首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of life-history adaptation and reproductive isolation were investigated in the acridid grasshoppers Melanoplus sanguinipes and M. devastator, which hybridize along an altitudinal gradient in the Sierra Nevada of California. Melanoplus sanguinipes females crossed with M. devastator males produced eggs that were approximately half as viable as eggs from other crosses. Diminished viability was not attributable either to infection by Wolbachia pipientis or to failure of sperm transfer. When offered an opportunity to choose a mate, females from all populations discriminated against males of the other species, whereas in no-choice tests measuring copulation duration only females from the tails of the clines showed preferences. Melanoplus sanguinipes, found at high elevations where the growing season is short, exhibited faster egg hatch, faster larval development, smaller adult body sizes, and smaller clutch sizes than M. devastator. Melanoplus devastator, from California's Central Valley, endured a hot and dry summer in a reproductive diapause that was absent in M. sanguinipes. Clines in reproductive diapause and clutch size coincided with the region of reproductive incompatibility. Development time, body size, and hatch time also changed across the hybrid zone, but the regions of largest transitions in these traits were either difficult to locate using the limited populations studied here or were not coincident with the zone's center. A method is described for combining ecological and phylogenetic analyses to address the unknown issue of whether life-history divergence has conributed to reproductive isolation in this system.  相似文献   

2.
Elevational gradients provide powerful natural systems for testing hypotheses regarding the role of environmental variation in the evolution of life‐history strategies. Case studies have revealed shifts towards slower life histories in organisms living at high elevations yet no synthetic analyses exist of elevational variation in life‐history traits for major vertebrate clades. We examined (i) how life‐history traits change with elevation in paired populations of bird species worldwide, and (ii) which biotic and abiotic factors drive elevational shifts in life history. Using three analytical methods, we found that fecundity declined at higher elevations due to smaller clutches and fewer reproductive attempts per year. By contrast, elevational differences in traits associated with parental investment or survival varied among studies. High‐elevation populations had shorter and later breeding seasons, but longer developmental periods implying that temporal constraints contribute to reduced fecundity. Analyses of clutch size data, the trait for which we had the largest number of population comparisons, indicated no evidence that phylogenetic history constrained species‐level plasticity in trait variation associated with elevational gradients. The magnitude of elevational shifts in life‐history traits were largely unrelated to geographic (altitude, latitude), intrinsic (body mass, migratory status), or habitat covariates. Meta‐population structure, methodological issues associated with estimating survival, or processes shaping range boundaries could potentially explain the nature of elevational shifts in life‐history traits evident in this data set. We identify a new risk factor for montane populations in changing climates: low fecundity will result in lower reproductive potential to recover from perturbations, especially as fewer than half of the species experienced higher survival at higher elevations.  相似文献   

3.
1. In complex landscapes such as river networks, organisms usually face spatio‐temporal heterogeneity and gradients in geomorphological, water, ecological or landscape characteristics are often observed at the catchment scale. These environmental variables determine developmental conditions for larval stages of freshwater insects and influence adult phenotypic characteristics. Environmental clines are therefore expected to generate morphological clines. Such a process has the potential to drive gradual geographical change in morphology‐dependent life history traits, such as dispersal. 2. We studied the influence of aquatic and terrestrial environmental factors on morphological variations in Calopteryx splendens across the Loire drainage. To investigate these effects we took explicitly into account the hierarchical structure of the river network. 3. We analysed eight morphological traits. Results showed significant body size variation between tributaries and the presence of a morphological cline at the drainage scale. We observed an effect of pH and water temperature on body size. Individuals in downstream sites were larger than individuals in upstream sites, and adults whose larval stages were exposed to alkaline pH and high temperatures during summer were larger. 4. Body size affects flight abilities in insects. Thus, our results suggest that morphological clines may generate an asymmetric dispersal pattern along the downstream–upstream axis, downstream populations dispersing farther than upstream ones. Such a process is expected to influence population genetic structure at the drainage scale if larval drift and floods do not balance an asymmetrical dispersal pattern of adults along the downstream–upstream gradient. To assess the influence of environmental gradients on the variation of life history traits it is important to understand the population biology of freshwater insects, and more generally of riverine organisms. It is also essential to integrate such data in conservation or restoration programmes.  相似文献   

4.
Species responses to environmental change are likely to depend on existing genetic and phenotypic variation, as well as evolutionary potential. A key challenge is to determine whether gene flow might facilitate or impede genomic divergence among populations responding to environmental change, and if emergent phenotypic variation is dependent on gene flow rates. A general expectation is that patterns of genetic differentiation in a set of codistributed species reflect differences in dispersal ability. In less dispersive species, we predict greater genetic divergence and reduced gene flow. This could lead to covariation in life‐history traits due to local adaptation, although plasticity or drift could mirror these patterns. We compare genome‐wide patterns of genetic structure in four phenotypically variable grasshopper species along a steep elevation gradient near Boulder, Colorado, and test the hypothesis that genomic differentiation is greater in short‐winged grasshopper species, and statistically associated with variation in growth, reproductive, and physiological traits along this gradient. In addition, we estimate rates of gene flow under competing demographic models, as well as potential gene flow through surveys of phenological overlap among populations within a species. All species exhibit genetic structure along the elevation gradient and limited gene flow. The most pronounced genetic divergence appears in short‐winged (less dispersive) species, which also exhibit less phenological overlap among populations. A high‐elevation population of the most widespread species, Melanoplus sanguinipes, appears to be a sink population derived from low elevation populations. While dispersal ability has a clear connection to the genetic structure in different species, genetic distance does not predict growth, reproductive, or physiological trait variation in any species, requiring further investigation to clearly link phenotypic divergence to local adaptation.  相似文献   

5.
Our understanding of life history evolution has benefited from debates regarding the underlying causes, and geographic ubiquity, of spatial patterns in avian clutch sizes. Past studies have revealed that birds lay smaller clutch sizes at higher elevation. However, in most previous studies, investigators have failed to adequately control for elevational differences in breeding phenology. To better understand the elevational gradient in avian clutch size, we need to know how clutch size changes across the entire elevational breeding range of a species (i.e., the shape of the relationship between elevation and clutch size), and whether the elevational gradient in clutch size is merely an artifact of elevational gradients in breeding phenology or breeding season length. We examined the relationship between breeding elevation and clutch size of Red‐faced Warblers (Cardellina rubrifrons) along a 1000‐m elevational gradient in Arizona. Our objectives were to determine how clutch size changed with elevation, and if the relationship between clutch size and elevation merely reflected elevational changes in breeding season length or phenology. The proportion of 5‐egg clutches decreased and the proportion of 3‐ and 4‐egg clutches increased non‐linearly with increasing elevation, even after controlling for the elevational gradient in nest initiation date. Thus, average clutch size declined across the elevational breeding range of Red‐faced Warblers, but this decline was not due to elevational variation in breeding phenology. Timing of breeding changed, but the duration of the breeding season did not change appreciably across the elevational gradient. Hence, elevational differences in breeding season length or breeding phenology cannot explain why Red‐faced Warblers (and perhaps other birds) breeding at higher elevations have smaller clutches.  相似文献   

6.
Much of the world's insect and plant biodiversity is found in tropical and subtropical ‘hotspots’, which often include long elevational gradients. These gradients may function as ‘diversity pumps’ and contribute to both regional and local species richness. Climactic conditions on such gradients often change rapidly along short vertical distances and may result in local adaptation and high levels of population genetic structure in plants and insects. We investigated the population genetic structure of two species of Ficus (Moraceae) along a continuously forested elevational gradient in Papua New Guinea. This speciose plant genus is pollinated by tiny, species‐specific and highly coevolved chalcid wasps (Agaonidae) and represented by at least 73 species at our study gradient. We present results from two species of Ficus sampled from six elevations between 200 m and 2700 m a.s.l. (almost the entire elevational range of the genus) and 10 polymorphic microsatellite loci. These results show that strong barriers to gene flow exist between 1200 m and 1700 m a.s.l. Whereas lowland populations are panmictic across distances over 70 km, montane populations can be disjunct over 4 km, despite continuous forest cover. We suggest that the limited gene flow between populations of these two species of montane Ficus may be driven by environmental limitations on pollinator or seed dispersal in combination with local adaptation of Ficus populations. Such a mechanism may have wider implications for plant and pollinator speciation across long and continuously forested elevational gradients if generalist insect pollinators and vertebrate seed dispersers also form populations based on elevation.  相似文献   

7.
Bet‐hedging theory makes the counter‐intuitive prediction that, if juvenile survival is low and unpredictable, organisms should consistently reduce short‐term reproductive output to minimize the risk of reproductive failure in the long‐term. We investigated the long‐term reproductive output of an Agassiz's desert tortoise (Gopherus agassizii) population and conformance to a bet‐hedging strategy of reproduction in an unpredictable but comparatively productive environment. Most females reproduced every year, even during periods of low precipitation and poor germination of food plants, and the mean percentage of reproducing females did not differ significantly on an annual basis. Although mean annual egg production (clutch size × clutch frequency) differed significantly among years, mean clutch size and mean clutch frequency remained relatively constant. During an El Niño year, mean annual egg production and mean annual clutch frequency were the highest ever reported for this species. Annual egg production was positively influenced by maternal body size but clutch size and clutch frequency were not. Our long‐term results confirm earlier conclusions based on short‐term research that desert tortoises have a bet‐hedging strategy of producing small clutches almost every year. The risk of long‐term reproductive failure is minimized in unpredictable environments, both through time by annually producing multiple small clutches over a long reproductive lifespan, even in years of low resource availability, and through space by depositing multiple annual clutches in different locations. The extraordinary annual reproductive output of this population appears to be the result of a typically high but unpredictable biomass of annual food plants at the site relative to tortoise habitat in dryer regions. Under the comparatively productive but unpredictable conditions, tortoises conform to predictions of a bet‐hedging strategy of reproduction with relatively small but consistent clutch sizes. Published 2015. This article is a U.S. Government work and is in the public domain in the USA, Biological Journal of the Linnean Society, 2015, 115 , 399–410.  相似文献   

8.
The magnitude and direction of sexual size dimorphism (SSD) varies greatly across the animal kingdom, reflecting differential selection pressures on the reproductive and/or ecological roles of males and females. If the selection pressures and constraints imposed on body size change along environmental gradients, then SSD will vary geographically in a predictable way. Here, we uncover a biogeographical reversal in SSD of lizards from Central and North America: in warm, low latitude environments, males are larger than females, but at colder, high latitudes, females are larger than males. Comparisons to expectations under a Brownian motion model of SSD evolution indicate that this pattern reflects differences in the evolutionary rates and/or trajectories of sex‐specific body sizes. The SSD gradient we found is strongly related to mean annual temperature, but is independent of species richness and body size differences among species within grid cells, suggesting that the biogeography of SSD reflects gradients in sexual and/or fecundity selection, rather than intersexual niche divergence to minimize intraspecific competition. We demonstrate that the SSD gradient is driven by stronger variation in male size than in female size and is independent of clutch mass. This suggests that gradients in sexual selection and male–male competition, rather than fecundity selection to maximize reproductive output by females in seasonal environments, are predominantly responsible for the gradient.  相似文献   

9.
How much effort to expend in any one bout of reproduction is among the most important decisions made by an individual that breeds more than once. According to life-history theory, reproduction is costly, and individuals that invest too much in a given reproductive bout pay with reduced reproductive output in the future. Likewise, investing too little does not maximize reproductive potential. Because reproductive effort relative to output can vary with predictable and unpredictable challenges and opportunities, no single level of reproductive effort maximizes fitness. This leads to the prediction that individuals possessing behavioural mechanisms to buffer challenges and take advantage of opportunities would incur fitness benefits. Here, we review evidence in birds, primarily of altricial species, for the presence of at least two such mechanisms and evidence for and against the seasonal coordination of these mechanisms through seasonal changes in plasma concentrations of the pituitary hormone prolactin. First, the seasonal decline in clutch size of most bird species may partially offset a predictable seasonal decline in the reproductive value of offspring. Second, establishing a developmental sibling-hierarchy among offspring may hedge against unpredictable changes in resource availability and offspring viability or quality, and minimize energy expenditure in raising a brood. The hierarchy may be a product, in part, of the timing of incubation onset relative to clutch completion and the rate of yolk androgen deposition during the laying cycle. Because clutch size should influence the effects of both these traits on the developmental hierarchy, we predicted and describe evidence in some species that females adjust the timing of incubation onset and rate of yolk androgen deposition to match clutch size. Studies on domesticated precocial species reveal an inhibitory effect of the pituitary hormone prolactin on egg laying, suggesting a possible hormonal basis for the regulation of clutch size. Studies on the American kestrel (Falco sparverius) and other species suggest that the seasonal increase in plasma concentrations of prolactin may regulate both a seasonal advance in the timing of incubation onset and a seasonal increase in the rate of yolk androgen deposition. These observations, together with strong conceptual arguments published previously, raise the possibility that a single hormone, prolactin, functions as the basis of a common mechanism for the seasonal adjustment of reproductive effort. However, a role for prolactin in regulating clutch size in any species is not firmly established, and evidence from some species indicates that clutch size may not be coupled to the timing of incubation onset and rate of yolk androgen deposition. A dissociation between the regulation of clutch size and the regulation of incubation onset and yolk androgen deposition may enable an independent response to the predictable and unpredictable challenges and opportunities faced during reproduction.  相似文献   

10.
1. Annual insects are predicted to grow larger where the growing season is longer. However, transitions from one to two generations per year can occur when the season becomes sufficiently long, and are predicted to result in a sharp decrease in body size because available development time is halved. The potential for resulting saw‐tooth clines has been investigated only in solitary taxa with free‐living larvae. 2. Size clines were investigated in two socially polymorphic sweat bees (Halictidae): transitions between solitary and social nesting occur along gradients of increasing season length, characterised by the absence or presence of workers and offspring that are individually mass provisioned by adults. How the body size changes with season length was examined, and whether transitions in social phenotype generate saw‐tooth size clines. We measured Lasioglossum calceatum and Halictus rubicundus nest foundresses originating from more than 1000 km of latitude, encompassing the transition between social and solitary nesting. 3. Using satellite‐collected temperature data to estimate season length, it was shown that both species were largest where the season was longest. Body size increased linearly with season length in L. calceatum and non‐linearly in H. rubicundus but the existence of saw‐tooth clines was not supported. 4. The present results suggest that because the amount of food consumed by offspring during development is determined by adults, environmental and social influences on the provisioning strategies of adult bees may be more important factors than available feeding time in determining offspring body size in socially polymorphic sweat bees.  相似文献   

11.
1. Bergmann's rule sensu lato, the ecogeographic pattern relating animals' body size with environmental temperature (or latitude), has been shown to be inconsistent among insect taxa. Body size clines remain largely unexplored in aquatic insects, which may show contrasting patterns to those found in terrestrial groups because of the physiological or mechanical constraints of the aquatic environment. 2. Bergmann's rule was tested using data on body size, phylogeny and distribution for 93 species belonging to four lineages of dytiscid water beetles. The relationship between size and latitude was explored at two taxonomic resolutions – within each independent lineage, and for the whole dataset – employing phylogenetic generalised least‐squares to control for phylogenetic inertia. The potential influence of habitat preference (lotic versus lentic) on body size clines was also considered. 3. Within‐lineage analyses showed negative relationships (i.e. converse Bergmann's rule), but only in two lineages (specifically in those that included both lotic and lentic species). By contrast, no relationship was found between body size and latitude for the whole dataset. 4. These results suggest that there may be no universal interspecific trends in latitudinal variation of body size in aquatic insects, even among closely related groups, and show the need to account for phylogenetic inertia. Furthermore, habitat preferences should be considered when exploring latitudinal clines in body size in aquatic taxa at the interspecific level.  相似文献   

12.
Winged queens are the most common reproductives in ants. They are morphologically specialized for independent colony foundation, with wings for long-range dispersal and metabolic reserves to raise the first brood. However independent foundation can sometimes be selected against and replaced by fission, featuring short-range dispersal on the ground and reproductives that are dependent on the wingless workers for all non-reproductive tasks. We investigated the evolutionary consequences of this transition on the morphology of the reproductives by collecting 30 colonies of Odontomachus coquereli from Madagascar, the only species in the genus where winged queens have never been found. Data about colony demography, morphometry, allometry and ovarian dissections showed that the winged queen caste has been replaced by a wingless reproductive caste with distinct body proportions relative to the workers or to congeneric winged queens. The 17 reproductives that we measured exhibited little size variability. A single wingless reproductive was found in each colony, corresponding to ‘ergatoids’ in literature. Several facts suggest that colonies reproduce by fission, notably the relatively constant colony size (19±11 workers). The developmental origins of wingless reproductive phenotypes need investigation; little genetic change may be involved, as seen when Odontomachus larvae are parasitized by nematodes. The sole function of wingless reproductives in O. coquereli is reproduction, and they contrast with multi-purpose wingless reproductives found in other ants, where numerous intermorphs occur in each colony and contribute to sterile tasks. Received 15 December 2006; revised 26 February 2007; accepted 1 March 2007.  相似文献   

13.
Reproductive investment and output are integral fitness components, often incorporated into life‐history trade‐off models and important to population dynamics. The trade‐offs associated with reproduction can be dramatic in species such as snakes that make especially large investments into reproduction. Unfortunately, traditional methods used to determine reproductive investment and output are effective in many (but not all) situations. Thus, we used portable ultrasonography to serially estimate reproductive investment and reproductive output in three python species that exhibit significant variation in phylogeny, geographic range, body size, egg size, and clutch size: ball pythons (Python regius), Children's pythons (Antaresia childreni), and water pythons (Liasis fuscus). At each time point of measurement (range: 1–49 days pre‐oviposition), ultrasound estimates of viable clutch size were highly accurate in all three species. However, ultrasound estimates of mean viable egg mass, and thus viable clutch mass, significantly differed from the actual values (range: 23–73% error). Interestingly, this error was considerably smaller as females approached oviposition, suggesting that female pythons transfer a significant amount of water into their eggs during the week before oviposition. Thus, water balance during late‐stage egg development may be an integral part of reproductive success. The results obtained in the present study form the foundation for future assessments of reproductive investment, and also provide insight into the use of ultrasound technology to assist such efforts. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 772–778.  相似文献   

14.
Adaptive studies of avian clutch size variation across environmental gradients have resulted in what has become known as the fecundity gradient paradox, the observation that clutch size typically decreases with increasing breeding season length along latitudinal gradients, but increases with increasing breeding season length along elevational gradients. These puzzling findings challenge the common belief that organisms should reduce their clutch size in favor of additional nesting attempts as the length of the breeding season increases, an approach typically described as a bet‐hedging strategy. Here, we propose an alternative hypothesis—the multitasking hypothesis—and show that laying smaller clutches represents a multitasking strategy of switching between breeding and recovery from breeding. Both our individual‐based and analytical models demonstrate that a small clutch size strategy is favored during shorter breeding seasons because less time and energy are wasted under the severe time constraints associated with breeding multiply within a season. Our model also shows that a within‐generation bet‐hedging strategy is not favored by natural selection, even under a high risk of predation and in long breeding seasons. Thus, saving time—wasting less time as a result of an inability to complete a breeding cycle at the end of breeding season—is likely to be the primary benefit favoring the evolution of small avian clutch sizes during short breeding seasons. We also synthesize the seasonality hypothesis (pronounced seasonality leads to larger clutch size) and clutch size‐dependent predation hypothesis (larger clutch size causes higher predation risks) within our multitasking hypothesis to develop an integrative model to help resolve the paradox of contrasting patterns of clutch size along elevational and latitudinal gradients. Ultimately, our models provide a new perspective for understanding life‐history evolution under fluctuating environments.  相似文献   

15.
Glaucous‐winged gulls Larus glaucescens and western gulls L. occidentalis hybridize extensively where their ranges overlap along the coasts of Washington and Oregon, producing a continuum of phenotypic intergrades between the two parental species. This zone often is considered an example of geographically bounded hybrid superiority, but studies of relative success among parental types and hybrids have not provided consistent support for this model. We tested the predictions of the dynamic‐equilibrium and geographically bounded hybrid superiority hypotheses by studying mate choice and reproductive success among gulls on Protection Island, Washington, the largest breeding colony of glaucous‐winged/western gulls within the hybrid zone. The dynamic‐equilibrium hypothesis posits that hybridization due to dispersal balances selection against less fit hybrids and assortative mating is adaptive. Geographically bounded hybrid superiority posits that hybrids are better fit than parental types within an ecotone between the environments to which the parental species are adapted, and a preference for hybrid mates is adaptive. Additionally, we investigated whether hatching success and nest site choice are correlated for Protection Island gulls. We assigned a hybrid index to each sample bird by examining plumage melanism and bare part coloration in the field. Sheltered nests contained larger clutches and exhibited increased hatching success, but choice of nest habitat was not associated with hybrid index. Western gull‐like pairs produced smaller third eggs; however, hybrid index was not correlated with clutch size or hatching success. Protection Island gulls did exhibit assortative mating. In short, we did not find strong support for either geographically bounded hybrid superiority or the dynamic‐equilibrium hypothesis.  相似文献   

16.
Differences in reproductive success (RS) between different groups of individuals are of interest to researchers studying natural and sexual selection. Since it is often not feasible to quantify RS in the wild, researchers make use of proxies instead. One such proxy is clutch size. However, research on species providing parental care (mainly birds and mammals) has learned that a large clutch size does not guarantee a large number of offspring. In contrast, much less is known on the link between clutch size and RS for species lacking parental care, such as many reptiles and insects. Here, we ask whether clutch size provides a satisfactory estimate of RS for a polymorphic insect. Our study species is a damselfly showing two distinct female morphs for which RS (estimated by clutch size) has been studied to evaluate the evolutionary role of sexual conflict. However, in this system not only among family variation in offspring viability, but also differences between female morphs, may affect how clutch size relates to offspring number and quality. To evaluate the use of clutch size as estimate of RS, we examined how clutch size correlated with subsequent success measures of developing offspring by rearing damselfly from eggs to adults under two laboratory food treatments. In both treatments, we detected that clutch size correlated well with offspring number early in larval life, but that this relation is reduced by among family variation in survival in later developmental stages. Clutch size was moderately correlated with the number of offspring that successfully metamorphosed to winged adults. Patterns did not differ between female morphs and the nature of the correlation could not be explained from offspring quantity-quality trade-offs.  相似文献   

17.
Researchers have long been intrigued by evolutionary processes that explain biological diversity. Numerous studies have reported strong associations between animal body size and altitude, but insect analyses have often yielded equivocal results. Here, we analyze a collection database of New Zealand's diverse endemic stonefly fauna (106 species across 21 genera) to test for relationships between altitude and plecopteran body size. This insect assemblage includes a variety of wing‐reduced (26 spp) and fully winged (80 spp) taxa and covers a broad range of altitudes (0–2,000 m). We detected significant relationships between altitude and body size for wing‐reduced, but not fully winged, stonefly taxa. These results suggest that, while the maintenance of flight apparatus might place a constraint on body size in some fully winged species, the loss of flight may free insects from this evolutionary constraint. We suggest that rapid switches in insect dispersal ability may facilitate rapid evolutionary shifts across a number of biological attributes and may explain the inconsistent results from previous macroecological analyses of insect assemblages.  相似文献   

18.
Many eusocial insects, including ants, show complex colony structures, distributions, and reproductive strategies. In the ant Vollenhovia emeryi Wheeler (Hymenoptera: Myrmicinae), queens and males are produced clonally, while sterile workers arise sexually, unlike other ant species and Hymenopteran insects in general. Furthermore, there is a wing length polymorphism in the queen caste. Despite its evolutionary remarkable traits, little is known about the population structure of this ant species, which may provide insight into its unique reproductive mode and polymorphic traits. We performed in‐depth analyses of ant populations from Korea, Japan, and North America using three mitochondrial genes (COI, COII, and Cytb). The long‐winged (L) morph is predominant in Korean populations, and the short‐winged (S) morph is very rare. Interestingly, all L morphs were infected with Wolbachia, while all Korean S morphs lacked Wolbachia, demonstrating a association between a symbiont and a phenotypic trait. A phylogenetic analysis revealed that the S morph is derived from the L morph. We propose that the S morph is associated with potential resistance to Wolbachia infection and that Wolbachia infection does not influence clonal reproduction (as is the case in other ant species).  相似文献   

19.
Theoretical treatments of egg size in fishes suggest that constraints on reproductive output should create trade-offs between the size and number of eggs produced per spawn. For marine reef fishes, the observation of distinct reproductive care strategies (demersal guarding, egg scattering, and pelagic spawning) has additionally prompted speculation that these strategies reflect alternative fitness optima with selection on egg size differing by reproductive mode and perhaps latitude. Here, we aggregate data from 278 reef fish species and test whether clutch size, reproductive care, adult body size, and latitudinal bands (i.e., tropical, subtropical, and temperate) predict egg size, using a statistically unified framework that accounts for phylogenetic correlations among traits. We find no inverse relationship between species egg size and clutch size, but rather that egg size differs by reproductive mode (mean volume for demersal eggs = 1.22 mm3, scattered eggs = 0.18 mm3, pelagic eggs = 0.52 mm3) and that clutch size is strongly correlated with adult body size. Larger eggs were found in temperate species compared with tropical species in both demersal guarders and pelagic spawners, but this difference was not strong when accounting for phylogenetic correlations, suggesting that differences in species composition underlies regional differences in egg size. In summary, demersal guarders are generally small fishes with small clutch sizes that produce large eggs. Pelagic spawners and egg scatterers are variable in adult and clutch size. Although pelagic spawned eggs are variable in size, those of scatterers are consistently small.  相似文献   

20.
Within-population variation in the traits underpinning reproductive output has long been of central interest to biologists. Since they are strongly linked to lifetime reproductive success, these traits are expected to be subject to strong selection and, if heritable, to evolve. Despite the formation of durable pair bonds in many animal taxa, reproductive traits are often regarded as female-specific, and estimates of quantitative genetic variation seldom consider a potential role for heritable male effects. Yet reliable estimates of such social genetic effects are important since they influence the amount of heritable variation available to selection. Based on a 52-year study of a nestbox-breeding great tit (Parus major) population, we apply “extended” bivariate animal models in which the heritable effects of both sexes are modeled to assess the extent to which males contribute to heritable variation in seasonal reproductive timing (egg laying date) and clutch size, while accommodating the covariance between the two traits. Our analyses show that reproductive timing is a jointly expressed trait in this species, with (positively covarying) heritable variation for laydate being expressed in both members of a breeding pair, such that the total heritable variance is 50% larger than estimated by traditional models. This result was robust to explicit consideration of a potential male-biased environmental confound arising through sexually dimorphic dispersal. In contrast to laydate, males’ contribution to heritable variation in clutch size was limited. Our study thus highlights the contrasting extent of social determination for two major components of annual reproductive success, and emphasizes the need to consider the social context of what are often considered individual-level traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号