首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We estimated selection on adult body size for two generations in two populations of Aquarius remigis, as part of a long‐term study of the adaptive significance of sexual size dimorphism (SSD). Net adult fitness was estimated from the following components: prereproductive survival, daily reproductive success (mating frequency or fecundity), and reproductive lifespan. Standardized selection gradients were estimated for total length and for thorax, abdomen, genital and mesofemur lengths. Although selection was generally weak and showed significant temporal and spatial heterogeneity, patterns were consistent with SSD. Prereproductive survival was strongly influenced by date of eclosion, but size (thorax and genital lengths in females; total and abdomen lengths in males) played a significant secondary role. Sexual selection favoured smaller males with longer external genitalia in one population. Net adult fitness was not significantly related to body size in females, but was negatively related to size (thorax and total length) in males.  相似文献   

2.
Sexual size dimorphism (SSD) arises when the net effects of natural and sexual selection on body size differ between the sexes. Quantitative SSD variation between taxa is common, but directional intraspecific SSD reversals are rare. We combined micro‐ and macroevolutionary approaches to study geographic SSD variation in closely related black scavenger flies. Common garden experiments revealed stark intra‐ and interspecific variation: Sepsis biflexuosa is monomorphic across the Holarctic, while S. cynipsea (only in Europe) consistently exhibits female‐biased SSD. Interestingly, S. neocynipsea displays contrasting SSD in Europe (females larger) and North America (males larger), a pattern opposite to the geographic reversal in SSD of S. punctum documented in a previous study. In accordance with the differential equilibrium model for the evolution of SSD, the intensity of sexual selection on male size varied between continents (weaker in Europe), whereas fecundity selection on female body size did not. Subsequent comparative analyses of 49 taxa documented at least six independent origins of male‐biased SSD in Sepsidae, which is likely caused by sexual selection on male size and mediated by bimaturism. Therefore, reversals in SSD and the associated changes in larval development might be much more common and rapid and less constrained than currently assumed.  相似文献   

3.
Sexual size dimorphisms (SSDs) in body size are expected to evolve when selection on female and male sizes favors different optima. Many insects show female-biased SSD that is usually explained by the strong fecundity advantage of larger females. However, in some insects, males are as large as or even larger than females. The seed bug Togo hemipterus (Scott) also exhibits a male-biased SSD in body size. Many studies that have clarified the evolutionary causes of male-biased SSD have focused only on male advantages due to male–male competition. To clarify the evolutionary causes of male-biased SSD in body size, we should examine the degree of not only the sexual selection that favors larger males but also natural selection that is acting on female fecundity. The obtained results, which showed higher mating acceptance rates to larger males, implies that females prefer larger males. No significant relationship was detected between female body size and fecundity; body size effects on female fecundity were weak or undetectable. We conclude that male-biased SSD in T. hemipterus can be accounted for by a combination of sexual selection through male–male competition and female choice favoring large males, plus weak or undetectable natural selection that favors large females due to a fecundity advantage.  相似文献   

4.
Sexual size dimorphism (SSD) is often assumed to be driven by three major selective processes: (1) sexual selection influencing male size and thus mating success, (2) fecundity selection acting on females and (3) inter‐sexual resource division favouring different size in males and females to reduce competition for resources. Sexual selection should be particularly strong in species that exhibit lek polygyny, since male mating success is highly skewed in such species. We investigated whether these three selective processes are related to SSD evolution in grouse and allies (Phasianidae). Male‐biased SSD increased with body size (Rensch’s rule) and lekking species exhibited more male‐biased SSD than nonlekking ones. Directional phylogenetic analyses indicated that lekking evolved before SSD, but conclusions were highly dependent on the body size traits and chosen model values. There was no relationship between SSD and male display agility, nor did resource division influence SSD. Although clutch mass increased with female body size it was not related to the degree of SSD. Taken together, the results are most consistent with the hypothesis that lekking behaviour led to the evolution of male‐biased SSD in Phasianidae.  相似文献   

5.
Summary We analysed sexual size dimorphism for 21 populations of microtine rodents. Female to male size ratio varied considerably among populations from females significantly larger than males (ratio=1.18) to males larger than females (ratio=0.78). In a multiple regression analysis female to male home range size ratio explained 94% of the total variation in body size dimorphism and was the only one of eight independent variables that was selected in a stepwise regression procedure. When females are the larger sex, males have home range sizes much larger than females. We suggest that the relationship between home range size ratio and body weight size dimorphism reflects different selection pressures on males and females in competition for resources and mates.  相似文献   

6.
Sexual size dimorphism (SSD) evolves because body size is usually related to reproductive success through different pathways in females and males. Female body size is strongly correlated with fecundity, while in males, body size is correlated with mating success. In many lizard species, males are larger than females, whereas in others, females are the larger sex, suggesting that selection on fecundity has been stronger than sexual selection on males. As placental development or egg retention requires more space within the abdominal cavity, it has been suggested that females of viviparous lizards have larger abdomens or body size than their oviparous relatives. Thus, it would be expected that females of viviparous species attain larger sizes than their oviparous relatives, generating more biased patterns of SSD. We test these predictions using lizards of the genus Sceloporus. After controlling for phylogenetic effects, our results confirm a strong relationship between female body size and fecundity, suggesting that selection for higher fecundity has had a main role in the evolution of female body size. However, oviparous and viviparous females exhibit similar sizes and allometric relationships. Even though there is a strong effect of body size on female fecundity, once phylogenetic effects are considered, we find that the slope of male on female body size is significantly larger than one, providing evidence of greater evolutionary divergence of male body size. These results suggest that the relative impact of sexual selection acting on males has been stronger than fecundity selection acting on females within Sceloporus lizards.  相似文献   

7.
Standardized measures of the strength of selection on a character allow quantitative comparisons across populations in time and space. Spatiotemporal variation in selection influences patterns of adaptation and the evolution of characters and must therefore be documented. For the dung-breeding fly Sepsis cynipsea, we document patterns of variation in sexual, fecundity and larval and adult viability selection on body size at several spatiotemporal scales: between-populations, over the season, over the day and between dung pats. Adult viability selection based on residual physiological survivorship in the laboratory was nil or weakly negative. In contrast, larval viability selection in two laboratory environments was weakly positive for males at low competition and females at high competition. Fecundity selection was positive and strong at all times and in all populations. Sexual selection reflecting pairing success was overall strongly positive (about three times stronger than fecundity selection), while selection reflecting male reproductive success via the clutch size of his mate (i.e. assortative mating) was essentially nil. Only sexual selection varied significantly at coarse (between populations and seasonally) but not at fine (within a day or between pats on a pasture) spatial and temporal scales. Quadratic and correlational selection differentials were low and inconsistent in all episodes except for fecundity selection, where there was some evidence that clutch size reaches an asymptote at large body sizes, implying weaker selection for large size as females get bigger. Implications of these results for the evolution of body size and body size dimorphism are discussed.  相似文献   

8.
Body size is one of the most important quantitative traits under evolutionary scrutiny. Sexual size dimorphism (SSD) in a given species is expected to result if opposing selection forces equilibrate differently in both sexes. We document variation in the intensity of sexual and fecundity selection, male and female body size, and thus SSD among 31 and 27 populations of the two dung fly species, Scathophaga stercoraria and Sepsis cynipsea, across Switzerland. Whereas in S. cynipsea females are larger, the SSD is reversed in S. stercoraria. We comprehensively evaluated Fairbairn and Preziosi's (1994) general, three-tiered scenario, hypothesizing that sexual selection for large male size is the major driving force of SSD allometry within these two species. Sexual selection intensity on male size in the yellow dung fly, S. stercoraria, was overall positive, greater, and more variable among populations than fecundity selection on females. Also, sexual selection intensity in a given population correlated positively with mean male body size of that population for both the field-caught fathers and their laboratory-reared sons, indicating a response to selection. In S. cvnipsea, sexual selection intensity on males was lower overall and significantly positive, about equal in magnitude, but more variable than fecundity selection on females. However, there was no correlation between the intensity of sexual selection and mean male body size among populations. In both species, the laboratory-reared offspring indicate genetic differentiation among populations in body size. Despite fulfillment of all key prerequisites, at least in S. stercoraria, we did not find hypoallometry for SSD (Rensch's rule, i.e., greater evolutionary divergence in male size than female size) for the field-caught parents or the laboratory-reared offspring: Female size was isometric to male size in both species. We conclude that S. cynipsea does not fit some major requirements of Fairbairn and Preziosi's (1994) scenario, whereas for S. stercoraria we found partial support for it. Failure to support Rensch's rule within the latter species may be due to phylogenetic or other constraints, power limitations, erroneous estimates of sexual selection, insufficient genetic isolation of populations, or sex differences in viability selection against large size.  相似文献   

9.
Abstract.— Sexual size dimorphism (SSD), the difference in body size between males and females, is common in almost all taxa of animals and is generally assumed to be adaptive. Although sexual selection and fecundity selection alone have often been invoked to explain the evolution of SSD, more recent views indicate that the sexes must experience different lifetime selection pressures for SSD to evolve and be maintained. We estimated selection acting on male and female adult body size (total length) and components of body size in the waterstrider Aquarius remigis during three phases of life history. Opposing selection pressures for overall body size occurred in separate episodes of fitness for females in both years and for males in one year. Specific components of body size were often the targets of the selection on overall body size. When net adult fitness was estimated by combining each individual's fitnesses from all episodes, we found stabilizing selection in both sexes. In addition, the net optimum overall body size of males was smaller than that of females. However, even when components of body size had experienced opposing selection pressures in individual episodes, no components appeared to be under lifetime stabilizing selection. This is the first evidence that contemporary selection in a natural population acts to maintain female size larger than male size, the most common pattern of SSD in nature.  相似文献   

10.
Eusocial insects offer a unique opportunity to analyze the evolution of body size differences between sexes in relation to social environment. The workers, being sterile females, are not subject to selection for reproductive function providing a natural control for parsing the effects of selection on reproductive function (i.e., sexual and fecundity selection) from other kinds of natural selection. Patterns of sexual size dimorphism (SSD) and testing of Rensch's rule controlling for phylogenetic effects were analyzed in the Meliponini or stingless bees. Theory predicts that queens may exhibit higher selection for fecundity in eusocial taxa, but contrary to this, we found mixed patterns of SSD in Meliponini. Non‐Melipona species generally have a female‐biased SSD, while all analyzed species of Melipona showed a male‐biased SSD, indicating that the direction and magnitude of the selective pressures do not operate in the same way for all members of this taxon. The phylogenetic regressions revealed that the rate of divergence has not differed between the two castes of females and the males, that is, stingless bees do not seem to follow Rensch's rule (a slope >1), adding this highly eusocial taxon to the various solitary insect taxa not conforming with it. Noteworthy, when Melipona was removed from the analysis, the phylogenetic regressions for the thorax width of males on queens had a slope significantly smaller than 1, suggesting that the evolutionary divergence has been larger in queens than males, and could be explained by stronger selection on female fecundity only in non‐Melipona species. Our results in the stingless bees question the classical explanation of female‐biased SSD via fecundity and provide a first evidence of a more complex determination of SSD in highly eusocial species. We suggest that in highly eusocial taxa, additional selection mechanisms, possibly related to individual and colonial interests, could influence the evolution of environmentally determined traits such as body size.  相似文献   

11.
Sexual size dimorphism (SSD) is one of the most common ways in which males and females differ. Male‐biased SSD (when males are larger) is often attributed to sexual selection favouring large males. When females are larger (female‐biased SSD), it is often argued that natural selection favouring increased fecundity (i.e. larger clutches or eggs) has coevolved with larger female body size. Using comparative phylogenetic and multispecies regression model selection approaches, we test the hypothesis that among‐species variation in female fecundity is associated with the evolution of female‐biased SSD. We also ask whether the hypothesized relationship between SSD and fecundity is relaxed upon the evolution of parental care. Our results suggest a strong relationship between the evolution of fecundity and body size, but we find no significant relationship between fecundity and SSD. Similarly, there does not appear to be a relationship between fecundity and the presence or absence of parental care among species. Thus, although female body size and fecundity coevolve, selection for increased fecundity as an explanation for female‐biased SSD is inconsistent with our analyses. We caution that a relationship between female body size and fecundity is insufficient evidence for fecundity selection driving the evolution of female‐biased SSD.  相似文献   

12.
Abstract.— Sexual size dimorphism (SSD) is the evolutionary result of selection operating differently on the body sizes of males and females. Anolis lizard species of the Greater Antilles have been classified into ecomorph classes, largely on the basis of their structural habitat (perch height and diameter). We show that the major ecomorph classes differ in degree of SSD. At least two SSD classes are supported: high SSD (trunk-crown, trunk-ground) and low SSD (trunk, crown-giant, grass-bush, twig). Differences cannot be attributed to an allometric increase of SSD with body size or to a phylogenetic effect. A third explanation, that selective pressures on male and/or female body size vary among habitat types, is examined by evaluating expectations from the major relevant kinds of selective pressures. Although no one kind of selective pressure produces expectations consistent with all of the information, competition with respect to structural habitat and sexual selection pressures are more likely possibilities than competition with respect to prey size or optimal feeding pressures. The existence of habitat-specific sexual dimorphism suggests that adaptation of Anolis species to their environment is more complex than previously appreciated.  相似文献   

13.
We know very little about male mating preferences and how they influence the evolution of female traits. Theory predicts that males may benefit from choosing females on the basis of traits that indicate their fecundity. Here, we explore sexual selection generated by male choice on two components of female body size (wing length and body mass) in Drosophila serrata. Using a dietary manipulation to alter female size and 828 male mate choice trials, we analysed linear and nonlinear sexual selection gradients on female mass and wing length. In contrast to theoretical expectations and prevailing empirical data, males exerted stabilizing rather than directional sexual selection on female body mass, a correlate of fecundity. Sexual selection was detected only among females with access to standard resource levels as an adult, with no evidence for sexual selection among resource-depleted females. Thus the mating success of females with the same body mass differed depending upon their access to resources as an adult. This suggests that males in this species may rely on signal traits to assess body mass rather than assessing it directly. Stabilizing rather than directional sexual selection on body mass together with recent evidence for stabilizing sexual selection on candidate signal traits in this species suggests that females may trade-off resources allocated to reproduction and sexual signalling.  相似文献   

14.
Abstract Male intrasexual selection in haplorhine primates has previously been shown to increase male size and to a lesser degree also female size. I address the following questions: (1) why does female size increase when the selection is on males, and (2) why does female size not increase to the same extent as that of males. The potential for correlational selection on females through increased resource competition was analysed with independent contrasts analyses. No such effect was found, nor did matched pairs comparisons reveal females to increase in size because of selection to bear larger male offspring. Instead further matched pairs analyses revealed higher female postpartum investment, as indicated by a longer lactation period, in more sexually selected species, also after correcting for body weight. Concerning the second question, independent contrast analyses showed that large size has had negative effects on female reproductive rate across the primate order. Matched‐pairs analyses on haplorhines revealed that females of species in more polygynous clades have lower reproductive rates than females of species in less polygynous clades. This is also true after the effects of body weight are removed. These results, both when correcting for body weight and when not, suggest that sexual selection has shifted female size from one favouring female lifetime fecundity to one favouring male success in competition. This depicts antagonistic selection pressures on female size and a trade‐off for females between the ecologically optimal size of their foremothers and the larger size that made their forefathers successful.  相似文献   

15.
Bumblebees and other eusocial bees offer a unique opportunity to analyze the evolution of body size differences between sexes. The workers, being sterile females, are not subject to selection for reproductive function and thus provide a natural control for parsing the effects of selection on reproductive function (i.e., sexual and fecundity selection) from other natural selection. Using a phylogenetic comparative approach, we explored the allometric relationships among queens, males, and workers in 70 species of bumblebees (Bombus sp.). We found hyperallometry in thorax width for males relative to workers, indicating greater evolutionary divergence of body size in males than in sterile females. This is consistent with the hypothesis that selection for reproductive function, most probably sexual selection, has caused divergence in male size among species. The slope for males on workers was significantly steeper than that for queens on workers and the latter did not depart from isometry, providing further evidence of greater evolutionary divergence in male size than female size, and no evidence that reproductive selection has accelerated divergence of females. We did not detect significant hyperallometry when male size was regressed directly on queen size and our results thus add the genus Bombus to the increasing list of clades that have female-larger sexual size dimorphism and do not conform to Rensch's rule when analyzed according to standard methodology. Nevertheless, by using worker size as a common control, we were able to demonstrate that bumblee species do show the evolutionary pattern underlying Rensch's rule, that being correlated evolution of body size in males and females, but with greater evolutionary divergence in males.  相似文献   

16.
It is commonly argued that sexual size dimorphism (SSD) in lizards has evolved in response to two primary, nonexclusive processes: (1) sexual selection for large male size, which confers an advantage in intrasexual mate competition (intrasexual selection hypothesis), and (2) natural selection for large female size, which confers a fecundity advantage (fecundity advantage hypothesis). However, outside of several well-studied lizard genera, the empirical support for these hypotheses has not been examined with appropriate phylogenetic control. We conducted a comparative phylogenetic analysis to test these hypotheses using literature data from 497 lizard populations representing 302 species and 18 families. As predicted by the intrasexual selection hypothesis, male aggression and territoriality are correlated with SSD, but evolutionary shifts in these categorical variables each explain less than 2% of the inferred evolutionary change in SSD. We found stronger correlations between SSD and continuous estimates of intrasexual selection such as male to female home range ratio and female home range size. These results are consistent with the criticism that categorical variables may obscure much of the actual variation in intrasexual selection intensity needed to explain patterns in SSD. In accordance with the fecundity advantage hypothesis, SSD is correlated with clutch size, reproductive frequency, and reproductive mode (but not fecundity slope, reduced major axis estimator of fecundity slope, length of reproductive season, or latitude). However, evolutionary shifts in clutch size explain less than 8% of the associated change in SSD, which also varies significantly in the absence of evolutionary shifts in reproductive frequency and mode. A multiple regression model retained territoriality and clutch size as significant predictors of SSD, but only 16% of the variation in SSD is explained using these variables. Intrasexual selection for large male size and fecundity selection for large female size have undoubtedly helped to shape patterns of SSD across lizards, but the comparative data at present provide only weak support for these hypotheses as general explanations for SSD in this group. Future work would benefit from the consideration of alternatives to these traditional evolutionary hypotheses, and the elucidation of proximate mechanisms influencing growth and SSD within populations.  相似文献   

17.
Studies of phenotypic selection in natural populations often concentrate only on short time periods and do not quantify selection intensities. We quantified temporal and microspatial variation in the intensities of natural and sexual selection for body size in the yellow dung fly over 2 years. Female fecundity selection intensity remained approximately constant over the season with an overall mean ± SE of 0.187 ± 0.014. Selection intensity for male reproductive success, defined as eggs obtained by mating males, did not differ from zero, indicating there was no assortative mating by size. Sexual selection intensity for male mating success favouring large males was variable but overall strong in the two years (0.499 ± 0.053 and 0.510 ± 0.051). As theoretically expected for male–male competition, sexual selection intensity increased with competitor density and reached an asymptote at about 250 males per pat; it also decreased with time in spring and increased again in autumn as a function of density. Small males had the best chance of obtaining a female at very low male densities. Greater selection intensity for large size in males than females is consistent with, and might be responsible for, the observed sexual size dimorphism in this species, as males are larger. The seasonal pattern of mean male body size (smallest at the beginning and end of the season) most likely reflects mere environmental (primarily temperature) influences on phenotypic size.  相似文献   

18.
In crustacean species with precopulatory mate-guarding, sexual size dimorphism has most often been regarded as the consequence of a large male advantage in contest competition for access to females. However, large body size in males may also be favoured indirectly through scramble competition. This might partly be the case if the actual target of selection is a morphological character, closely correlated with body size, involved in the detection of receptive females. We studied sexual selection on body size and antennae length in natural populations of Asellus aquaticus, an isopod species with precopulatory mate guarding. In this species, males are larger than females and male pairing success is positively related to body size. However, males also have longer antennae, relative to body size, than females, suggesting that this character may also be favoured by sexual selection. We used multivariate analysis of selection to assess the relative influences of body size and antennae length in five different populations in the field. Selection gradients indicated that, overall, body size was a better predictor of male pairing success than antennae length, although some variation was observed between sites. We then manipulated male antennae length in a series of experiments conducted in the lab, and compared the pairing ability of males with short or long antennae. Males with short antennae were less likely to detect, orient to, and to pair with a receptive female compared with males with long antennae. We discuss the implications of our results for studies of male body size and sexual dimorphism in relation to sexual selection in crustaceans.  相似文献   

19.
In crustacean species with precopulatory mate-guarding, sexual size dimorphism has most often been regarded as the consequence of a large male advantage in contest competition for access to females. However, large body size in males may also be favoured indirectly through scramble competition. This might partly be the case if the actual target of selection is a morphological character, closely correlated with body size, involved in the detection of receptive females. We studied sexual selection on body size and antennae length in natural populations of Asellus aquaticus, an isopod species with precopulatory mate guarding. In this species, males are larger than females and male pairing success is positively related to body size. However, males also have longer antennae, relative to body size, than females, suggesting that this character may also be favoured by sexual selection. We used multivariate analysis of selection to assess the relative influences of body size and antennae length in five different populations in the field. Selection gradients indicated that overall body size was a better predictor of male pairing success than antennae length, although some variation was observed between sites. We then manipulated male antennae length in a series of experiments conducted in the laboratory, and compared the pairing ability of males with short or long antennae. Males with short antennae were less likely to detect, orient to and to pair with a receptive female compared to males with long antennae. We discuss the implications of our results for studies of male body size and sexual dimorphism in relation to sexual selection in crustaceans.  相似文献   

20.
Terrestrial breeding is a derived condition in frogs, with multiple transitions from an aquatic ancestor. Shifts in reproductive mode often involve changes in habitat use, and these are typically associated with diversification in body plans, with repeated transitions imposing similar selective pressures. We examine the diversification of reproductive modes, male and female body sizes, and sexual size dimorphism (SSD) in the Neotropical frog genera Cycloramphus and Zachaenus, both endemic to the Atlantic rainforest of Brazil. Species in this clade either breed in rocky streams (saxicolous) or in terrestrial environments, allowing us to investigate reproductive habitat shifts. We constructed a multilocus molecular phylogeny and inferred evolutionary histories of reproductive habitats, body sizes, and SSD. The common ancestor was small, saxicolous, and had low SSD. Terrestrial breeding evolved independently three times and we found a significant association between reproductive habitat and SSD, with shifts to terrestrial breeding evolving in correlation with decreases in male body size, but not female body size. Terrestrial breeding increases the availability of breeding sites and results in concealment of amplexus, egg-laying, and parental care, therefore reducing male-male competition at all stages of reproduction. We conclude that correlated evolution of terrestrial reproduction and small males is due to release from intense male-male competition that is typical of exposed saxicolous breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号