their likely expression level; we illustrate this with an analysis of Shewanella oneidensis.  相似文献   

18.
We compared the codon usage of sequences of transposable elements (TEs) with that of host genes from the species Drosophila melanogaster, Arabidopsis thaliana, Caenorhabditis elegans, Saccharomyces cerevisiae, and Homo sapiens. Factorial correspondence analysis showed that, regardless of the base composition of the genome, the TEs differed from the genes of their host species by their AT-richness. In all species, the percentage of A + T on the third codon position of the TEs was higher than that on the first codon position and lower than that in the noncoding DNA of the genomes. This indicates that the codon choice is not simply the outcome of mutational bias but is also subject to selection constraints. A tendency toward higher A + T on the third position than on the first position was also found in the host genes of A. thaliana, C. elegans, and S. cerevisiae but not in those of D. melanogaster and H. sapiens. This strongly suggests that the AT choice is a host-independent characteristic common to all TEs. The codon usage of TEs generally appeared to be different from the mean of the host genes. In the AT-rich genomes of Arabidopsis thaliana, Caenorhabditis elegans, and Saccharomyces cerevisiae, the codon usage bias of TEs was similar to that of weakly expressed genes. In the GC-rich genome of D. melanogaster, however, the bias in codon usage of the TEs clearly differed from that of weakly expressed genes. These findings suggest that selection acts on TEs and that TEs may display specific behavior within the host genomes. Received: 2 May 2001 / Accepted: 29 October 2001  相似文献   

19.
20.
Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole‐genome sequencing of numerous species, both prokaryotes and eukaryotes, genome‐wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole‐genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome‐sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome‐sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号