首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
Mitochondrial ATP-sensitive K+ channels (mitoKATP) have been proposed to mediate protection against ischemic injury by increasing high-energy intermediate levels. This study was designed to verify if mitochondria are an important factor in the loss of cardiac ATP associated to ischemia, and determine the possible role of mitoKATP in the control of ischemic ATP loss. Langendorff-perfused rat hearts subjected to ischemia were found to have significantly higher ATP contents when pretreated with oligomycin or atractyloside, indicating that mitochondrial ATP hydrolysis contributes toward ischemic ATP depletion. MitoKATP opening induced by diazoxide promoted a similar protection against ATP loss. Diazoxide also inhibited ATP hydrolysis in isolated, nonrespiring mitochondria, an effect accompanied by a drop in the membrane potential and Ca2+ uptake. In hearts subjected to ischemia followed by reperfusion, myocardial injury was prevented by diazoxide, but not atractyloside or oligomycin, which, unlike diazoxide, decreased reperfusion ATP levels. Our results suggest that mitoKATP-mediated protection occurs due to selective inhibition of mitochondrial ATP hydrolysis during ischemia, without affecting ATP synthesis after reperfusion.  相似文献   

2.
There is an emerging consensus that pharmacological opening of the mitochondrial ATP-sensitive K(+) (K(ATP)) channel protects the heart against ischemia-reperfusion damage; however, there are widely divergent views on the effects of openers on isolated heart mitochondria. We have examined the effects of diazoxide and pinacidil on the bioenergetic properties of rat heart mitochondria. As expected of hydrophobic compounds, these drugs have toxic, as well as pharmacological, effects on mitochondria. Both drugs inhibit respiration and increase membrane proton permeability as a function of concentration, causing a decrease in mitochondrial membrane potential and a consequent decrease in Ca(2+) uptake, but these effects are not caused by opening mitochondrial K(ATP) channels. In pharmacological doses (<50 microM), both drugs open mitochondrial K(ATP) channels, and resulting changes in membrane potential and respiration are minimal. The increased K(+) influx associated with mitochondrial K(ATP) channel opening is approximately 30 nmol. min(-1). mg(-1), a very low rate that will depolarize by only 1-2 mV. However, this increase in K(+) influx causes a significant increase in matrix volume. The volume increase is sufficient to reverse matrix contraction caused by oxidative phosphorylation and can be observed even when respiration is inhibited and the membrane potential is supported by ATP hydrolysis, conditions expected during ischemia. Thus opening mitochondrial K(ATP) channels has little direct effect on respiration, membrane potential, or Ca(2+) uptake but has important effects on matrix and intermembrane space volumes.  相似文献   

3.
Dichloroacetate (DCA) is a pyruvate dehydrogenase activator that increases cardiac efficiency during reperfusion of ischemic hearts. We determined whether DCA increases efficiency of mitochondrial ATP production by measuring proton leak in mitochondria from isolated working rat hearts subjected to 30 min of ischemia and 60 min of reperfusion. In untreated hearts, cardiac work and efficiency decreased during reperfusion to 26% and 40% of preischemic values, respectively. Membrane potential was significantly lower in mitochondria from reperfused (175.6 +/- 2.2 mV) versus aerobic (185.8 +/- 3.1 mV) hearts. DCA (1 mM added at reperfusion) improved recovery of cardiac work (1.9-fold) and efficiency (1.5-fold) but had no effect on mitochondrial membrane potential (170.6 +/- 2.9 mV). At the maximal attainable membrane potential, O(2) consumption (nmol O(2) x mg(-1) x min(-1)) did not differ between untreated or DCA-treated hearts (128.3 +/- 7.5 and 120.6 +/- 7.6, respectively) but was significantly greater than aerobic hearts (76.6 +/- 7.6). During reperfusion, DCA increased glucose oxidation 2.5-fold and decreased H(+) production from glucose metabolism to 53% of untreated hearts. Because H(+) production decreases cardiac efficiency, we suggest that DCA increases cardiac efficiency during reperfusion of ischemic hearts by increasing the efficiency of ATP use and not by increasing the efficiency of ATP production.  相似文献   

4.
It has been shown that orally administered geranylgeranylacetone (GGA), an anti-ulcer drug, induces expression of heat shock protein 72 (HSP72) and provides protection against ischemia-reperfusion in rat hearts. The underlying protective mechanisms, however, remain unknown. Mitochondria have been shown to be a selective target for heat stress-induced cardioprotection. Therefore, we hypothesized that preservation of mitochondrial function, owing to an opening of a putative channel in the inner mitochondrial membrane, the mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel, could be involved in GGA- or heat stress-induced cardioprotection against ischemia-reperfusion. Rats were treated with oral GGA or vehicle. Twenty-four hours later, each heart was isolated and perfused with a Langendorff apparatus. GGA-treated hearts showed better functional recovery, and less creatine kinase was released during a 30-min reperfusion period, after 20 min of no-flow ischemia. Concomitant perfusion with 5-hydroxydecanoate (5-HD, 100 microM) or glibenclamide (10 microM) abolished the GGA-induced cardioprotective effect. GGA also showed preserved mitochondrial respiratory function, isolated at the end of the reperfusion period, which was abolished with 5-HD treatment. GGA prevented destruction of the mitochondrial structure by ischemia-reperfusion, as shown by electron microscopy. In cultured cardiomyocytes, GGA induced HSP72 expression and resulted in less damage to cells, including less apoptosis in response to hypoxia-reoxygenation. Treatment with 5-HD abolished the GGA-induced cardioprotective effects but did not affect HSP72 expression. Our results indicate that preserved mitochondrial respiratory function, owing to GGA-induced HSP72 expression, may, at least in part, have a role in cardioprotection against ischemia-reperfusion. These processes may involve opening of the mitoK(ATP) channel.  相似文献   

5.
Subcellular fractionation of tissue in nonaqueous media was employed to study metabolite compartmentation in isolated perfused rat hearts. The mitochondrial and cytosolic concentrations of citrate and 2-oxoglutarate, total concentrations of the glycolytic intermediates and rate of glycolysis were measured in connection with changes in the rate of cellular respiration upon modulation of the ATP consumption by changes of the mechanical work load of the heart. The concentrations of citrate and 2-oxoglutarate in the mitochondria were 16- and 14-fold, respectively, greater than those in the cytosol of beating hearts. The cytosolic citrate concentration was low compared with concentrations which have been employed in demonstrations of the citrate inhibition of glycolysis. In spite of the low activities reported for the tricarboxylate carrier in heart mitochondria, the cytosolic citrate concentration reacted to perturbations of the mitochondrial citrate concentration, and inhibition of glycolysis at the phosphofructokinase step could be observed concomitantly with an increase in the cytosolic citrate concentration. The ΔpH across the inner mitochondrial membrane calculated from the 2-oxoglutarate concentration gradient and the mitochondrial membrane potential calculated from the adenylate distribution gave an electrochemical potential difference of protons compatible with chemiosmotic coupling in the intact myocardium.  相似文献   

6.
We investigated consequences of cardiac arrest on sarcolemmal and mitochondrial effects of ATP-sensitive potassium channel (KATP) opener, P-1075, in Langendorff-perfused rat hearts. Depolarised cardiac arrest (24.7 mM KCl) did not affect glibenclamide-sensitive twofold activation of rubidium efflux by P-1075 (5 microM) from rubidium-loaded hearts, but eliminated uncoupling produced by P-1075 in beating hearts: 40% depletion of phosphocreatine and ATP, 50% increase in oxygen consumption, and reduction of cytochrome c oxidase. Depolarized cardiac arrest by calcium channel blocker, verapamil (5 microM), also prevented uncoupling. Lack of P-1075 mitochondrial effects in depolarized hearts was not due to changes in phosphorylation potential, because 2,4-dintrophenol (10 microM) reversed the [PCr]/[Cr] increase and Pi decrease, characteristic of KCl-arrest, but did not restore uncoupling. In agreement with this conclusion, pyruvate (5 mM) increased [PCr]/[Cr] and decreased Pi, but did not prevent uncoupling in beating hearts. A decrease in mean [Ca2+] in KCl-arrested hearts could not account for lack of P-1075 mitochondrial effects, because calcium channel opener, S-(-)-Bay K8644 (50 nM), and beta-agonist, isoproterenol (0.5 microM), did not facilitate uncoupling. In contrast, in adenosine (1 mM)-arrested hearts (polarized arrest), P-1075 caused 40% phosphocreatine and ATP depletion. In isolated rat liver mitochondria, P-1075 (20 microM) decreased mitochondrial membrane potential (DeltaPsi) by approximately 14 mV (demonstrated by redistribution of DeltaPsi-sensitive dye, rhodamine 800) in a glibenclamide-sensitive manner. We concluded that cell membrane depolarization does not prevent activation of sarcolemmal KATP by P-1075, but it plays a role in mitochondrial uncoupling effects of P-1075.  相似文献   

7.
A short period of ischemia followed by reperfusion produces a state of affairs in which the cells' potential for surviving longer ischemia is enhanced. This is called ischemic preconditioning. The effects of preconditioning are also related to the reperfusion damage which ensues upon tissue oxygenation. The role of the cellular energy state in reperfusion damage remains an enigma, although ischemic preconditioning is known to trigger mechanisms which contribute to the prevention of unnecessary ATP waste. In some species up to 80% of ATP hydrolysis in ischemia can be attributed to mitochondrial F1-F0-ATPase (ATP synthase), and a role for its inhibitor protein (IF1) in ATP preservation has been proposed. Although originally regarded as limited to large animals with a slow heart beat, inhibition by IF1 is probably a universal phenomenon. Coincidentally with ATPase inhibition, the decline in cellular ATP slows down, but even so the difference in ATP concentration between preconditioned and non-conditioned hearts is still small at the final stages of a long ischemia, when the beneficial effect of preconditioning is observable, although the energy state during reperfusion remains low in hearts which do not recover.  相似文献   

8.
The relationships between mitochondrial transmembrane potential, ATP concentration, and cytotoxicity were evaluated after exposure of isolated rat hepatocytes to different mitochondrial poisons. Both the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its fully oxidized metabolite, the 1-methyl-4-phenylpyridinium (MPP+) ion, caused a concentration- and time-dependent depolarization of mitochondrial membranes which followed ATP depletion and preceded cytotoxicity. The effect of MPTP, but not that of MPP+, was prevented by deprenyl, an inhibitor of MPTP conversion to MPP+ via monoamine oxidase type B. Addition of fructose to the hepatocyte incubations treated with either MPTP or MPP+ counteracted the loss of mitochondrial transmembrane potential. Fructose was also effective in protecting against the mitochondrial membrane depolarization as well as ATP depletion and cytotoxicity induced by antimycin. A, carbonyl cyanide p-trifluoromethoxyphenyl hydrazone, and valinomycin. Data confirm the key role played by MPP(+)-induced mitochondrial damage in MPTP toxicity and indicate that (i) ATP produced via the glycolytic pathway can be utilized by hepatocytes to maintain mitochondrial electrochemical gradient, and (ii) a loss of mitochondrial membrane potential may occur only when supplies of ATP are depleted.  相似文献   

9.
We studied the effects of electrical stimulation on insulin release from rat insulinoma (INS-1) cells. The anodal/cathodal biphasic stimulation (ACBPS) electrical waveform resulted in a voltage- and stimulation duration-dependent increase in insulin release. ACBPS elicited insulin release both in the presence and absence of glucose. Basal and ACBPS-induced insulin secretion could be inhibited by mitochondrial poisons and calcium channel blockers, indicating that insulin release was dependent on adenosine triphosphate (ATP) and the influx of calcium. ACBPS parameters that released insulin caused no detectable plasma membrane damage or cytotoxicity, although temporary morphological changes could be observed immediately after ACBPS. ACBPS did not alter the plasma membrane transmembrane potential but did cause pronounced uptake of MitoTracker Red into the mitochondrial membrane, indicating an increased mitochondrial membrane potential. While the ATP:ADP ratio after ACBPS did not change, the guanosine triphosphate (GTP) levels increased and increased GTP levels have previously been associated with insulin release in INS-1 cells. These results provide evidence that ACBPS can have significant biological effects on cells. In the case of INS-1 cells, ACBPS promotes insulin release without causing cytotoxicity.  相似文献   

10.
Glutamine is an important mitochondrial substrate implicated in the protection of cells from oxidant injury, but the mechanisms of its action are incompletely understood. Human pulmonary epithelial-like (A549) cells were exposed to 95% O2 for 4 days in the absence and presence of glutamine. Cell proliferation in normoxia was dependent on glutamine, and glutamine deprivation markedly accelerated cell death in hyperoxia. Glutamine significantly increased cellular ATP levels in normoxia and prevented the loss of ATP in hyperoxia seen in glutamine-deprived cells. Mitochondrial membrane potential as assessed by flow cytometry with chloromethyltetramethylrosamine was increased by glutamine in hyperoxia-exposed A549 cells, and a glutamine dose-dependent increase in mitochondrial membrane potential was detected. Glutamine-supplemented, hyperoxia-exposed cells had a higher O2 consumption rate and GSH content. Electron and fluorescence microscopy revealed that, in hyperoxia, glutamine protected cellular structures, especially mitochondria, from damage. In hyperoxia, activity of the tricarboxylic acid cycle enzyme alpha-ketoglutarate dehydrogenase was partially protected by its indirect substrate, glutamine, indicating a mechanism of mitochondrial protection.  相似文献   

11.
This study aimed to study the effect of bradykinin on reactive oxygen species (ROS) generation, mitochondrial injury, and cell death induced by ATP depletion in cell culture. Renal tubular cells were subjected to ATP depletion. Cell death was evaluated with LDH release, sub-G0/G1 fraction, Hoechst staining, and annexin V binding assay. ROS generation, mitochondrial membrane potential (DeltaPsi(m)), and intramitochondrial calcium were evaluated with flow cytometry. Translocation of cytochrome c and activation of apoptotic protein were analyzed with cell fractionating and Western blotting. Intracellular calcium was measured with a spectrofluorometer. Bradykinin enhanced cellular LDH release, apoptosis, generation of superoxide, and hydrogen peroxide induced by ATP depletion. Bradykinin also enhanced the loss of DeltaPsi(m), translocation of cytochrome c into cytosol, and activation of apoptotic protein. The intracellular/mitochondrial calcium was higher in bradykinin-treated cells. All these effects were reversed by coadministration with bradykinin B2 receptor (B2R) antagonist. Besides, blocking the phospholipase C (PLC) could reverse the synergistic effect of bradykinin with ATP depletion on ROS generation, mitochondrial damage, accumulation of intracellular/mitochondrial calcium, and apoptosis. Activation of B2R aggravates ROS generation, mitochondrial damage, and cell death induced by ATP depletion. These effects may act through the PLC-Ca(2+) signaling pathway.  相似文献   

12.
Oxidative phosphorylation within the inner mitochondrial membrane generates the majority of cellular adenosine triphosphate (ATP) required for normal physiological functions (including regulation of cell volume and solute concentration, maintenance of cellular architecture, and synthesis of essential macromolecules). Its efficient functioning depends on the maintenance of an electrochemical gradient and is tightly coupled to the energetic demands of the cell and/or tissue. Commitment to and completion of the cell division cycle are sensitive to changes in the availability of mitochondrially derived ATP, although the relationship between cell cycle and mitochondrial physiology is poorly understood. Using vital, mitochondrial-specific fluorochromes to differentiate between mitochondrial mass (10-N-nonyl acridine orange) and mitochondrial membrane potential (Rhodamine123), together with a quantification of total cellular ATP levels, it was possible to generate profiles of these mitochondrial characteristics in HL-60 cells at different stages of their cell cycle. The data suggest that the availability of ATP changes in a cell cycle-specific manner and cannot be predicted by changes in mitochondrial mass or membrane potential. Furthermore, transition points in the cell cycle where ATP availability is low with respect to the amount of functional inner mitochondrial membrane have been observed. We suggest that these cell cycle phase transitions are sensitive to inhibition of mitochondrial activity because the basal levels of available ATP at these points are nearer to a theoretical “minimal threshold” below which cell cycle progression is inhibited. J. Cell. Physiol. 180:91–96, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

13.

Background

Many methods have been used to assess mitochondrial function. Technetium-99m sestamibi (99mTc-MIBI), a lipophilic cation, is rapidly incorporated into myocardial cells by diffusion and mainly localizes to the mitochondria. The purpose of this study was to investigate whether measurement of 99mTc-MIBI signals in animal models could be used as a tool to quantify mitochondrial membrane potential at the organ level.

Methods and Results

We analyzed 99mTc-MIBI signals in Sprague-Dawley (SD) rat hearts perfused with carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler known to reduce the mitochondrial membrane potential. 99mTc-MIBI signals could be used to detect changes in the mitochondrial membrane potential with sensitivity comparable to that obtained by two-photon laser microscopy with the cationic probe tetramethylrhodamine ethyl ester (TMRE). We also measured 99mTc-MIBI signals in the hearts of SD rats administered CCCP (4 mg/kg intraperitoneally) or vehicle. 99mTc-MIBI signals decreased in rat hearts administered CCCP, and the ATP content, as measured by 31P magnetic resonance spectroscopy, decreased simultaneously. Next, we administered 99mTc-MIBI to Dahl salt-sensitive rats fed a high-salt diet, which leads to hypertension and heart failure. The 99mTc-MIBI signal per heart tissue weight was inversely correlated with heart weight, cardiac function, and the expression of atrial natriuretic factor, a marker of heart failure, and positively correlated with the accumulation of labeled fatty acid analog. The 99mTc-MIBI signal per liver tissue weight was lower than that per heart tissue weight.

Conclusion

Measurement of 99mTc-MIBI signals can be an effective tool for semiquantitative investigation of cardiac mitochondrial membrane potential in the SD rat model by using a chemical to decrease the mitochondrial membrane potential. The 99mTc-MIBI signal per heart tissue weight was inversely correlated with the severity of heart failure in the Dahl rat model.  相似文献   

14.
ATP-sensitive potassium (K(ATP)) channels are required for maintenance of homeostasis during the metabolically demanding adaptive response to stress. However, in disease, the effect of cellular remodeling on K(ATP) channel behavior and associated tolerance to metabolic insult is unknown. Here, transgenic expression of tumor necrosis factor alpha induced heart failure with typical cardiac structural and energetic alterations. In this paradigm of disease remodeling, K(ATP) channels responded aberrantly to metabolic signals despite intact intrinsic channel properties, implicating defects proximal to the channel. Indeed, cardiomyocytes from failing hearts exhibited mitochondrial and creatine kinase deficits, and thus a reduced potential for metabolic signal generation and transmission. Consequently, K(ATP) channels failed to properly translate cellular distress under metabolic challenge into a protective membrane response. Failing hearts were excessively vulnerable to metabolic insult, demonstrating cardiomyocyte calcium loading and myofibrillar contraction banding, with tolerance improved by K(ATP) channel openers. Thus, disease-induced K(ATP) channel metabolic dysregulation is a contributor to the pathobiology of heart failure, illustrating a mechanism for acquired channelopathy.  相似文献   

15.
A method is described, based on the differential accumulation of Rb+ and methyltriphenylphosphonium, for the simultaneous estimation of the membrane potentials across the plasma membrane of isolated nerve endings (synaptosomes), and across the inner membrane of mitochondria within the synaptosomal cytoplasm. These determinations, together with measurements of respiratory rates, and ATP and phosphocreatine concentrations, are used to define the bioenergetic behaviour of isolated synaptosomes under a variety of conditions. Under control conditions, in the presence of glucose, the plasma and mitochondrial membrane potentials are respectively 45 and 148mV. Addition of a proton translocator induces a 5-fold increase in respiration, and abolishes the mitochondrial membrane potential. The addition of rotenone to inhibit respiration does not affect the plasma membrane potential, and only lowers the mitochondrial membrane potential to 128mV. Evidence is presented that ATP synthesis by anaerobic glycolysis is sufficient under these conditions to maintain ATP-dependent processes, including the reversal of the mitochondrial ATP synthetase. Addition of oligomycin under non-respiring conditions leads to a complete collapse of the mitochondrial potential. Even under control conditions the plasma membrane (Na+ + K+)-dependent ATPase is responsible for a significant proportion of the synaptosomal ATP turnover. Veratridine greatly increases respiration, and depolarizes the plasma membrane, but only slightly lowers the mitochondrial membrane potential. High K+ and ouabain also lower the plasma membrane potential without decreasing the mitochondrial membrane potential. In non-respiring synaptosomes, anaerobic glycolysis is incapable of maintaining cytosolic ATP during the increased turnover induced by veratridine, and the mitochondrial membrane potential collapses. It is concluded that the internal mitochondria must be considered in any study of synaptosomal transport.  相似文献   

16.
Ion channels are proteins, which facilitate the ions flow throught biological membranes. In recent years the structure as well as the function of the plasma membrane ion channels have been well investigated. The knowledge of intracellular ion channels however is still poor. Up till now, the calcium channel described in endoplasmatic reticulum and mitochondrial porine are the examples of intracellular ion channels, which have been well characterized. The mitochondrial potassium channels: regulated by ATP (mitoK(ATP)) and of big conductance activated by Ca2+ (mitoBK(Ca)), which were described in inner mitochondrial membrane, play a key role in the protection of heart muscle against ischemia. In this review the last date concerning the mitochondrial ion channels as well as they function in cell metabolism have been presented.  相似文献   

17.
Decreases in GSH pools detected during ischemia sensitize neurons to excitotoxic damage. Thermodynamic analysis predicts that partial GSH depletion will cause an oxidative shift in the thiol redox potential. To investigate the acute bioenergetic consequences, neurons were exposed to monochlorobimane (mBCl), which depletes GSH by forming a fluorescent conjugate. Neurons transfected with redox-sensitive green fluorescent protein showed a positive shift in thiol redox potential synchronous with the formation of the conjugate. Mitochondria within neurons treated with mBCl for 1 h failed to hyperpolarize upon addition of oligomycin to inhibit their ATP synthesis. A decreased ATP turnover was confirmed by monitoring neuronal oxygen consumption in parallel with mitochondrial membrane potential (Deltapsi(m)) and GSH-mBCl formation. mBCl progressively decreased cell respiration, with no effect on mitochondrial proton leak or maximal respiratory capacity, suggesting adequate glycolysis and a functional electron transport chain. This approach to "state 4" could be mimicked by the adenine nucleotide translocator inhibitor bongkrekic acid, which did not further decrease respiration when administered after mBCl. The cellular ATP/ADP ratio was decreased by mBCl, and consistent with mitochondrial ATP export failure, respiration could not respond to an increased cytoplasmic ATP demand by plasma membrane Na(+) cycling; instead, mitochondria depolarized. More prolonged mBCl exposure induced mitochondrial failure, with Deltapsi(m) collapse followed by cytoplasmic Ca(2+) deregulation. The initial bioenergetic consequence of neuronal GSH depletion in this model is thus an inhibition of ATP export, which precedes other forms of mitochondrial dysfunction.  相似文献   

18.
Effects of reactive oxygen species on sperm function   总被引:1,自引:0,他引:1  
Reactive oxygen species (ROS) formation and membrane lipid peroxidation have been recognized as problems for sperm survival and fertility. The precise roles and detection of superoxide (SO), hydrogen peroxide (HP), and membrane lipid peroxidation have been problematic, because of the low specificity and sensitivity of the established chemiluminescence assay technologies. We developed flow cytometric assays to measure SO, HP, membrane lipid peroxidation, and inner mitochondrial transmembrane potential in boar sperm. These methods were sufficiently sensitive to permit detection of early changes in ROS formation in sperm cells that were still viable. Basal ROS formation and membrane lipid peroxidation in the absence of ROS generators were low in viable sperm of both fresh and frozen-thawed boar semen, affecting less than 4% of the sperm cells on average. However, this is not the case in other species, as human, bovine, and poultry sperm have large increases in sperm ROS formation, lipid peroxidation, loss of motility, and death in vitro. Closer study of the effects of ROS formation on the relationship between sperm motility and ATP content in boar sperm was conducted using menadione (mitochondrial SO generator) and HP treatment. Menadione or HP caused an immediate disruption of motility with delayed or no decrease in sperm ATP content, respectively. Overall, the inhibitory effects of ROS on motility point to a mitochondrial-independent mechanism. The reduction in motility may have been due to a ROS-induced lesion in ATP utilization or in the contractile apparatus of the flagellum.  相似文献   

19.
Chronic exposure of rat pancreatic islets and INS-1 insulinoma cells to glucosamine (GlcN) produced a reduction of glucose-induced (22.2 mM) insulin release that was associated with a reduction of ATP levels and ATP/ADP ratio compared with control groups. To further evaluate mitochondrial function and ATP metabolism, we then studied uncoupling protein-2 (UCP2), F1-F0-ATP-synthase, and mitochondrial membrane potential, a marker of F1-F0-ATP-synthase activity. UCP2 protein levels were unchanged after chronic exposure to GlcN on both pancreatic islets and INS-1 beta-cells. Due to the high number of cells required to measure mitochondrial F1-F0-ATP-synthase protein levels and mitochondrial membrane potential, we used INS-1 cells, and we found that chronic culture with GlcN increased F1-F0-ATP-synthase protein levels but decreased glucose-stimulated changes of mitochondrial membrane potential. Moreover, F1-F0-ATP-synthase was highly glycosylated, as demonstrated by experiments with N-glycosidase F and glycoprotein staining. Tunicamycin (an inhibitor of protein N-glycosylation), when added with GlcN in the culture medium, was able to partially prevent all these negative effects on insulin secretion, adenine nucleotide content, mitochondrial membrane potential, and protein glycosylation. Thus we suggest that GlcN-induced pancreatic beta-cell toxicity might be mediated by reduced cell energy production. An excessive protein N-glycosylation of mitochondrial F1-F0-ATP-synthase might lead to cell damage and secretory alterations in pancreatic beta-cells.  相似文献   

20.
Using flow cytometric analysis and potential-sensitive fluorescent dye TMRM Ca2+ -induced changes of membrane potential of isolated smooth muscle mitochondria were studied. It was shown, that Ca2+ (100 microM) addition to the incubation medium induced mitochondrial membrane depolarization that probably could be explained by Ca2+/H+ -exchanger activation which functioning lead to membrane potential dissipation. In the case of ruthenium red (10 microM) preliminary presence in incubation medium, Ca2+ (100 microM) addition did not lead to membrane potential dissipation. Hence, membrane potential dissipation was caused by an increase of matrix Ca2+ concentration. In the presence of Mg2+ (3 mM) and ATP (3 mM), Ca2+ addition did not cause depolarization. It was supposed that in this case ATP synthase acted in the opposite direction as H+ -pump and prevented from mitochondrial membrane potential dissipation. Thus, the flow cytometry method allows to register membrane potential of isolated smooth muscle mitochondria and also to test the effectors, capable to modulate this parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号