首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Cryobiology》2006,52(3):262-280
Antifreeze proteins are characterised by their ability to prevent ice from growing upon cooling below the bulk melting point. This displacement of the freezing temperature of ice is limited and at a sufficiently low temperature a rapid ice growth takes place. The separation of the melting and freezing temperature is usually referred to as thermal hysteresis, and the temperature of ice growth is referred to as the hysteresis freezing point. The hysteresis is supposed to be the result of an adsorption of antifreeze proteins to the crystal surface. This causes the ice to grow as convex surface regions between adjacent adsorbed antifreeze proteins, thus lowering the temperature at which the crystal can visibly expand. The model requires that the antifreeze proteins are irreversibly adsorbed onto the ice surface within the hysteresis gap. This presupposition is apparently in conflict with several characteristic features of the phenomenon; the absence of superheating of ice in the presence of antifreeze proteins, the dependence of the hysteresis activity on the concentration of antifreeze proteins and the different capacities of different types of antifreeze proteins to cause thermal hysteresis at equimolar concentrations. In addition, there are structural obstacles that apparently would preclude irreversible adsorption of the antifreeze proteins to the ice surface; the bond strength necessary for irreversible adsorption and the absence of a clearly defined surface to which the antifreeze proteins may adsorb. This article deals with these apparent conflicts between the prevailing theory and the empirical observations. We first review the mechanism of thermal hysteresis with some modifications: we explain the hysteresis as a result of vapour pressure equilibrium between the ice surface and the ambient fluid fraction within the hysteresis gap due to a pressure build-up within the convex growth zones, and the ice growth as the result of an ice surface nucleation event at the hysteresis freezing point. We then go on to summarise the empirical data to show that the dependence of the hysteresis on the concentration of antifreeze proteins arises from an equilibrium exchange of antifreeze proteins between ice and solution at the melting point. This reversible association between antifreeze proteins and the ice is followed by an irreversible adsorption of the antifreeze proteins onto a newly formed crystal plane when the temperature is lowered below the melting point. The formation of the crystal plane is due to a solidification of the interfacial region, and the necessary bond strength is provided by the protein “freezing” to the surface. In essence: the antifreeze proteins are “melted off” the ice at the bulk melting point and “freeze” to the ice as the temperature is reduced to subfreezing temperatures. We explain the different hysteresis activities caused by different types of antifreeze proteins at equimolar concentrations as a consequence of their solubility features during the phase of reversible association between the proteins and the ice, i.e., at the melting point; a low water solubility results in a large fraction of the proteins being associated with the ice at the melting point. This leads to a greater density of irreversibly adsorbed antifreeze proteins at the ice surface when the temperature drops, and thus to a greater hysteresis activity. Reference is also made to observations on insect antifreeze proteins to emphasise the general validity of this approach.  相似文献   

2.
The mechanism by which fish antifreeze proteins cause thermal hysteresis   总被引:6,自引:0,他引:6  
Antifreeze proteins are characterised by their ability to prevent ice from growing upon cooling below the bulk melting point. This displacement of the freezing temperature of ice is limited and at a sufficiently low temperature a rapid ice growth takes place. The separation of the melting and freezing temperature is usually referred to as thermal hysteresis, and the temperature of ice growth is referred to as the hysteresis freezing point. The hysteresis is supposed to be the result of an adsorption of antifreeze proteins to the crystal surface. This causes the ice to grow as convex surface regions between adjacent adsorbed antifreeze proteins, thus lowering the temperature at which the crystal can visibly expand. The model requires that the antifreeze proteins are irreversibly adsorbed onto the ice surface within the hysteresis gap. This presupposition is apparently in conflict with several characteristic features of the phenomenon; the absence of superheating of ice in the presence of antifreeze proteins, the dependence of the hysteresis activity on the concentration of antifreeze proteins and the different capacities of different types of antifreeze proteins to cause thermal hysteresis at equimolar concentrations. In addition, there are structural obstacles that apparently would preclude irreversible adsorption of the antifreeze proteins to the ice surface; the bond strength necessary for irreversible adsorption and the absence of a clearly defined surface to which the antifreeze proteins may adsorb. This article deals with these apparent conflicts between the prevailing theory and the empirical observations. We first review the mechanism of thermal hysteresis with some modifications: we explain the hysteresis as a result of vapour pressure equilibrium between the ice surface and the ambient fluid fraction within the hysteresis gap due to a pressure build-up within the convex growth zones, and the ice growth as the result of an ice surface nucleation event at the hysteresis freezing point. We then go on to summarise the empirical data to show that the dependence of the hysteresis on the concentration of antifreeze proteins arises from an equilibrium exchange of antifreeze proteins between ice and solution at the melting point. This reversible association between antifreeze proteins and the ice is followed by an irreversible adsorption of the antifreeze proteins onto a newly formed crystal plane when the temperature is lowered below the melting point. The formation of the crystal plane is due to a solidification of the interfacial region, and the necessary bond strength is provided by the protein "freezing" to the surface. In essence: the antifreeze proteins are "melted off" the ice at the bulk melting point and "freeze" to the ice as the temperature is reduced to subfreezing temperatures. We explain the different hysteresis activities caused by different types of antifreeze proteins at equimolar concentrations as a consequence of their solubility features during the phase of reversible association between the proteins and the ice, i.e., at the melting point; a low water solubility results in a large fraction of the proteins being associated with the ice at the melting point. This leads to a greater density of irreversibly adsorbed antifreeze proteins at the ice surface when the temperature drops, and thus to a greater hysteresis activity. Reference is also made to observations on insect antifreeze proteins to emphasise the general validity of this approach.  相似文献   

3.
Biochemistry of fish antifreeze proteins   总被引:28,自引:0,他引:28  
P L Davies  C L Hew 《FASEB journal》1990,4(8):2460-2468
Four distinct macromolecular antifreezes have been isolated and characterized from different marine fish. These include the glycoprotein antifreezes (Mr 2.5-33 K), which are made up of a repeating tripeptide (Ala-Ala-Thr)n with a disaccharide attached to the threonyl residues, and three antifreeze protein (AFP) types. Type I is an alanine-rich, amphiphilic, alpha-helix (Mr 3-5 K); type II is a larger protein (Mr 14 K) with a high content of reverse turns and five disulfide bridges; and type III is intermediate in size (Mr 6-7 K) with no distinguishing features of secondary structure or amino acid composition. Despite their marked structural differences, all four antifreeze types appear to function in the same way by binding to the prism faces of ice crystals and inhibiting growth along the a-axes. It is suggested that type I AFP binds preferentially to the prism faces as a result of interactions between the helix macrodipole and the dipoles on the water molecules in the ice lattice. Binding is stabilized by hydrogen bonding, and the amphiphilic character of the helix results in the hydrophobic phase of the helix being exposed to the solvent. When the solution temperature is lowered further, ice crystal growth occurs primarily on the uncoated, unordered basal plane resulting in bipyramidal-shaped crystals. The structural features of type I AFP that could contribute to this mechanism of action are reviewed. Current challenges lie in solving the other antifreeze structures and interpreting them in light of what appears to be a common mechanism of action.  相似文献   

4.
昆虫抗冻蛋白的研究进展   总被引:2,自引:0,他引:2  
抗冻蛋白是一类与冰晶有亲合力,能够与冰晶结合并抑制冰晶生长的蛋白或糖蛋白。自20世纪60年代以来,研究人员已经分别从鱼类、昆虫、植物、真菌和细菌中发现多种抗冻蛋白。其中已知鱼类抗冻蛋白有5种,也是研究最详细的。但是,近几年来发现昆虫抗冻蛋白活性普遍比较高,因此受到研究人员重视,研究取得了较快的发展。主要讨论昆虫抗冻蛋白的结构特点、抗冻活性、作用机制和应用,并分析目前的研究现状提出一些待解决的问题,以期望对昆虫抗冻蛋白的研究进行比较系统化的整理。  相似文献   

5.
Antifreeze proteins (AFPs) protect certain organisms from freezing by adhering to ice crystals, thereby preventing their growth. All AFPs depress the nonequilibrium freezing temperature below the melting point; however AFPs from overwintering insects, such as the spruce budworm (sbw) are 10-100 times more effective than most fish AFPs. It has been proposed that the exceptional activity of these AFPs depends on their ability to prevent ice growth at the basal plane. To test the hypothesis that the hyperactivity of sbwAFP results from direct affinity to the basal plane, we fluorescently tagged sbwAFP and visualized it on the surface of ice crystals using fluorescence microscopy. SbwAFP accumulated at the six prism plane corners and the two basal planes of hexagonal ice crystals. In contrast, fluorescently tagged fish type III AFP did not adhere to the basal planes of a single-crystal ice hemisphere. When ice crystals were grown in the presence of a mixture of type III AFP and sbwAFP, a hybrid crystal shape was produced with sbwAFP bound to the basal planes of truncated bipyramidal crystals. These observations are consistent with the blockage of c-axial growth of ice as a result of direct interaction of sbwAFP with the basal planes.  相似文献   

6.
Mutation of residues at the ice-binding site of type III antifreeze protein (AFP) not only reduced antifreeze activity as indicated by the failure to halt ice crystal growth, but also altered ice crystal morphology to produce elongated hexagonal bipyramids. In general, the c axis to a axis ratio of the ice crystal increased from approximately 2 to over 10 with the severity of the mutation. It also increased during ice crystal growth upon serial dilution of the wild-type AFP. This is in marked contrast to the behavior of the alpha-helical type I AFPs, where neither dilution nor mutation of ice-binding residues increases the c:a axial ratio of the ice crystal above the standard 3.3. We suggest that the ice crystal morphology produced by type III AFP and its mutants can be accounted for by the protein binding to the prism faces of ice and operating by step growth inhibition. In this model a decrease in the affinity of the AFP for ice leads to filling in of individual steps at the prism surfaces, causing the ice crystals to grow with a longer c:a axial ratio.  相似文献   

7.
Adsorption to ice of fish antifreeze glycopeptides 7 and 8.   总被引:10,自引:0,他引:10  
Experimental results show that fish antifreeze glycopeptides (AFGPs) 8 and 7 (with 4 and 5 repeats respectively of the Ala-Ala-Thr backbone sequence) bond onto ice prism planes aligned along a-axes, and inhibit crystal growth on prism planes and on surfaces close to that orientation. The 9.31-A repeat spacing of the AFGP in the polyproline II helix configuration, deduced from NMR studies, matches twice the repeat spacing of ice in the deduced alignment direction, 9.038 A, within 3%. A specific binding model is proposed for the AFGP and for the alpha-helical antifreeze peptide of winter flounder. For AFGP 7-8, two hydroxyl groups of each disaccharide (one disaccharide is attached to each threonine) reside within the ice surface, so that they are shared between the ice crystal and the disaccharide. This provides 24 hydrogen bonds between AFGP 8 and the ice and 30 for AFGP 7, explaining why the chemical adsorption is virtually irreversible and the crystal growth can be stopped virtually completely. The same scheme of sharing polar groups with the ice works well with the alpha-helical antifreeze of winter flounder, for which an amide as well as several hydroxyls are shared. The sharing of polar groups with the ice crystal, rather than hydrogen-bonding to the ice surface, may be a general requirement for adsoprtion-inhibition of freezing.  相似文献   

8.
甲虫抗冻蛋白是一种具有规则结构的昆虫抗冻蛋白。在相同浓度条件下,甲虫抗冻蛋白比鱼类抗冻蛋白有更高的热滞活性,目前已成为人们重点研究的一类抗冻蛋白。根据甲虫抗冻蛋白的结构特点及其在冰晶表面的吸附模式,应用二维吸附结合模型计算分析了具有6 ̄11个β-螺旋(β-helix)结构片段的甲虫抗冻蛋白变体分子,得到了它们的热滞活性随溶液浓度变化的规律,特别是热滞活性与甲虫抗冻蛋白的β-螺旋结构片段数的关系。结果显示,抗冻蛋白在冰晶表面的覆盖度是一个影响其热滞活性的重要因素。  相似文献   

9.
Activity of antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) is often determined by thermal hysteresis, which is the difference between the melting temperature and the nonequilibrium freezing temperature of ice in AF(G)P solutions. In this study, we confirmed that thermal hysteresis of AFP type I is significantly enhanced by a cooperative function of ammonium polyacrylate (NH4PA). Thermal hysteresis of mixtures of AFP type I and NH4PA was much larger than the sum of each thermal hysteresis of AFP type I and NH4PA alone. In mixed solutions of AFP type I and NH4PA in the thermal hysteresis region, hexagonal pyramidal-shaped pits densely formed on ice surfaces close to the basal planes. The experimental results suggest that the cooperative function of NH4PA with AFP type I was caused either by the increase in adsorption sites of AFP type I on ice or by the adsorption of AFP type I aggregates on ice.  相似文献   

10.
In order to survive under extremely cold environments, many organisms produce antifreeze proteins (AFPs). AFPs inhibit the growth of ice crystals and protect organisms from freezing damage. Fish AFPs can be classified into five distinct types based on their structures. Here we report the structure of herring AFP (hAFP), a Ca(2+)-dependent fish type II AFP. It exhibits a fold similar to the C-type (Ca(2+)-dependent) lectins with unique ice-binding features. The 1.7 A crystal structure of hAFP with bound Ca(2+) and site-directed mutagenesis reveal an ice-binding site consisting of Thr96, Thr98 and Ca(2+)-coordinating residues Asp94 and Glu99, which initiate hAFP adsorption onto the [10-10] prism plane of the ice lattice. The hAFP-ice interaction is further strengthened by the bound Ca(2+) through the coordination with a water molecule of the ice lattice. This Ca(2+)-coordinated ice-binding mechanism is distinct from previously proposed mechanisms for other AFPs. However, phylogenetic analysis suggests that all type II AFPs evolved from the common ancestor and developed different ice-binding modes. We clarify the evolutionary relationship of type II AFPs to sugar-binding lectins.  相似文献   

11.
Plants' distribution and productivity are adversely affected by low temperature (LT) stress. LT induced proteins were analyzed by 2-DE-nano-LC-MS/MS in shoot secretome of Hippophae rhamnoides (seabuckthorn), a Himalayan wonder shrub. Seedlings were subjected to direct freezing stress (-5 °C), cold acclimation (CA), and subzero acclimation (SZA), and extracellular proteins (ECPs) were isolated using vacuum infiltration. Approximately 245 spots were reproducibly detected in 2-DE gels of LT treated secretome, out of which 61 were LT responsive. Functional categorization of 34 upregulated proteins showed 47% signaling, redox regulated, and defense associated proteins. LT induced secretome contained thaumatin like protein and Chitinase as putative antifreeze proteins (AFPs). Phase contrast microscopy with a nanoliter osmometer showed hexagonal ice crystals with 0.13 °C thermal hysteresis (TH), and splat assay showed 1.5-fold ice recrystallization inhibition (IRI), confirming antifreeze activity in LT induced secretome. A 41 kDa polygalacturonase inhibitor protein (PGIP), purified by ice adsorption chromatography (IAC), showed hexagonal ice crystals, a TH of 0.19 °C, and 9-fold IRI activity. Deglycosylated PGIP retained its AFP activity, suggesting that glycosylation is not required for AFP activity. This is the first report of LT modulated secretome analysis and purification of AFPs from seabuckthorn. Overall, these findings provide an insight in probable LT induced signaling in the secretome.  相似文献   

12.
很多越冬的生物会产生抗冻蛋白,这些抗冻蛋白能够吸附到冰晶的表面改变冰晶形态并抑制冰晶的生长.抗冻蛋白在很多生物体内都被发现,不同的抗冻蛋白结构差异非常大.目前的一些研究揭示了几种抗冻蛋白的结构,并提出了抗冻蛋白与冰晶的结合模型,但是还没有一种机制能解释所有抗冻蛋白的作用机理.抗冻蛋白能被广泛的应用到农业、水产业和低温储藏器官、组织和细胞,利用转基因技术提高植物的抗冻性具有重要应用价值.而抗冻蛋白基因的表达调控则有待进一步阐明.  相似文献   

13.
Abstract A number of freeze-tolerant insect species contain proteins/lipoproteins or insoluble crystals that are ice nucleating active at relatively high subzero temperatures. Recently ice nucleating active bacteria and fungi have been identified as normal flora in insect guts. However, most insects are unable to survive internal ice formation and the key factor in their overwintering survival is the regulation of the temperature at which they spontaneously freeze. To enhance their supercooling capacity overwintering insects eliminate endogenous ice nucleators, accumulate low molecular weight polyols and sugars, and synthesize hemolymph antifreeze proteins or peptides. The factors affecting the supercooling capacity of overwintering insects or the mechanism of cold-hardiness are discussed.  相似文献   

14.
Antifreeze proteins and antifreeze glycoproteins are structurally diverse molecules that share a common property in binding to ice crystals and inhibiting ice crystal growth. Type II fish antifreeze protein of Atlantic herring (Clupea harengus harengus) is unique in its requirement of Ca(2+) for antifreeze activity. In this study, we utilized the secretion vector pGAPZalpha A to express recombinant herring antifreeze protein (WT) and a fusion protein with a C-terminal six-histidine tag (WT-6H) in yeast Pichia pastoris wild-type strain X-33 or protease-deficient strain SMD1168H. Both recombinant proteins were secreted into the culture medium and properly folded and functioned as the native herring antifreeze protein. Furthermore, our studies demonstrated that expression at a lower temperature increased the yield of the recombinant protein dramatically, which might be due to the enhanced protein folding pathway, as well as increased cell viability at lower temperature. These data suggested that P. pastoris is a useful system for the production of soluble and biologically active herring antifreeze protein required for structural and functional studies.  相似文献   

15.
Antifreeze proteins in higher plants   总被引:12,自引:0,他引:12  
Atici O  Nalbantoglu B 《Phytochemistry》2003,64(7):1187-1196
Overwintering plants produce antifreeze proteins (AFPs) having the ability to adsorb onto the surface of ice crystals and modify their growth. Recently, several AFPs have been isolated and characterized and five full-length AFP cDNAs have been cloned and characterized in higher plants. The derived amino acid sequences have shown low homology for identical residues. Theoretical and experimental models for structure of Lolium perenne AFP have been proposed. In addition, it was found that the hormone ethylene is involved in regulating antifreeze activity in response to cold. In this review, it is seen that the physiological and biochemical roles of AFPs may be important to protect the plant tissues from mechanical stress caused by ice formation.  相似文献   

16.
Antifreeze proteins in winter rye   总被引:15,自引:0,他引:15  
Six antifreeze proteins, which have the unique ability to adsorb onto the surface of ice and inhibit its growth, have been isolated from the apoplast of winter rye leaves where ice forms at subzero temperatures. The rye antifreeze proteins accumulate during cold acclimation and are similar to plant pathogenesis-related proteins, including two endoglucanase-like, two chitinase-like and two thaumatin-like proteins. Immunolocalization of the glucanase-like antifreeze proteins showed that they accumulate in mesophyll cell walls facing intercellular spaces, in pectinaceous regions between adjoining mestome sheath cells, in the secondary cell walls of xylem vessels and in epidermal cell walls. Because the rye antifreeze proteins are located in areas where they could be in contact with ice, they may function as a barrier to the propagation of ice or to inhibit the recrystallization of ice. Antifreeze proteins similar to pathogenesis-related proteins were also found to accumulate in closely-related plants within the Triticum group but not in freezing-tolerant dicotyledonous plants. In winter wheat, the accumulation of antifreeze proteins and the development of freezing tolerance are regulated by chromosome 5. Rye antifreeze proteins may have evolved from pathogenesis-related proteins, but they retain their catalytic activities and may play a dual role in increasing both freezing and disease resistance in overwintering plants.  相似文献   

17.
We purified many kinds of antifreeze proteins with high activity from the leaves of Ammopiptanthus mongolicus by several biochemical techniques. The antifreeze activities of these AFPs were measured by both osmometry and differential scanning calorimetry, and the inhibition of growth of ice crystals by the AFPs was obvious. Additionally, the antifreeze proteins were analyzed by sequencing, glycosylation reaction, mass spectroscopy, and circular dichroism spectroscopy. Both samples have some other unique structures different from those of fishes and of insects. It was suggested that plant AFPs might have a particular antifreeze mechanism in comparison with that of fish and insects.  相似文献   

18.
Enhancement of insect antifreeze protein activity by antibodies   总被引:6,自引:0,他引:6  
Antifreeze proteins, produced by many cold water marine teleost fish and terrestrial arthropods (insects, spiders, etc.), inhibit ice crystal growth by a non-colligative mechanism, probably by adsorbing onto the surface of potential seed ice crystals and thereby blocking growth at preferred growth sites. In this study it is demonstrated that the activity of two insect antifreeze proteins is greatly increased by the addition of specific rabbit polyclonal antibodies to the antifreezes. A model is presented which suggests that the enhancement occurs because the antifreeze-antibody complex, being much larger than the antifreeze protein alone (a minimal 7-8-fold increase in size), blocks a larger area of the ice crystal surface and extends further above the surface, thus requiring the temperature to be further lowered before crystal growth proceeds. This idea is further supported by the finding that addition of goat anti-rabbit IgG to the antifreeze protein + anti-antifreeze protein antibody complexes further enhanced activity.  相似文献   

19.
The ocean pout (Macrozoarces americanus) produces a set of antifreeze proteins that depresses the freezing point of its blood by binding to, and inhibiting the growth of, ice crystals. The amino acid sequences of all the major components of the ocean pout antifreeze proteins, including the immunologically distinct QAE component, have been derived by Edman degradation. In addition, sequences of several minor components were deduced from DNA sequencing of cDNA and genomic clones. Fifty percent of the amino acids are perfectly conserved in all these proteins as well as in two homologous sequences from the distantly related wolffish. Several of the conserved residues are threonines and asparagines, amino acids that have been implicated in ice binding in the structurally unrelated antifreeze protein of the righteye flounders. Aside from minor differences in post-translational modifications, heterogeneity in antifreeze protein components stems from amino acid differences encoded by multiple genes. Based on genomic Southern blots and library cloning statistics there are 150 copies of the 0.7-kilobase-long antifreeze protein gene in the Newfoundland ocean pout, the majority of which are closely linked but irregularly spaced. A more southerly population of ocean pout from New Brunswick in which the circulating antifreeze protein levels are considerably lower has approximately one-quater as many antifreeze protein genes. Thus, there appears to be a correlation between gene dosage and antifreeze protein levels, and hence the ability to survive in ice-laden seawater. Southern blot comparison of the two populations indicates that the differences in gene dosage were not generated by a simple set of deletions/duplications. They are more likely to be the result of differential amplification.  相似文献   

20.
大多数冰冻耐受性昆虫具有蛋白质/脂蛋白质或非溶性的晶体,它们相对地在较高温度下具有激活体内冰核的作用。最近已确证,许多昆虫肠道中正常的细菌和真菌是冰核激活菌丛。而对于非冰冻耐受性的昆虫,其存活是不允许体内冰的形成。它们在过冬过程中,关键是要调节体液的过冷却点,避免结冰。为了增加抗冻能力,非冰冻耐受性的过冬昆虫通过去除内源性冰核、积累低分子量的多元醇和糖类以及血淋巴中抗冻蛋白或抗冻肽的合成来降低体液的过冷却点。本文详尽综述了过冬昆虫抗冻机理的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号