首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
通过微生物合成金属量子点是目前研究的热点。本研究通过白色念珠菌合成ZnS量子点,对合成的量子点用高分辨透射电镜(HR-TEM)和X射线衍射(XRD)进行表征,用生物合成的ZnS量子点标记生防菌阿萨尔基亚芽胞杆菌,为建立生防菌阿萨尔基亚芽胞杆菌的荧光探针标记提供科学依据。实验结果表明,ZnSO4浓度为20 mmol/L时白色念珠细胞内合成ZnS量子点,通过反复冻融破细胞壁提出胞内ZnS量子点,紫外-可见光谱(UV)检测ZnS量子点在348 nm处显示有吸收带,HR-TEM测其粒径约7. 06 nm,荧光分光光谱分析量子点激发波在280 nm和363 nm,XRD显示ZnS量子点特征峰。ZnS量子点中加入1-乙基-3-(3-二甲基氨丙基)-碳化二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)偶联剂的芽胞杆菌样本的标记效率明显高于不加偶联剂的样本。白色念珠菌合成的ZnS量子点可以用于微生物标记。  相似文献   

2.
对碳量子点的常用合成方法、表征手段及应用情况进行介绍。碳量子点是一种以碳元素为主体的新型荧光纳米材料,具有光学性能优良、细胞毒性低、生物相容性好、易于功能化和成本低廉等优点,在生物和医药领域具有广阔的开发前景。  相似文献   

3.
基于微生物生物合成纳米颗粒机制的研究进展   总被引:1,自引:0,他引:1  
纳米粒子的合成方法多种多样,包括物理法、化学法和生物合成法,其中生物合成法是以生物为基体的绿色合成方法。由于微生物易于培养、生长快、廉价易得,已成为纳米粒子生物合成法的重要生物类群。微生物和纳米材料的多样性决定了其合成机制的多样化。本文结合国内外的科研报道,着重介绍了目前纳米粒子生物合成机制,并对纳米粒子微生物合成技术未来发展趋势进行了展望。  相似文献   

4.
CdSe量子点与蛋白质的作用研究   总被引:3,自引:1,他引:2  
以油酸为稳定剂,石蜡为还原剂,采用有机相法合成了尺寸均匀的CdSe量子点,并通过巯基乙酸将合成的量子点转移至水相。考查了CdSe量子点与几种结构不同的蛋白质(酶)之间的作用规律。研究发现,经巯基乙酸修饰后的量子点与牛血清白蛋白和胰凝乳蛋白酶作用后,荧光强度明显增大。而铜/锌-超氧化物歧化酶对量子点的荧光有明显的淬灭作用,牛血红蛋白对量子点的影响是随着时间的增加荧光强度先增大后减小,体现出一般蛋白质使荧光增强和部分金属离子使荧光淬灭两者的协同效应。  相似文献   

5.
量子点是一种具有纳米尺寸的半导体晶体。与传统的荧光染料相比,量子点拥有许多独特的光学特性,如宽的吸收谱、窄而对称的发射谱、耐漂白、亮度高和荧光寿命长等。由于其出色的光物理特性和相对较小的尺寸,量子点可作为生物学研究的荧光探针。随着量子点合成与修饰技术的发展,其在生物和医学领域的应用已从探索阶段逐步发展到了应用阶段。将量子点应用于活细胞标记,将为揭示细胞内的复杂生命现象提供全新的视野。该文重点介绍了量子点的荧光特性、用量子点标记活细胞所要克服的障碍及基本的标记策略和方法。  相似文献   

6.
以GSH(glutataione,谷胱甘肽)为稳定剂,一锅法合成水相Cd Te量子点。通过与配体巯基乙酸(TGA)量子点稳定性的对比发现:GSH@量子点对二价金属螯合剂EDTA有着更广的浓度耐受范围。利用GSH@Cd Te量子点在不同p H环境下荧光淬灭程度的不同,GSH@Cd Te量子点可作为生物传感器应用于检测溶液p H值,GSH@Cd Te量子点生物传感器检测溶液p H值的范围4到10。通过金属Cu2+离子对GSH@Cd Te量子点的作用,我们将其应用与溶液中Cu2+的检测,检测铜离子浓度最低可至0.312 5滋mol/L,上限可达10滋mol/L。  相似文献   

7.
为了为利用量子点标记细胞、组织,进一步研究其功能提供新的方法,本实验观察了3种发射波长的量子点(quautum dost,QDs)对所标记的小鼠腹腔巨噬细胞和正常皮肤的影响。利用发射波长610mm的红色荧光水溶液(量子点610)、发射波长为523mm的绿色荧光水溶液(量子点523)和发射波长576nm的黄色荧光脂溶性溶液(量子点576)的3种量子点(5mg/ml)以及具有吞噬能力的小鼠腹腔巨噬细胞、正常皮肤为载体,观察不同的除菌方式、温度、封片剂及固定剂对量子点标记细胞、组织的影响,为量子点在生物体内的应用及在生物制片过程中对其性能的影响等研究奠定基础。  相似文献   

8.
荧光碳点作为一种新型的碳纳米材料,凭借其良好的理化性质在纳米技术领域得到了广泛关注。根据结构的不同,碳点可分为石墨烯量子点、碳纳米点和聚合物点。与半导体量子点相比,碳点的细胞毒性更低,环境友好性更佳,而且合成方法也更为简单,价格较低。碳点具有卓越的生物成像和生物传感功能,因此碳点也广泛用于各种疾病的诊治。本文主要聚焦于荧光碳点的分类及其在疾病诊治中的应用。  相似文献   

9.
量子点荧光标记技术的研究热点及面临的挑战   总被引:2,自引:1,他引:1  
半导体量子点作为新型荧光标记物,在生物医学领域具有重要应用.与传统的有机染料及荧光蛋白等荧光标记物相比,半导体量子点具有发光颜色可调、激发范围宽、发射光谱窄、化学及光稳定性好、表面化学丰富以及生物偶联技术成熟等诸多优势,为生命体系的靶向示踪,高灵敏、原位、实时、动态荧光成像,DNA及蛋白质检测,靶向药物,临床医学,生物芯片和传感器等研究提供了新的发展契机.基于作者在半导体量子点生物荧光成像和安全性评价研究的基础,综述了半导体量子点荧光标记物在生命科学与医学领域应用的研究热点,并对半导体量子点荧光标记技术走向实用面临的挑战进行了评述.  相似文献   

10.
量子点因其独特的光学性质,以及可与有机分子所形成的偶联物的特殊性质,在光学生物标记,由其是荧光共振能量转移(Fluorescence resonance energy transfer,FRET)探针的合成与应用等领域具有广泛的应用前景,并因其实时、准确、灵敏的检测优势,在生物及医学领域始终被热切关注。该文以量子点的优势为基础,分别介绍了用于检测核酸、蛋白酶、生物反应及细胞状态的量子点-FRET探针的研究机理研究进展及应用优势。并对量子点-FRET探针的存在问题及研究方向进行了展望,为进一步进行该领域的研究提供理论支撑。  相似文献   

11.
Multiple applications of nanotechnology, especially those involving highly fluorescent nanoparticles (NPs) or quantum dots (QDs) have stimulated the research to develop simple, rapid and environmentally friendly protocols for synthesizing NPs exhibiting novel properties and increased biocompatibility. In this study, a simple protocol for the chemical synthesis of glutathione (GSH)-capped CdTe QDs (CdTe-GSH) resembling conditions found in biological systems is described. Using only CdCl(2), K(2)TeO(3) and GSH, highly fluorescent QDs were obtained under pH, temperature, buffer and oxygen conditions that allow microorganisms growth. These CdTe-GSH NPs displayed similar size, chemical composition, absorbance and fluorescence spectra and quantum yields as QDs synthesized using more complicated and expensive methods.CdTe QDs were not freely incorporated into eukaryotic cells thus favoring their biocompatibility and potential applications in biomedicine. In addition, NPs entry was facilitated by lipofectamine, resulting in intracellular fluorescence and a slight increase in cell death by necrosis. Toxicity of the as prepared CdTe QDs was lower than that observed with QDs produced by other chemical methods, probably as consequence of decreased levels of Cd(+2) and higher amounts of GSH. We present here the simplest, fast and economical method for CdTe QDs synthesis described to date. Also, this biomimetic protocol favors NPs biocompatibility and helps to establish the basis for the development of new, "greener" methods to synthesize cadmium-containing QDs.  相似文献   

12.
Developing methods to label viruses with fluorescent moieties has its merits in elucidating viral infection mechanisms and exploring novel antiviral therapeutics. Fluorescent quantum dots (QDs), an emerging probe for biological imaging and medical diagnostics, were employed in this study to tag retrovirus encoding enhanced green fluorescent protein (EGFP) genes. Electrostatic repulsion forces generated from both negatively charged retrovirus and QDs were neutralized by cationic Polybrene, forming colloidal complexes of QDs-virus. By examining the level of EGFP expression in 3T3 fibroblast cells treated with QDs-tagged retroviruses for 24 hours, the infectivity of retrovirus incorporated with QDs was shown to be only slightly decreased. Moreover, the imaging of QDs can be detected in the cellular milieu. In summary, the mild method developed here makes QDs-tagged virus a potential imaging probe for direct tracking the infection process and monitoring distribution of viral particles in infected cells.  相似文献   

13.
Mo  Dan  Hu  Liang  Zeng  Guangming  Chen  Guiqiu  Wan  Jia  Yu  Zhigang  Huang  Zhenzhen  He  Kai  Zhang  Chen  Cheng  Min 《Applied microbiology and biotechnology》2017,101(7):2713-2733

The marriage of biology with nanomaterials has significantly accelerated advancement of biological techniques, profoundly facilitating practical applications in biomedical fields. With unique optical properties (e.g., tunable broad excitation, narrow emission spectra, robust photostability, and high quantum yield), fluorescent quantum dots (QDs) have been reasonably functionalized with controllable interfaces and extensively used as a new class of optical probe in biological researches. In this review, we summarize the recent progress in synthesis and properties of QDs. Moreover, we provide an overview of the outstanding potential of QDs for biomedical research and innovative methods of drug delivery. Specifically, the applications of QDs as novel fluorescent nanomaterials for biomedical sensing and imaging have been detailedly highlighted and discussed. In addition, recent concerns on potential toxicity of QDs are also introduced, ranging from cell researches to animal models.

  相似文献   

14.
We characterize CdSe/ZnS quantum dot (QD) binding to genetically modified bacteriophage as a model for bacterial detection. Interactions among QDs, lambda (λ) phage, and Escherichia coli are examined by several cross‐validated methods. Flow and image‐based cytometry clarify fluorescent labeling of bacteria, with image‐based cytometry additionally reporting the number of decorated phage bound to cells. Transmission electron microscopy, image‐based cytometry, and electrospray differential mobility analysis allow quantization of QDs attached to each phage (4–17 QDs) and show that λ phage used in this study exhibits enhanced QD binding to the capsid by nearly a factor of four compared to bacteriophage T7. Additionally, the characterization methodology presented can be applied to the quantitative characterization of other fluorescent nanocrystal‐biological conjugates. Biotechnol. Bioeng. 2009;104: 1059–1067. Published 2009 Wiley Periodicals, Inc.  相似文献   

15.
Immunological diagnostic methods have been widely performed and showed high performance in molecular and cellular biology, molecular imaging, and medical diagnostics. We have developed novel methods for the fluorescent labeling of several antibodies coupled with fluorescent nanocrystal QDs. In this study we demonstrated that two bacterial toxins, diphtheria toxin and tetanus toxin, were detected simultaneously in the same view field of a cover slip by using directly QD-conjugated antibodies. We have succeeded in detecting bacterial toxins by counting luminescent spots on the evanescent field with using primary antibody conjugated to QDs. In addition, each bacterial toxin in the mixture can be separately detected by single excitation laser with emission band pass filters, and simultaneously in situ pathogen quantification was performed by calculating the luminescent density on the surface of the cover slip. Our results demonstrate that total internal reflection fluorescence microscopy (TIRFM) enables us to distinguish each antigen from mixed samples and can simultaneously quantitate multiple antigens by QD-conjugated antibodies . Bioconjugated QDs could have great potentialities for in practical biomedical applications to develop various high-sensitivity detection systems.  相似文献   

16.
This work explores the potential use of cadmium-based quantum dots (QDs) coupled to mycolic acids (MAs) as a fluorescent probe to detect anti-MA antibodies which are biomarkers for tuberculosis (TB). The use of free MAs as antigens for the serodiagnosis of TB is known but has not been developed into a point of care test. This study focuses on the synthesis, solubility, and lateral flow of QDs coupled to MAs. Water-soluble CdSe/ZnS QDs capped with l -cysteine were synthesised and covalently coupled to MAs via amide linkages to form a water-soluble fluorescent probe: MA-CdSe/ZnS QDs. The MA-CdSe/ZnS QDs showed broad absorption bands and coupling, confirmed by the presence of amide bonds in the Fourier-transform infrared (FTIR) spectrum, resulting in a blue shift in fluorescence. Powder X-ray diffraction (XRD) revealed a shift and increase in the number of peaks for MA-CdSe/ZnS QDs relative to the L-cys-CdSe/ZnS QDs, suggesting that coupling changed the crystal structure. The average particle size of MA-CdSe/ZnS QDs was ~3.0 nm. Visual paper-based lateral flow of MA-CdSe/ZnS QDs was achieved on strips of nitrocellulose membrane with both water and membrane blocking solution eluents. The highly fluorescent MA-CdSe/ZnS QDs showed good water solubility and lateral flow, which are important properties for fluorescence sensing applications.  相似文献   

17.
量子点是一种具有独特光学性质的半导体纳米材料,表面带有功能基团的水溶性量子点可与抗体偶联,作为荧光探针用于多种生物学研究。根据量子点表面所修饰的物质不同,偶联方法可分为共价偶联与非公价偶联两大类。本研究主要对量子点与抗体的偶联方法进行简单介绍。  相似文献   

18.
Functionalized CdTe–CdS core–shell quantum dots (QDs) were synthesized in aqueous solution via water‐bathing combined hydrothermal method using L‐cysteine (L‐Cys) as a stabilizer. This method possesses both the advantages of water‐bathing and hydrothermal methods for preparing high‐quality QDs with markedly reduced synthesis time, and better stability than a lone hydrothermal method. The QDs were characterized by transmission electronic microscopy and powder X‐ray diffraction and X‐ray photoelectron spectroscopy. The CdTe–CdS QDs with core–shell structure showed both enhanced fluorescence and better photo stability than nude CdTe QDs. After conjugating with antibody rabbit anti‐CEACAM8 (CD67), the as‐prepared l ‐Cys capped CdTe–CdS QDs were successfully used as fluorescent probes for the direct immuno‐labeling and imaging of HeLa cells. It was indicated that this kind of QD would have application potential in bio‐labeling and cell imaging. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
With excellent optical properties, quantum dots (QDs) have been made as attractive molecular probes for labelling cells in biological research. In this study high‐quality CdSe QDs prepared in a paraffin–oleic acid system were used as fluorescent labels in direct and indirect detection of carcinoembryonic antigen (CEA), a cancer marker expressed on the surface of HeLa cells. The primary antibody (Ab) (rabbit anti‐CEA8) and secondary Ab (goat anti‐rabbit IgG) were covalently linked to carboxyl‐functioned CdSe QDs, and both the QDs–antibody and QDs–IgG probes were successfully used to label HeLa cells. The present study demonstrates the practicability of CdSe QDs as an attractive type of fluorescent labels for biological applications such as protein probes and cell imaging. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Quantum dots (QDs) have been encapsulated within gelatin nanoparticles (GNPs), which gives GNPs fluorescent properties and improves the biocompatibility of QDs. Hydrophilic CdSe QDs were produced through thermodecomposition following the ligand‐exchange method, and were then encapsulated in GNPs. The results of high‐resolution transmission electron microscopy and transmission electron microscopy show that CdSe QDs and QDs‐encapsulated GNPs (QDs‐GNPs) have average diameters of 5 ± 1 and 150 ± 10 nm, respectively. Results of both high‐resolution transmission electron microscopy and confocal laser scanning microscopy indicate that CdSe QDs are successfully encapsulated within GNPs. The QDs‐GNPs have distinctive fluorescent properties with maximum emission at 654 nm, with a 24 nm red‐shift comapred with hydrophilic mercaptoundecanoic acid (MUA)‐modified QDs. In addition, an in vitro cytotoxicity test shows that QDs‐GNPs do not have any toxic effect on cells. It is expected that QDs‐GNPs might be an excellent candidate as a contrast agent in bio‐imaging. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号