首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
建立了具性别结构的时滞捕食系统,研究了平衡点的存在性及局部稳定性,给出了系统发生局部Hopf分支的充分条件,并应用中心流形定理研究了Hopf分支周期解的性质(分支类型,方向及稳定性).数值例子佐证了理论结果,并揭示了系统诸如高倍周期及拟周期振荡,混沌振荡,倍周期分岔等复杂的动力学行为;脉冲控制可以有效的改善系统的稳定性.  相似文献   

2.
研究一类具有时滞和阶段结构的捕食模型.分析了正平衡点的稳定性和Hopf分支的存在性.应用中心流形定理和规范型理论,得到了确定Hopf分支方向和分支周期解稳定性的计算公式.  相似文献   

3.
一类具有时滞的生化反应模型的Hopf分支   总被引:12,自引:1,他引:11  
在生物化工用肺炎杆菌与甘油转化为1,3-丙二醇的过程中会出现振荡现象,本文对出现振荡的机理进行了研究,根据生物意义,在模型中引入了时滞项,经分析和计算得到了产生Hopf分支的分支值以及分支值随控制参数变化的规律,并利用时滞微分方程的数值解法绘制了周期解的图形和相图。为这一过程的振荡机理研究提供了理论依据。并可用于指导工艺控制。  相似文献   

4.
首先建立了具有时滞的三种群食饵捕食模型,并研究了平衡点的存在性,接着应用规范化方法和中心流行定理研究了Hopf分岔以及分岔周期解的稳定性.并举例论证.  相似文献   

5.
具有功能性反应的捕食与被捕食模型具有非常复杂的动态性质.特别是在常数收获下,该模型呈现了各种各样、纷杂多变的动态特性。其中包括正平衡点及其稳定性的变化、各种分叉的产生以及周期解和极限环的出现.本文重点研究了常数收获项对一类功能性反应模型的动态性能的影响,得到了该收获模型存在稳定正平衡点、产生分叉以及在Hopf分叉附近产生周期解和极限环的若干充分条件.  相似文献   

6.
本文研究了一个带有离散和分布时滞的Holling-IV型功能反应的捕食与被捕食模型,将离散时滞r看作分支参数,讨论了正平衡点的局部稳定性和Hopf分支,利用Routh-Hurwitz定理得到了平衡点局部渐近稳定的充分条件.通过分析相应的特征方程,发现随着r穿越某临界值,Hopf分支会发生,并且可能出现小范围周期解.  相似文献   

7.
本论文研究了一类高维时滞松籽,鼠类和幼苗的红松生态系统的动力学行为,讨论了时滞对平衡点的稳定性和Hopf分支影响,指出了随着时滞的变化,平衡点由稳定变为不稳定,产生Hopf分支现象且一定条件下会出现分支周期解.数值模拟例证了分析结果.  相似文献   

8.
一类具有时滞的传染病模型的稳定性分析   总被引:4,自引:0,他引:4  
研究了一类具有时滞的传染病生物模型.首先研究了该模型的线性稳定性,并给出了一列Hopf分支值,然后利用中心流形定理和正规型方法,给出了确定分支周期解的分支方向与稳定性的计算公式.  相似文献   

9.
研究了具时滞Gilpin-Ayala型L-V系统中相应产生多周期解和Hopf分支的条件,得到了新的结果.  相似文献   

10.
分布时滞竞争模型的周期解   总被引:1,自引:1,他引:0  
研究了分布时滞竞争模型周期解,利用Gaines与Mawhin的重合度理论,通过构造恰当的Lyapunov函数得到模型正周期解的存在性、唯一性及全局稳定性。  相似文献   

11.
Transient oscillations induced by delayed growth response in the chemostat   总被引:2,自引:0,他引:2  
In this paper, in order to try to account for the transient oscillations observed in chemostat experiments, we consider a model of single species growth in a chemostat that involves delayed growth response. The time delay models the lag involved in the nutrient conversion process. Both monotone response functions and nonmonotone response functions are considered. The nonmonotone response function models the inhibitory effects of growth response of certain nutrients when concentrations are too high. By applying local and global Hopf bifurcation theorems, we prove that the model has unstable periodic solutions that bifurcate from unstable nonnegative equilibria as the parameter measuring the delay passes through certain critical values and that these local periodic solutions can persist, even if the delay parameter moves far from the critical (local) bifurcation values.When there are two positive equilibria, then positive periodic solutions can exist. When there is a unique positive equilibrium, the model does not have positive periodic oscillations and the unique positive equilibrium is globally asymptotically stable. However, the model can have periodic solutions that change sign. Although these solutions are not biologically meaningful, provided the initial data starts close enough to the unstable manifold of one of these periodic solutions they may still help to account for the transient oscillations that have been frequently observed in chemostat experiments. Numerical simulations are provided to illustrate that the model has varying degrees of transient oscillatory behaviour that can be controlled by the choice of the initial data.Mathematics Subject Classification: 34D20, 34K20, 92D25Research was partially supported by NSERC of Canada.This work was partly done while this author was a postdoc at McMaster.  相似文献   

12.
In this paper, the dynamical behavior of an SIRS epidemic model with birth pulse, pulse vaccination, and saturation incidence is studied. By using a discrete map, the existence and stability of the infection-free periodic solution and the endemic periodic solution are investigated. The conditions required for the existence of supercritical bifurcation are derived. A threshold for a disease to be extinct or endemic is established. The Poincaré map and center manifold theorem are used to discuss flip bifurcation of the endemic periodic solution. Moreover, numerical simulations for bifurcation diagrams, phase portraits and periodic solutions, which are illustrated with an example, are in good agreement with the theoretical analysis.  相似文献   

13.
Effects of immune delay on symmetric dynamics are investigated within a model of antigenic variation in malaria. Using isotypic decomposition of the phase space, stability problem is reduced to the analysis of a cubic transcendental equation for the eigenvalues. This allows one to identify periodic solutions with different symmetries arising at a Hopf bifurcation. In the case of small immune delay, the boundary of the Hopf bifurcation is found in a closed form in terms of system parameters. For arbitrary values of the time delay, general expressions for the critical time delay are found, which indicate bifurcation to an odd or even periodic solution. Numerical simulations of the full system are performed to illustrate different types of dynamical behaviour. The results of this analysis are quite generic and can be used to study within-host dynamics of many infectious diseases.  相似文献   

14.
Summary Theorems are given which guarantee the bifurcation of non-constant, periodic solutions (of fixed period) of a scalar functional equation with two independent parameters. These results are applied to a single, isolated species growth model of general form with a general Volterra (Stieltjes) delay using the ‘magnitudes’ of the instantaneous and delayed growth rate responses as the independent bifurcation parameters. The case of linear growth rate responses (i.e. delay logistic models) is considered in more detail, particularly the often studied single lag logistic equation.  相似文献   

15.
This paper is interested in gaining insights of approximate expressions of the bifurcating periodic solutions in a neuron model. This model shares the property of involving delay-dependent parameters. The presence of such dependence requires the use of suitable criteria which usually makes the analytical work so harder. Most existing methods for studying the nonlinear dynamics fail when applied to such a class of delay models. Although Xu et al. (Phys Lett A 354:126–136, 2006) studied stability switches, Hopf bifurcation and chaos of the neuron model with delay-dependent parameters, the dynamics of this model are still largely undetermined. In this paper, a detailed analysis on approximation to the bifurcating periodic solutions is given by means of the perturbation approach. Moreover, some examples are provided for comparing approximations with numerical solutions of the bifurcating periodic solutions. It shows that the dynamics of the neuron model with delay-dependent parameters is quite different from that of systems with delay-independent parameters only.  相似文献   

16.
In this paper, in view of the senescence of plant and the decay of wrack, time delays are introduced into the plant-wrack model. The effects of wrack decay and time delay on the dynamical behaviors of the diffusive plant-wrack model are studied analytically and numerically. When the delay is zero, the wrack decay will induce the change of stability of the unique equilibrium point, further lead to the occurrence of the Hopf bifurcation and the Turing instability. When the delay is present, the conditions for the occurrence of the Hopf bifurcation are established. By comparing the results of the model without and with delay, it is found that the increases of delay may induce no stability switches, a single stability switch or multiple stability switches, when the value of wrack decay can stabilize model with zero delay. When the value of wrack decay can destabilize model with zero delay, numerical simulations show that the small delay may cause homogeneous distributions of vegetation, while the larger delay may cause the emergence of periodic oscillation of vegetation. The obtained results provide a basis for understanding the spatiotemporal evolution of such a plant-wrack model with delay.  相似文献   

17.
This paper has a dual purpose. First, we describe numerical methods for continuation and bifurcation analysis of steady state solutions and periodic solutions of systems of delay differential equations with an arbitrary number of fixed, discrete delays. Second, we demonstrate how these methods can be used to obtain insight into complex biological regulatory systems in which interactions occur with time delays: for this, we consider a system of two equations for the plasma glucose and insulin concentrations in a diabetic patient subject to a system of external assistance. The model has two delays: the technological delay of the external system, and the physiological delay of the patient's liver. We compute stability of the steady state solution as a function of two parameters, compare with analytical results and compute several branches of periodic solutions and their stability. These numerical results allow to infer two categories of diabetic patients for which the external system has different efficiency.  相似文献   

18.
具有非线性接触率的SILI流行病模型   总被引:5,自引:1,他引:4  
本文研究了具有一般非线性接触率的SILI流行病模型的平衡点的存在性、稳定性以及Hopf分支现象,并且分析了潜伏期的时滞效应.  相似文献   

19.
In this paper, we investigate the dynamical behaviors of a Morris–Lecar neuron model. By using bifurcation methods and numerical simulations, we examine the global structure of bifurcations of the model. Results are summarized in various two-parameter bifurcation diagrams with the stimulating current as the abscissa and the other parameter as the ordinate. We also give the one-parameter bifurcation diagrams and pay much attention to the emergence of periodic solutions and bistability. Different membrane excitability is obtained by bifurcation analysis and frequency-current curves. The alteration of the membrane properties of the Morris–Lecar neurons is discussed.  相似文献   

20.
A piece-wise linear planar neuron model, namely, two-dimensional McKean model with periodic drive is investigated in this paper. Periodical bursting phenomenon can be observed in the numerical simulations. By assuming the formal solutions associated with different intervals of this non-autonomous system and introducing the generalized Jacobian matrix at the non-smooth boundaries, the bifurcation mechanism for the bursting solution induced by the slowly varying periodic drive is presented. It is shown that, the discontinuous Hopf bifurcation occurring at the non-smooth boundaries, i.e., the bifurcation taking place at the thresholds of the stimulation, leads the alternation between the rest state and spiking state. That is, different oscillation modes of this non-autonomous system convert periodically due to the non-smoothness of the vector field and the slow variation of the periodic drive as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号