首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The past three decades have seen a global wine glut. So far, well-intended but wasteful and expensive market-intervention has failed to drag the wine industry out of a chronic annual oversupply of roughly 15%. Can yeast research succeed where these approaches have failed by providing a means of improving wine quality, thereby making wine more appealing to consumers? To molecular biologists Saccharomyces cerevisiae is as intriguing as it is tractable. A simple unicellular eukaryote, it is an ideal model organism, enabling scientists to shed new light on some of the biggest scientific challenges such as the biology of cancer and aging. It is amenable to almost any modification that modern biology can throw at a cell, making it an ideal host for genetic manipulation, whether by the application of traditional or modern genetic techniques. To the winemaker, this yeast is integral to crafting wonderful, complex wines from simple, sugar-rich grape juice. Thus any improvements that we can make to wine, yeast fermentation performance or the sensory properties it imparts to wine will benefit winemakers and consumers. With this in mind, the application of frontier technologies, particularly the burgeoning fields of systems and synthetic biology, have much to offer in their pursuit of "novel" yeast strains to produce high quality wine. This paper discusses the nexus between yeast research and winemaking. It also addresses how winemakers and scientists face up to the challenges of consumer perceptions and opinions regarding the intervention of science and technology; the greater this intervention, the stronger the criticism that wine is no longer "natural." How can wine researchers respond to the growing number of wine commentators and consumers who feel that scientific endeavors favor wine quantity over quality and "technical sophistication, fermentation reliability and product consistency" over "artisanal variation"? This paper seeks to present yeast research in a new light and a new context, and it raises important questions about the direction of yeast research, its contribution to science and the future of winemaking.  相似文献   

2.
Prigent SR  Rajpurohit S 《Fly》2007,1(5):297-302
A century ago a little fly with red eyes was first used for genetic studies. That insignificant fly, called at that time Drosophila ampelophila, revolutionized biology while becoming the model we know today under the name of Drosophila melanogaster. Since then its study has never ceased, but the field of interest has somewhat changed during the century. To caricature a little, today we essentially learn from Drosophila meetings that the fly has a brain! It is true that the fly is a tremendous model organism for neurobiology. But this fly is, in fact, an appropriate and recognized model for the whole of biology. Indeed, Drosophila meetings are exceptional opportunities to gather biologists of diverse backgrounds together. There we not only learn about the latest improvements in our field of interest, but surely appreciate learning another bit of biology. From this biological melting pot has emerged a culture very specific to the fly community. Thus besides neurobiology, cell biology and development, a diversity of other research fields exist; they all have their own place in the cultural and historical dimension of the "drosophila" model. Several communications from those diverse research fields were presented at the 8th Japanese Drosophila Research Conference (JDRC8) and are briefly covered here. We believe it more judicious to call the model "drosophila" without a capital initial, as the model has never really been limited to only the Drosophila genus. The vernacular name "drosophila" is currently used to designate any fly of the Drosophilidae family and we believe the term more appropriate than "small fruit fly" or "vinegar fly" to better include the species and ecological diversity of the model.  相似文献   

3.
Synthetic biology has mainly focused on introducing new or altered functionality in single cell systems: primarily bacteria, yeast, or mammalian cells. Here, we describe the extension of synthetic biology to nematodes, in particular the well-studied model organism Caenorhabditis elegans, as a convenient platform for developing applications in a multicellular setting. We review transgenesis techniques for nematodes, as well as the application of synthetic biology principles to construct nematode gene switches and genetic devices to control motility. Finally, we discuss potential applications of engineered nematodes.  相似文献   

4.
分子人类学与现代人的起源*   总被引:5,自引:3,他引:2  
盛桂莲  赖旭龙  王頠 《遗传》2004,26(5):721-728
1953年Watson & Crick 对于DNA双螺旋结构模型的提出及对其遗传机理的解释,标志着现代分子生物学的诞生。其后短短50年的时间里,分子生物学在各个学科之间广泛渗透,相互促进,不断深入和发展。在以研究人类的起源和进化为首要任务的人类学领域,由于现代分子生物学理论和方法的应用,诞生了分子人类学这一全新的结合型分支学科,为人类学的发展提供了科学可信的研究方法和具发展前景的研究方向。系统地介绍了分子人类学的发展历史、研究方法及原理;另外,结合分子人类学在古人类学研究中的应用,讨论了关于现代人起源的“非洲起源说”和“多地区连续演化说”。Abstract: Since Watson & Crick put forward the double-helix model of DNA structure and hereditary mechanism in 1953, it is generally accepted that this event marks the birth of modern molecular biology. This new field of biology has experienced a flourishing development in the past 50 years. On one hand, the development of molecular biology has been deeply influencing many relative fields; on the other hand, its own proceeding pace has been accelerated by the reaction from the other fields. Anthropology is one of the fields most deeply impacted by the theory and method of molecular biology. Most importantly, molecular anthropology was born as a result of combination of molecular biology, anthropology as well as paleoanthropology. This new branch provides reliable method and vital direction for paleoanthropology. This paper systematically reviews the history, principle and method of molecular anthropology. Two hypotheses on the origin of modern human, which include “out-of-African theory” and “theory of multiregional evolution” are also discussed for the purpose of showing how molecular anthropology is applied in paleoanthropology.  相似文献   

5.
Computational modeling has the potential to add an entirely new approach to hypothesis testing in yeast cell biology. Here, we present a method for seamless integration of computational modeling with quantitative digital fluorescence microscopy. This integration is accomplished by developing computational models based on hypotheses for underlying cellular processes that may give rise to experimentally observed fluorescent protein localization patterns. Simulated fluorescence images are generated from the computational models of underlying cellular processes via a "model-convolution" process. These simulated images can then be directly compared to experimental fluorescence images in order to test the model. This method provides a framework for rigorous hypothesis testing in yeast cell biology via integrated mathematical modeling and digital fluorescence microscopy.  相似文献   

6.
Saccharomyces cerevisiae is a unicellular eukaryal microorganism that has traditionally been regarded either as a model system for investigating cellular physiology or as a cell factory for biotechnological use, for example for the production of fuels and commodity chemicals such as lactate or pharmaceuticals, including human insulin and HPV vaccines. Systems biology has recently gained momentum and has successfully been used for mapping complex regulatory networks and resolving the dynamics of signal transduction pathways. So far, yeast systems biology has mainly focused on the development of new methods and concepts. There are also some examples of the application of yeast systems biology for improving biotechnological processes. We discuss here how yeast systems biology could be used in elucidating fundamental cellular principles such as those relevant for the study of molecular mechanisms underlying complex human diseases, including the metabolic syndrome and ageing.  相似文献   

7.
Alberghina L  Cirulli C 《Proteomics》2010,10(24):4337-4341
In this note we discuss how, by using budding yeast as model organism (as has been done in the past for biochemical, genetics and genomic studies), the integration of "omics" sciences and more specifically of proteomics with systems biology offers a very profitable approach to elucidating regulatory circuits of complex biological functions.  相似文献   

8.
Segmentation aims to separate homogeneous areas from the sequential data, and plays a central role in data mining. It has applications ranging from finance to molecular biology, where bioinformatics tasks such as genome data analysis are active application fields. In this paper, we present a novel application of segmentation in locating genomic regions with coexpressed genes. We aim at automated discovery of such regions without requirement for user-given parameters. In order to perform the segmentation within a reasonable time, we use heuristics. Most of the heuristic segmentation algorithms require some decision on the number of segments. This is usually accomplished by using asymptotic model selection methods like the Bayesian information criterion. Such methods are based on some simplification, which can limit their usage. In this paper, we propose a Bayesian model selection to choose the most proper result from heuristic segmentation. Our Bayesian model presents a simple prior for the segmentation solutions with various segment numbers and a modified Dirichlet prior for modeling multinomial data. We show with various artificial data sets in our benchmark system that our model selection criterion has the best overall performance. The application of our method in yeast cell-cycle gene expression data reveals potential active and passive regions of the genome.  相似文献   

9.
Journal of the History of Biology provides a fifty-year long record for examining the evolution of the history of biology as a scholarly discipline. In this paper, we present a new dataset and preliminary quantitative analysis of the thematic content of JHB from the perspectives of geography, organisms, and thematic fields. The geographic diversity of authors whose work appears in JHB has increased steadily since 1968, but the geographic coverage of the content of JHB articles remains strongly lopsided toward the United States, United Kingdom, and western Europe and has diversified much less dramatically over time. The taxonomic diversity of organisms discussed in JHB increased steadily between 1968 and the late 1990s but declined in later years, mirroring broader patterns of diversification previously reported in the biomedical research literature. Finally, we used a combination of topic modeling and nonlinear dimensionality reduction techniques to develop a model of multi-article fields within JHB. We found evidence for directional changes in the representation of fields on multiple scales. The diversity of JHB with regard to the representation of thematic fields has increased overall, with most of that diversification occurring in recent years. Drawing on the dataset generated in the course of this analysis, as well as web services in the emerging digital history and philosophy of science ecosystem, we have developed an interactive web platform for exploring the content of JHB, and we provide a brief overview of the platform in this article. As a whole, the data and analyses presented here provide a starting-place for further critical reflection on the evolution of the history of biology over the past half-century.  相似文献   

10.
《Fly》2013,7(5):297-302
A century ago, a little fly with red eyes was first used for genetic studies. That insignificant fly called at that time, Drosophila ampelophila, was going to revolutionize biology while becoming the model we know today as Drosophila melanogaster. Since then, its study has never ceased, but the field of interest has somewhat changed over the century. Drosophila meetings are exceptional opportunities to gather biologists of diverse backgrounds to not only learn about the latest improvements in our field of interest, but also to appreciate learning another bit of biology. From this biological melting pot a culture very specific to the fly community has emerged. Thus, besides neurobiology, cell biology and development a diversity of other fields of research exist, and they all have their own place in the cultural and historical dimension of the "Drosophila" model. Several communications from these diverse fields of research were presented at the 8th Japanese Drosophila Research Conference (JDRC8) and they are briefly reported here.  相似文献   

11.
For some historic reasons, our new journal is named "Genomics, Proteomics & Bioinformatics", or as we have nicknamed it in short the Journal of GPB. A growing number of "-ome" and "-omics" have appeared in many diverse fields of biology, especially in the recent years under profound influences of the Human Genome Project and many other genome projects completed or in progress. We had almost attempted to re-name this journal "Ever-more-omics" to in-  相似文献   

12.
The completion of the genome sequence of the budding yeast Saccharomyces cerevisiae marks the dawn of an exciting new era in eukaryotic biology that will bring with it a new understanding of yeast, other model organisms, and human beings. This body of sequence data benefits yeast researchers by obviating the need for piecemeal sequencing of genes, and allows researchers working with other organisms to tap into experimental advantages inherent in the yeast system and learn from functionally characterized yeast gene products which are their proteins of interest. In addition, the yeast post-genome sequence era is serving as a testing ground for powerful new technologies, and proven experimental approaches are being applied for the first time in a comprehensive fashion on a complete eukaryotic gene repertoire.  相似文献   

13.
14.
In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking.The field of cell biology has made tremendous strides in understanding eukaryotic cells, especially animals and yeast. Concurrently, evolutionary biology has opened up a window to the origins of our species and the genes that define us. Though these fields have intersected conceptually for decades, a recent movement is explicitly uniting these two fields into the discipline of evolutionary cell biology with great success (Brodsky et al., 2012 ; Lynch et al., 2014 ) and, we argue here, potentially an even greater future. One drive behind this movement is to harness the comparative approach of evolutionary biology and apply it to questions of cellular origins and cellular function. This approach has yielded beautiful insight into animal cellular function from mitotic spindle dynamics (Helmke and Heald, 2014 ) to glycosylation machinery (Varki, 2006 ). However, expanding the scope of investigation to organisms beyond fungi and animals to span eukaryotic diversity has allowed for discoveries that force us to adjust some fundamental ideas of how eukaryotic organelles work, and why.  相似文献   

15.
Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.  相似文献   

16.
17.
The yeast Saccharomyces cerevisiae is a widely used model organism for studying cell biology, metabolism, cell cycle and signal transduction. Many regulatory pathways are conserved between this yeast and humans, and it is therefore possible to study pathways that are involved in disease development in a model organism that is easy to manipulate and that allows for detailed molecular studies. Here, we briefly review pathways involved in lipid metabolism and its regulation, the regulatory network of general metabolic regulator Snf1 (and its human homologue AMPK) and the proteostasis network with its link to stress and cell death. All the mentioned pathways can be used as model systems for the study of homologous pathways in human cells and a failure in these pathways is directly linked to several human diseases such as the metabolic syndrome and neurodegeneration. We demonstrate how different yeast pathways are conserved in humans, and we discuss the possibilities of using the systems biology approach to study and compare the pathways of relevance with the objective to generate hypotheses and gain new insights.  相似文献   

18.

Background

In recent years high throughput methods have led to a massive expansion in the free text literature on molecular biology. Automated text mining has developed as an application technology for formalizing this wealth of published results into structured database entries. However, database curation as a task is still largely done by hand, and although there have been many studies on automated approaches, problems remain in how to classify documents into top-level categories based on the type of organism being investigated. Here we present a comparative analysis of state of the art supervised models that are used to classify both abstracts and full text articles for three model organisms.

Results

Ablation experiments were conducted on a large gold standard corpus of 10,000 abstracts and full papers containing data on three model organisms (fly, mouse and yeast). Among the eight learner models tested, the best model achieved an F-score of 97.1% for fly, 88.6% for mouse and 85.5% for yeast using a variety of features that included gene name, organism frequency, MeSH headings and term-species associations. We noted that term-species associations were particularly effective in improving classification performance. The benefit of using full text articles over abstracts was consistently observed across all three organisms.

Conclusions

By comparing various learner algorithms and features we presented an optimized system that automatically detects the major focus organism in full text articles for fly, mouse and yeast. We believe the method will be extensible to other organism types.
  相似文献   

19.
Recent advances in DNA sequencing techniques and automated informatics has led to clarification of all genome sequence of some model organisms in a very short period. The demonstration of the first draft sequence of the human genome has prompted us to elaborate new approaches in biology, pharmacology and medicine. Such new research will focus on high throughput methods to function on collections of genes, and hopefully, on a genome-wide, quantitative modeling of the cell system as a whole. In this review article, we discuss the present status of "post genome sequencing" approaches in line with our strategies for understanding the molecular mechanism of fertilization and activation of development using the African clawed frog, Xenopus laevis, as a model system.  相似文献   

20.
For thousands of years, the yeast Saccharomyces cerevisiae (S. cerevisiae) has served as a cell factory for the production of bread, beer, and wine. In more recent years, this yeast has also served as a cell factory for producing many different fuels, chemicals, food ingredients, and pharmaceuticals. S. cerevisiae, however, has also served as a very important model organism for studying eukaryal biology, and even today many new discoveries, important for the treatment of human diseases, are made using this yeast as a model organism. Here a brief review of the use of S. cerevisiae as a model organism for studying eukaryal biology, its use as a cell factory, and how advances in systems biology underpin developments in both these areas, is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号