首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9626篇
  免费   871篇
  国内免费   113篇
  2023年   56篇
  2022年   42篇
  2021年   241篇
  2020年   164篇
  2019年   199篇
  2018年   237篇
  2017年   181篇
  2016年   305篇
  2015年   508篇
  2014年   558篇
  2013年   658篇
  2012年   886篇
  2011年   784篇
  2010年   483篇
  2009年   382篇
  2008年   566篇
  2007年   520篇
  2006年   512篇
  2005年   424篇
  2004年   424篇
  2003年   378篇
  2002年   355篇
  2001年   139篇
  2000年   149篇
  1999年   146篇
  1998年   100篇
  1997年   78篇
  1996年   55篇
  1995年   76篇
  1994年   68篇
  1993年   58篇
  1992年   91篇
  1991年   78篇
  1990年   73篇
  1989年   68篇
  1988年   66篇
  1987年   46篇
  1986年   48篇
  1985年   38篇
  1984年   59篇
  1983年   40篇
  1982年   30篇
  1981年   34篇
  1980年   23篇
  1979年   33篇
  1978年   30篇
  1977年   27篇
  1975年   28篇
  1973年   11篇
  1971年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
Understanding the functional relationship between greenhouse gas fluxes and environmental variables is crucial for predicting the impacts of wetlands on future climate change in response to various perturbations. We examined the relationships between methane (CH4) emission and temperature in two marsh stands dominated by the Phragmites australis and Cyperus malaccensis, respectively, in a subtropical estuarine wetland in southeast China based on three years of measurement data (2007–2009). We found that the Q10 coefficient of CH4 emission to soil temperature (Qs10) from the two marsh stands varied slightly over the three years (P > 0.05), with a mean value of 3.38 ± 0.46 and 3.89 ± 0.41 for the P. australis and C. malaccensis stands, respectively. On the other hand, the three-year mean Qa10 values (Q10 coefficients of CH4 emission to air temperature) were 3.39 ± 0.59 and 4.68 ± 1.10 for the P. australis and C. malaccensis stands, respectively, with a significantly higher Qa10 value for the C. malaccensis stand in 2008 (P < 0.05). The seasonal variations of Q10 (Qs10 and Qa10) differed among years, with generally higher values in the cold months than those in the warm months in 2007 and 2009. We found that the Qs10 values of both stands were negatively correlated with soil conductivity, but did not obtain any conclusive results about the difference in Q10 of CH4 emission between the two tidal stages (before flooding and after ebbing). There were no significant differences in both Qs10 and Qa10 values of CH4 emission between the P. australis stand and the C. malaccensis stands (P > 0.05). Our results show that the Q10 values of CH4 emission in this estuarine marsh are highly variable across space and time. Given that the overall CH4 flux is governed by a suite of environmental factors, the Q10 values derived from field measurements should only be considered as a semi-empirical parameter for simulating CH4 emissions.  相似文献   
4.
5.
6.
Adenine derivatives and auxin-related compounds, 2,4-dichlorophenoxyaceticacid (2,4-D) and 2,3,5-triiodobenzoic acid (TIBA), did not inhibitthe transport systems for succinate or malate into mitochondria.In iso-osmotic KC1 medium, some of these compounds increasedion fluxes moderately. TIBA and 2,4-D inhibited the mitochondrialshrinkage induced by the substrates. In contrast, adenine derivativesinhibited only the shrinkage induced by the substrate whoseoxidation they were able to block specifically. (Received February 18, 1987; Accepted June 29, 1987)  相似文献   
7.
8.
Mutations in immunoglobulin µ-binding protein 2 (Ighmbp2) cause distal spinal muscular atrophy type 1 (DSMA1), an autosomal recessive disease that is clinically characterized by distal limb weakness and respiratory distress. However, despite extensive studies, the mechanism of disease-causing mutations remains elusive. Here we report the crystal structures of the Ighmbp2 helicase core with and without bound RNA. The structures show that the overall fold of Ighmbp2 is very similar to that of Upf1, a key helicase involved in nonsense-mediated mRNA decay. Similar to Upf1, domains 1B and 1C of Ighmbp2 undergo large conformational changes in response to RNA binding, rotating 30° and 10°, respectively. The RNA binding and ATPase activities of Ighmbp2 are further enhanced by the R3H domain, located just downstream of the helicase core. Mapping of the pathogenic mutations of DSMA1 onto the helicase core structure provides a molecular basis for understanding the disease-causing consequences of Ighmbp2 mutations.  相似文献   
9.
The hepatitis C virus (HCV) envelope protein E2 has been shown to accumulate in the lumen of the endoplasmic reticulum (ER) as a properly folded glycoprotein as well as large aggregates of misfolded proteins. In the present study, we have identified an additional unglycosylated species, with an apparent molecular mass of 38 kDa (E2-p38). In contrast to the glycosylated E2, E2-p38 is significantly less stable and is degraded through the proteasome pathway. Correspondingly, E2-p38 is found to be ubiquitinated. E2-p38 is localized mostly in the cytosol, in contrast to the glycosylated form, which is exclusively membrane associated. Alpha interferon (IFN-alpha) treatment or overexpression of the double-stranded RNA-activated protein kinase (PKR) significantly increased the stability of E2-p38, consistent with a previous report (D. R. Taylor, S. T. Shi, P. R. Romano, G. N. Barber, and M. M. Lai, Science 285:107-110, 1999) that E2 interacts with PKR and inhibits its kinase activity. Direct interaction between PKR and E2-p38, but not the glycosylated form of E2, was also observed. These results show that E2-p38 is the form of E2 that interacts with PKR in the cytosol and may contribute to the resistance of HCV to IFN-alpha. Thus, an ER protein can exist in the cytosol as an unglycosylated species and impair cellular functions.  相似文献   
10.
Small conductance Ca2+-sensitive potassium (SK2) channels are voltage-independent, Ca2+-activated ion channels that conduct potassium cations and thereby modulate the intrinsic excitability and synaptic transmission of neurons and sensory hair cells. In the cochlea, SK2 channels are functionally coupled to the highly Ca2+ permeant α9/10-nicotinic acetylcholine receptors (nAChRs) at olivocochlear postsynaptic sites. SK2 activation leads to outer hair cell hyperpolarization and frequency-selective suppression of afferent sound transmission. These inhibitory responses are essential for normal regulation of sound sensitivity, frequency selectivity, and suppression of background noise. However, little is known about the molecular interactions of these key functional channels. Here we show that SK2 channels co-precipitate with α9/10-nAChRs and with the actin-binding protein α-actinin-1. SK2 alternative splicing, resulting in a 3 amino acid insertion in the intracellular 3′ terminus, modulates these interactions. Further, relative abundance of the SK2 splice variants changes during developmental stages of synapse maturation in both the avian cochlea and the mammalian forebrain. Using heterologous cell expression to separately study the 2 distinct isoforms, we show that the variants differ in protein interactions and surface expression levels, and that Ca2+ and Ca2+-bound calmodulin differentially regulate their protein interactions. Our findings suggest that the SK2 isoforms may be distinctly modulated by activity-induced Ca2+ influx. Alternative splicing of SK2 may serve as a novel mechanism to differentially regulate the maturation and function of olivocochlear and neuronal synapses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号