首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global nitrogen fixation contributes 413 Tg of reactive nitrogen (Nr) to terrestrial and marine ecosystems annually of which anthropogenic activities are responsible for half, 210 Tg N. The majority of the transformations of anthropogenic Nr are on land (240 Tg N yr−1) within soils and vegetation where reduced Nr contributes most of the input through the use of fertilizer nitrogen in agriculture. Leakages from the use of fertilizer Nr contribute to nitrate (NO3) in drainage waters from agricultural land and emissions of trace Nr compounds to the atmosphere. Emissions, mainly of ammonia (NH3) from land together with combustion related emissions of nitrogen oxides (NOx), contribute 100 Tg N yr−1 to the atmosphere, which are transported between countries and processed within the atmosphere, generating secondary pollutants, including ozone and other photochemical oxidants and aerosols, especially ammonium nitrate (NH4NO3) and ammonium sulfate (NH4)2SO4. Leaching and riverine transport of NO3 contribute 40–70 Tg N yr−1 to coastal waters and the open ocean, which together with the 30 Tg input to oceans from atmospheric deposition combine with marine biological nitrogen fixation (140 Tg N yr−1) to double the ocean processing of Nr. Some of the marine Nr is buried in sediments, the remainder being denitrified back to the atmosphere as N2 or N2O. The marine processing is of a similar magnitude to that in terrestrial soils and vegetation, but has a larger fraction of natural origin. The lifetime of Nr in the atmosphere, with the exception of N2O, is only a few weeks, while in terrestrial ecosystems, with the exception of peatlands (where it can be 102–103 years), the lifetime is a few decades. In the ocean, the lifetime of Nr is less well known but seems to be longer than in terrestrial ecosystems and may represent an important long-term source of N2O that will respond very slowly to control measures on the sources of Nr from which it is produced.  相似文献   

2.
Policy implications of human-accelerated nitrogen cycling   总被引:2,自引:1,他引:1  
The human induced input of reactive N into the globalbiosphere has increased to approximately 150 Tg N eachyear and is expected to continue to increase for theforeseeable future. The need to feed (125 Tg N) andto provide energy (25 Tg N) for the growing worldpopulation drives this trend. This increase inreactive N comes at, in some instances, significantcosts to society through increased emissions of NOx,NH3, N2O and NO3 and deposition of NOy and NHx.In the atmosphere, increases in tropospheric ozone andacid deposition (NOy and NHx) have led toacidification of aquatic and soil systems and toreductions in forest and crop system production. Changes in aquatic systems as a result of nitrateleaching have led to decreased drinking water quality,eutrophication, hypoxia and decreases in aquatic plantdiversity, for example. On the other hand, increaseddeposition of biologically available N may haveincreased forest biomass production and may havecontributed to increased storage of atmospheric CO2 inplant and soils. Most importantly, syntheticproduction of fertilizer N has contributed greatly tothe remarkable increase in food production that hastaken place during the past 50 years.The development of policy to control unwanted reactiveN release is difficult because much of the reactive Nrelease is related to food and energy production andreactive N species can be transported great distancesin the atmosphere and in aquatic systems. There aremany possibilities for limiting reactive N emissionsfrom fuel combustion, and in fact, great strides havebeen made during the past decades. Reducing theintroduction of new reactive N and in curtailing themovement of this N in food production is even moredifficult. The particular problem comes from the factthat most of the N that is introduced into the globalfood production system is not converted into usableproduct, but rather reenters the biosphere as asurplus. Global policy on N in agriculture isdifficult because many countries need to increase foodproduction to raise nutritional levels or to keep upwith population growth, which may require increaseduse of N fertilizers. Although N cycling occurs atregional and global scales, policies are implementedand enforced at the national or provincial/statelevels. Multinational efforts to control N loss tothe environment are surely needed, but these effortswill require commitments from individual countries andthe policy-makers within those countries.  相似文献   

3.
Policy implications of human-accelerated nitrogen cycling   总被引:9,自引:2,他引:7  
The human induced input of reactive N into the globalbiosphere has increased to approximately 150 Tg N eachyear and is expected to continue to increase for theforeseeable future. The need to feed (125 Tg N) andto provide energy (25 Tg N) for the growing worldpopulation drives this trend. This increase inreactive N comes at, in some instances, significantcosts to society through increased emissions of NOx,NH3, N2O and NO3 and deposition of NOy and NHx.In the atmosphere, increases in tropospheric ozone andacid deposition (NOy and NHx) have led toacidification of aquatic and soil systems and toreductions in forest and crop system production. Changes in aquatic systems as a result of nitrateleaching have led to decreased drinking water quality,eutrophication, hypoxia and decreases in aquatic plantdiversity, for example. On the other hand, increaseddeposition of biologically available N may haveincreased forest biomass production and may havecontributed to increased storage of atmospheric CO2 inplant and soils. Most importantly, syntheticproduction of fertilizer N has contributed greatly tothe remarkable increase in food production that hastaken place during the past 50 years.The development of policy to control unwanted reactiveN release is difficult because much of the reactive Nrelease is related to food and energy production andreactive N species can be transported great distancesin the atmosphere and in aquatic systems. There aremany possibilities for limiting reactive N emissionsfrom fuel combustion, and in fact, great strides havebeen made during the past decades. Reducing theintroduction of new reactive N and in curtailing themovement of this N in food production is even moredifficult. The particular problem comes from the factthat most of the N that is introduced into the globalfood production system is not converted into usableproduct, but rather reenters the biosphere as asurplus. Global policy on N in agriculture isdifficult because many countries need to increase foodproduction to raise nutritional levels or to keep upwith population growth, which may require increaseduse of N fertilizers. Although N cycling occurs atregional and global scales, policies are implementedand enforced at the national or provincial/statelevels. Multinational efforts to control N loss tothe environment are surely needed, but these effortswill require commitments from individual countries andthe policy-makers within those countries.  相似文献   

4.
Nitrogen compounds emitted from the field are usually considered in Life Cycle Assessments (LCA) of agricultural products or processes. The environmentally most important of these N emissions are ammonia (NH3), nitrous oxide (N20) and nitrate (N03). The emission rates are variable due to the influence of soil type, climatic conditions and agricultural management practices. Due to considerable financial and time efforts, and great variations in the results, actual measurements of emissions are neither practical nor appropriate for LCA purposes. Instead of measurements, structured methods can be used to estimate average emission rates. Another possibility is the use of values derived from the literature which would, however, require considerable effort compared to estimation methods, especially because the values might only be valid for the particular system under investigation. In this paper methods to determine estimates for NH3, N20 and NO3 emissions were selected from a literature review. Different procedures were chosen to estimate NH3 emissions from organic (Horlacher &Marschner, 1990) and mineral fertilizers (ECETOC, 1994). To calculate the N2O emissions, a function derived by Bouwman (1995) was selected. A method developed by the German Soil Science Association (DBG, 1992) was adopted to determine potential NO3 emissions. None of the methods are computer-based and consequently require only a minimum set of input data. This makes them, on the one hand, transparent and easy to perform, while, on the other hand, they certainly simplify the complex processes.  相似文献   

5.
Agriculture in the United States (US) cycles large quantities of nitrogen (N) to produce food, fuel, and fiber and is a major source of excess reactive nitrogen (Nr) in the environment. Nitrogen lost from cropping systems and animal operations moves to waterways, groundwater, and the atmosphere. Changes in climate and climate variability may further affect the ability of agricultural systems to conserve N. The N that escapes affects climate directly through the emissions of nitrous oxide (N2O), and indirectly through the loss of nitrate (NO3 ?), nitrogen oxides (NO x ) and ammonia to downstream and downwind ecosystems that then emit some of the N received as N2O and NO x . Emissions of NO x lead to the formation of tropospheric ozone, a greenhouse gas that can also harm crops directly. There are many opportunities to mitigate the impact of agricultural N on climate and the impact of climate on agricultural N. Some are available today; many need further research; and all await effective incentives to become adopted. Research needs can be grouped into four major categories: (1) an improved understanding of agricultural N cycle responses to changing climate; (2) a systems-level understanding of important crop and animal systems sufficient to identify key interactions and feedbacks; (3) the further development and testing of quantitative models capable of predicting N-climate interactions with confidence across a wide variety of crop-soil-climate combinations; and (4) socioecological research to better understand the incentives necessary to achieve meaningful deployment of realistic solutions.  相似文献   

6.
京郊典型设施蔬菜地土壤N_2O排放特征   总被引:10,自引:0,他引:10  
张婧  李虎  王立刚  邱建军 《生态学报》2014,34(14):4088-4098
利用静态暗箱-气相色谱法对北京郊区设施蔬菜地典型种植模式(番茄-白菜-生菜)下土壤N2O排放特征进行了周年(2012年2月22日—2013年2月23日)观测,探讨了不同处理下(即不施氮肥处理(CK)、农民习惯施肥处理(FP)、减氮优化施肥处理(OPT)和减氮优化施肥+硝化抑制剂处理(OPT+DCD))N2O排放特征及土壤温度、土壤湿度、土壤无机氮含量对土壤N2O排放的影响。结果表明:每次施肥+灌溉之后设施蔬菜地会出现明显的N2O排放高峰,持续时间一般为3—5 d。不同处理N2O排放通量变化范围在-0.21—14.26 mg N2O m-2h-1,平均排放通量0.03—0.36 mg N2O m-2h-1。整个蔬菜生长季各处理N2O排放与土壤孔隙含水率(WFPS)均表现出极显著的正相关关系(P0.01);不施氮处理5 cm深度土壤温度与N2O排放通量呈现显著的正相关关系(P0.05);各处理N2O排放与土壤表层硝态氮含量具有较一致变化趋势。不同处理下N2O年度排放总量差异显著,依次顺序为FP((20.66±0.91)kg N/hm2)OPT((12.79±1.33)kg N/hm2)OPT+DCD((8.03±0.37)kg N/hm2)。与FP处理相比,OPT处理和OPT+DCD处理N2O年排放总量分别减少了38.09%和61.13%。各处理N2O排放系数介于0.36%—0.77%,低于IPCC 1.0%的推荐值。在目前的管理措施下,合理减少施氮量和添加硝化抑制剂是减少设施蔬菜地N2O排放量的有效途径。  相似文献   

7.
E. Sanhueza 《Plant and Soil》1982,67(1-3):61-71
In this work an analysis of the sources, atmospheric concentration, chemical reactions and sinks of the principal atmospheric nitrogen compounds is made. Atmospheric emissions of N2O and NH3 are almost entirely due to biological activity on the continents and in the oceans. The combustion of fossil fuels and biomass is the principal source of NOx. The only relevant chemical transformations in the troposphere are the oxidation of NOx to NO3 ? and the formation of ammonium salts. Only 10% of the NH3 emitted is oxidized. Washout of NH4 + and NO3 ? by rainfall is the principal mechanism for removing nitrogen compounds from the atmosphere. Part of the N2O enters the stratosphere and part must be removed in the biosphere by processes not yet established. NOx produced in the atmosphere by the burning of fossil fuels and biomass and by lightning represents between 30 and 40% of the total nitrogen fixed. A complete nitrogen balance for the troposphere is presented. Since the photochemical oxidation of NOx is rapid and atmospheric transport is relatively slow with respect to the cycling of water in the troposphere, nitrogen compounds return to the earth's surface close to where they were emitted. Fixed-nitrogen inputs to the continents and oceans due to biological and industrial fixation are slightly greater than those due to rain water. However, since rain falls everywhere, input from this source is only important on soils not subject to intensive agriculture.  相似文献   

8.
Nitrogen oxides (NOx) are important components of ambient and indoor air pollution and are emitted from a range of combustion sources, including on-road mobile sources, electric power generators, and non-road mobile sources. While anthropogenic sources dominate, NOx is also formed by lightning strikes and wildland fires and is also emitted by soil. Reduced nitrogen (e.g., ammonia, NH3) is also emitted by various sources, including fertilizer application and animal waste decomposition. Nitrogen oxides, ozone (O3) and fine particulate matter (PM2.5) pollution related to atmospheric emissions of nitrogen (N) and other pollutants can cause premature death and a variety of serious health effects. Climate change is expected to impact how N-related pollutants affect human health. For example, changes in temperature and precipitation patterns are projected to both lengthen the O3 season and intensify high O3 episodes in some areas. Other climate-related changes may increase the atmospheric release of N compounds through impacts on wildfire regimes, soil emissions, and biogenic emissions from terrestrial ecosystems. This paper examines the potential human health implications of climate change and N cycle interactions related to ambient air pollution.  相似文献   

9.
Contemporary and pre-industrial global reactive nitrogen budgets   总被引:56,自引:6,他引:50  
Increases and expansion of anthropogenic emissions of both oxidized nitrogen compounds, NOx, and a reduced nitrogen compound, NH3, have driven an increase in nitrogen deposition. We estimate global NOx and NH3 emissions and use a model of the global troposphere, MOGUNTIA, to examine the pre-industrial and contemporary quantities and spatial patterns of wet and dry NOy and NHx deposition. Pre-industrial wet plus dry NOx and NHx deposition was greatest for tropical ecosystems, related to soil emissions, biomass burning and lightning emissions. Contemporary NOy+NHx wet and dry deposition onto Northern Hemisphere (NH) temperate ecosystems averages more than four times that of preindustrial N deposition and far exceeds contemporary tropical N deposition. All temperate and tropical biomes receive more N via deposition today than pre-industrially. Comparison of contemporary wet deposition model estimates to measurements of wet deposition reveal that modeled and measured wet deposition for both NO 3 and NH 4 + were quite similar over the U.S. Over Western Europe, the model tended to underestimate wet deposition of NO 3 and NH 4 + but bulk deposition measurements were comparable to modeled total deposition. For the U.S. and Western Europe, we also estimated N emission and deposition budgets. In the U.S., estimated emissions exceed interpolated total deposition by 3-6 Tg N, suggesting that substantial N is transported offshore and/or the remote and rural location of the sites may fail to capture the deposition of urban emissions. In Europe, by contrast, interpolated total N deposition balances estimated emissions within the uncertainty of each.Abbreviations EMEP European Monitoring and Evaluation Program - GEIA Global Emissions Inventory Activity - NADP/NTN National Atmospheric Deposition Program/National Trends Network in the US - NH Northern Hemisphere - NHx=NH3+NH + 4 NOx=NO+NO2 NOy total odd nitrogen=NOx+HNO3+HONO+HO2NO2+NO3+radical (NO3 .)+Peroxyacetyl nitrates+N2O5+organic nitrates - SH Southern Hemisphere - Gg 109 g - Tg 1012 g  相似文献   

10.
There is increasing interest in the importance of nitrogen gas emissions from natural (non-agricultural) ecosystems with respect to local as well as global nitrogen budgets and with respect to the effects of nitrogen oxides on atmospheric ozone levels and global warming. The volatile forms of nitrogen of common interest are ammonia (NH3), nitrous oxide, (N2O), dinitrogen (N2), and NOx (principally NO + NO2). It is often difficult to attribute emissions of these compounds from soils to a single process because they are produced by a variety of common biogeochemical mechanisms. Although environmental conditions in the soil often appear to favor nitrogen gas emissions, the potential nitrogen gas emission rate from undisturbed ecosystems is rarely approached. The best estimates to date suggest that nitrogen gas emission rates from undisturbed ecosystems typically range from > 1 to perhaps 10 or 20 kg N ha-1 yr-1. Under certain conditions, however, emission rates may be much higher. For example, excreta from animals in grasslands may elevate ammonia volatilization up to 100 kg N ha-1 yr-1 depending on grazer density; tidal input of nutrients to coastal wetlands may support denitrification rates of several hundred kg N ha-1 yr-1 . Excepting such cases, gaseous nitrogen losses are probably a small component of the local nitrogen budget in most undisturbed ecosystems. However, emissions from undisturbed soils are an important component of the global source strengths for (N2O + N2), N2O and NOx (50%, 21%, and 10% respectively). Emission rates of N2O from natural ecosystems are higher than assumed previously by perhaps 10 times. Large-scale disturbance may have a stimulatory effect on nitrogen emission rates which could have important effects on global nitrogen budgets. There is a need for more sophisticated methods to account for natural temporal and spatial variations of emissions rates, to more accurately and precisely assess their global source strengths.  相似文献   

11.
Nitrous oxide emissions from a cropped soil in a semi-arid climate   总被引:5,自引:0,他引:5  
Understanding nitrous oxide (N2O) emissions from agricultural soils in semi‐arid regions is required to better understand global terrestrial N2O losses. Nitrous oxide emissions were measured from a rain‐fed, cropped soil in a semi‐arid region of south‐western Australia for one year on a sub‐daily basis. The site included N‐fertilized (100 kg N ha?1 yr?1) and nonfertilized plots. Emissions were measured using soil chambers connected to a fully automated system that measured N2O using gas chromatography. Daily N2O emissions were low (?1.8 to 7.3 g N2O‐N ha?1 day?1) and culminated in an annual loss of 0.11 kg N2O‐N ha?1 from N‐fertilized soil and 0.09 kg N2O‐N ha?1 from nonfertilized soil. Over half (55%) the annual N2O emission occurred from both N treatments when the soil was fallow, following a series of summer rainfall events. At this time of the year, conditions were conducive for soil microbial N2O production: elevated soil water content, available N, soil temperatures generally >25 °C and no active plant growth. The proportion of N fertilizer emitted as N2O in 1 year, after correction for the ‘background’ emission (no N fertilizer applied), was 0.02%. The emission factor reported in this study was 60 times lower than the IPCC default value for the application of synthetic fertilizers to land (1.25%), suggesting that the default may not be suitable for cropped soils in semi‐arid regions. Applying N fertilizer did not significantly increase the annual N2O emission, demonstrating that a proportion of N2O emitted from agricultural soils may not be directly derived from the application of N fertilizer. ‘Background’ emissions, resulting from other agricultural practices, need to be accounted for if we are to fully assess the impact of agriculture in semi‐arid regions on global terrestrial N2O emissions.  相似文献   

12.
Aim Agroforestry systems incorporating N‐fixing trees have been shown to be socially beneficial and are thought to be environmentally friendly, both enriching and stabilizing soil. However, the effect of such systems on the emissions of the important greenhouse gas nitrous oxide (N2O) and the tropospheric ozone precursor nitric oxide (NO) is largely unknown. Location Soil was collected from the research plots of Institut Sénégalais de Recherches Agricoles at Bandia and Bambey, Senegal, West Africa, and from neighbouring farmers’ fields. Trace gas flux measurements and chemical analysis of the soil were carried out at the Centre for Ecology and Hydrology (CEH), Edinburgh, UK. Methods Nitric oxide (NO) and nitrous oxide (N2O) emissions were measured following simulated rainfall events (10 and 20 mm equivalents) from repacked soil cores collected under two tree species (Acacia raddiana) and Eucalyptus camaldulensis) in each of two provenance trails. In addition, soil samples were collected in local fields growing peanut (Arachis hypogaea) and Sorghum (Sorghum vulgare), close to the species trials in Bambey. NO was measured using a flow through system and was analysed by chemiluminescence. Nitrous oxide was measured from the repacked soil core headspace and was analysed by electron capture gas chromatography. Soil mineral N was extracted with KCl and analysed by colorimetric methods on separate soil columns. Results Light rainfall, which increased the gravimetric soil moisture content to 20%, stimulated an increase in NO emission but there was no detectable N2O emission. A heavy rainfall event, which increased the gravimetric soil moisture to 30%, stimulated N2O emission with a subsequent peak in NO emissions when the soils became drier. Soil collected under the N‐fixing tree species emitted significantly more N2O than soil collected under the N‐fixing crop species (P < 0.01). NO and N2O emissions significantly correlated with soil available N (NH4 and NO3) (P < 0.05). Main conclusions Rainfall intensity, supply of mineral N from organic matter and N fixation were the prime drivers of NO and N2O emissions from seasonally dry tropical soils. The improved soil fertility underneath the trees provided a larger pool of mineral N and yielded larger rates of NO and N2O emissions.  相似文献   

13.
In life cycle impact assessment (LCIA), limited attention is generally given to a consistent inclusion of a fate analysis in the derivation of aquatic eutrophication potentials. This paper includes fate and potential effects in the calculation of aquatic eutrophication potentials of NH3 and NOx emitted to the ait, N and P emitted to water, and N and P emitted to soil. These characterisation factors were calculated for the Netherlands, West-Europe and the world, respectively. Implementation in current LCIA practice is further facilitated by calculating normalisation scores for the Netherlands in 1997, West-Europe in 1995 and the world in 1990. Although the results presented may be a step forward, significant improvements are still needed in the assessment of pollutants causing aquatic eutrophication. In particular, the fate factors representing transport of NOx and NH3, air emissions via soils to the aquatic environment should be improved. In addition, differences in the biological availability of nutrients and differences in the sensitivity of aquatic environments should be included in the calculation of effect factors for aquatic eutrophication.  相似文献   

14.
Nitrification inhibitors show promise in decreasing nitrous oxide (N2O) emission from agricultural systems worldwide, but they may be much less effective than previously thought when both direct and indirect emissions are taken into account. Whilst nitrification inhibitors are effective at decreasing direct N2O emission and nitrate (NO3) leaching, limited studies suggest that they may increase ammonia (NH3) volatilization and, subsequently, indirect N2O emission. These dual effects are typically not considered when evaluating the inhibitors as a climate change mitigation tool. Here, we collate results from the literature that simultaneously examined the effects of nitrification inhibitors on N2O and NH3 emissions. We found that nitrification inhibitors decreased direct N2O emission by 0.2–4.5 kg N2O‐N ha?1 (8–57%), but generally increased NH3 emission by 0.2–18.7 kg NH3‐N ha?1 (3–65%). Taking into account the estimated indirect N2O emission from deposited NH3, the overall impact of nitrification inhibitors ranged from ?4.5 (reduction) to +0.5 (increase) kg N2O‐N ha?1. Our results suggest that the beneficial effect of nitrification inhibitors in decreasing direct N2O emission can be undermined or even outweighed by an increase in NH3 volatilization.  相似文献   

15.
淡水生态系统是大气中N2O的重要排放源,受到国内外广泛关注。城市小型景观水体作为区域淡水系统的重要组成,具有环境容量小,受人类活动干扰强烈,其N2O排放特征及影响机制并不清楚。选择重庆大学城8个典型景观水体和2个城市外围的自然水体(对照)作为研究对象,利用顶空法和漂浮箱法对水体溶存N2O浓度及排放通量进行季节性监测,并通过分析生境特征及水环境特征,探究城市小型景观水体N2O排放特征及关键影响因素。结果表明:1)小型景观水体TN、NO3--N、NH4+-N、NO2--N含量总体偏低但变异性极强(变化范围分别为0.31-1.47 mg/L、0.05-0.79 mg/L、0.03-0.14 mg/L、0.00-0.04 mg/L),硝态氮是主要的氮形态;景观水体氮丰度远高于外围的自然水体;2)10个小型水体N2O浓度范围为16.51-158.96 nmol/L,平均为(47.60±21.47) nmol/L,均处于过饱和状态;漂浮箱法实测8个景观水体N2O排放通量均值为(0.13±0.05)mmol m-2 d-1,是对照水体的1.3-5.2倍,高于大部分已有研究结果,是大气N2O的排放热源;3)景观水体N2O排放通量与水体各形态氮含量呈显著的正相关关系,较高的N负荷和强烈的氮转化过程是导致景观水体成为N2O排放热源的主要因子,水体N含量可以作为景观水体N2O排放强度的有效指示因子;同时水生植物分布对水体N2O排放影响显著,有植物分布的水域比开敞水域高1.4倍;4)漂浮箱法和边界层模型法对小型景观水体N2O排放通量的监测结果呈较好的线性关系,但不同季节仍存在着一定差异,需要进一步优化模型估算方法;5)水体N2O排放通量对温度的季节性变化较为敏感,呈夏季最高,春、秋季次之,冬季最低的季节模式。本研究强调,城市小型景观水体具有较高的N2O排放速率,在区域氮循环及全球淡水系统温室气体排放清单中具有不可忽视的作用,在未来研究中应得到更多关注。  相似文献   

16.
Cryptogamic covers, which comprise some of the oldest forms of terrestrial life on Earth (Lenton & Huntingford, 2003 ), have recently been found to fix large amounts of nitrogen and carbon dioxide from the atmosphere (Elbert et al., 2012 ). Here we show that they are also greenhouse gas sources with large nitrous oxide (N2O) and small methane (CH4) emissions. Whilst N2O emission rates varied with temperature, humidity, and N deposition, an almost constant ratio with respect to respiratory CO2 emissions was observed for numerous lichens and bryophytes. We employed this ratio together with respiration data to calculate global and regional N2O emissions. If our laboratory measurements are typical for lichens and bryophytes living on ground and plant surfaces and scaled on a global basis, we estimate a N2O source strength of 0.32–0.59 Tg year?1 for the global N2O emissions from cryptogamic covers. Thus, our emission estimate might account for 4–9% of the global N2O budget from natural terrestrial sources. In a wide range of arid and forested regions, cryptogamic covers appear to be the dominant source of N2O. We suggest that greenhouse gas emissions associated with this source might increase in the course of global change due to higher temperatures and enhanced nitrogen deposition.  相似文献   

17.
氮素类型和剂量对寒温带针叶林土壤N2O排放的影响   总被引:1,自引:0,他引:1  
大气氮沉降输入会增加森林生态系统氮素有效性,进而改变土壤N_2O产生与排放,然而有关不同氮素离子(氧化态NO_3~--N与还原态NH_4~+-N)沉降对土壤N_2O排放的影响知之甚少。以大兴安岭寒温带针叶林为研究对象,构建了3种类型(NH_4Cl、KNO_3、NH_4NO_3)和4个施氮水平(0、10、20、40 kg N hm~(-2)a~(-1))的增氮控制试验,利用流动化学分析仪和静态箱-气相色谱法4次/月测定凋落物层和矿质层土壤无机氮含量、土壤-大气界面N_2O净交换通量以及相关环境因子,分析施氮类型和剂量对土壤氮素有效性、土壤N_2O通量的影响探讨氮素富集条件下土壤N_2O通量的环境驱动机制。结果表明:施氮类型和剂量均显著影响土壤无机氮含量,土壤NH_4~+-N的积累效应显著高于NO_3~--N。施氮一致增加寒温带针叶林土壤N_2O排放,NH_4NO_3促进效应最为明显,增幅为442%-677%,高于全球平均水平(134%)。土壤N_2O通量与土壤温度、凋落物层NH_4~+-N含量正相关,且随着施氮水平增加而增加。结果表明大气氮沉降短期内不会导致寒温带针叶林土壤NO_3~--N大量流失,但会显著促进土壤N_2O的排放。此外,外源性NH_4~+和NO_3~-输入对土壤N_2O排放的促进作用具有协同效应,在未来森林生态系统氮循环和氮平衡研究中应该区分对待。  相似文献   

18.
Nitrous oxide (N2O) emissions from inland waters remain a major source of uncertainty in global greenhouse gas budgets. N2O emissions are typically estimated using emission factors (EFs), defined as the proportion of the terrestrial nitrogen (N) load to a water body that is emitted as N2O to the atmosphere. The Intergovernmental Panel on Climate Change (IPCC) has proposed EFs of 0.25% and 0.75%, though studies have suggested that both these values are either too high or too low. In this work, we develop a mechanistic modeling approach to explicitly predict N2O production and emissions via nitrification and denitrification in rivers, reservoirs and estuaries. In particular, we introduce a water residence time dependence, which kinetically limits the extent of denitrification and nitrification in water bodies. We revise existing spatially explicit estimates of N loads to inland waters to predict both lumped watershed and half‐degree grid cell emissions and EFs worldwide, as well as the proportions of these emissions that originate from denitrification and nitrification. We estimate global inland water N2O emissions of 10.6–19.8 Gmol N year?1 (148–277 Gg N year?1), with reservoirs producing most N2O per unit area. Our results indicate that IPCC EFs are likely overestimated by up to an order of magnitude, and that achieving the magnitude of the IPCC's EFs is kinetically improbable in most river systems. Denitrification represents the major pathway of N2O production in river systems, whereas nitrification dominates production in reservoirs and estuaries.  相似文献   

19.
Global nitrogen (N) enrichment has resulted in increased nitrous oxide (N2O) emission that greatly contributes to climate change and stratospheric ozone destruction, but little is known about the N2O emissions from urban river networks receiving anthropogenic N inputs. We examined N2O saturation and emission in the Shanghai city river network, covering 6300 km2, over 27 months. The overall mean saturation and emission from 87 locations was 770% and 1.91 mg N2O‐N m?2 d?1, respectively. Nitrous oxide (N2O) saturation did not exhibit a clear seasonality, but the temporal pattern was co‐regulated by both water temperature and N loadings. Rivers draining through urban and suburban areas receiving more sewage N inputs had higher N2O saturation and emission than those in rural areas. Regression analysis indicated that water ammonium (NH4+) and dissolved oxygen (DO) level had great control on N2O production and were better predictors of N2O emission in urban watershed. About 0.29 Gg N2O‐N yr?1 N2O was emitted from the Shanghai river network annually, which was about 131% of IPCC's prediction using default emission values. Given the rapid progress of global urbanization, more study efforts, particularly on nitrification and its N2O yielding, are needed to better quantify the role of urban rivers in global riverine N2O emission.  相似文献   

20.
Nitrous oxide (N2O) is a potent greenhouse gas with a high contribution from agricultural soils and emissions that depend on soil type, climate, crops and management practices. The N2O emissions therefore need to be included as an integral part of environmental assessments of agricultural production systems. An algorithm for N2O production and emission from agricultural soils was developed and included in the FASSET whole-farm model. The model simulated carbon and nitrogen (N) turnover on a daily basis. Both nitrification and denitrification was included in the model as sources for N2O production, and the N2O emissions depended on soil microbial and physical conditions. The model was tested on experimental data of N2O emissions from grasslands in UK, Finland and Denmark, differing in climatic conditions, soil properties and management. The model simulated the general time course of N2O emissions and captured the observed effects of fertiliser and manure management on emissions. Scenario analyses for grazed and cut grasslands were conducted to evaluate the effects of soil texture, climatic conditions, grassland management and N fertilisation on N2O emissions. The soils varied from coarse sand to sandy loam and the climatic variation was taken to represent the climatic variation within Denmark. N fertiliser rates were varied from 0 to 500 kg N ha−1. The simulated N2O emissions showed a non-linear response to increasing N rates with increasing emission factors at higher N rates. The simulated emissions increased with increasing soil clay contents. N2O emissions were slightly increased at higher temperatures, whereas increasing annual rainfall generally lead to decreasing emissions. Emissions were slightly higher from grazed grasslands compared with cut grasslands at similar rates of total N input (fertiliser and animal excreta). The results indicate higher emission factors and thus higher potentials for reducing N2O emissions for intensively grazed grasslands on fine textured soils than for extensive cut-based grasslands on sandy soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号