首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early evaluation of cancer response to a therapeutic regimen can help increase the effectiveness of treatment schemes and, by enabling early termination of ineffective treatments, minimize toxicity, and reduce expenses. Biomarkers that provide early indication of tumor therapy response are urgently needed. Solid tumors require blood vessels for growth, and new anti-angiogenic agents can act by preventing the development of a suitable blood supply to sustain tumor growth. The purpose of this study is to develop a class of novel molecular imaging probes that will predict tumor early response to an anti-angiogenic regimen with the humanized vascular endothelial growth factor antibody bevacizumab. Using a bevacizumab-sensitive LS174T colorectal cancer model and a 12-mer bacteriophage (phage) display peptide library, a bevacizumab-responsive peptide (BRP) was identified after six rounds of biopanning and tested in vitro and in vivo. This 12-mer peptide was metabolically stable and had low toxicity to both endothelial cells and tumor cells. Near-infrared dye IRDye800-labeled BRP phage showed strong binding to bevacizumab-treated tumors, but not to untreated control LS174T tumors. In addition, both IRDye800- and 18F-labeled BRP peptide had significantly higher uptake in tumors treated with bevacizumab than in controls treated with phosphate-buffered saline. Ex vivo histopathology confirmed the specificity of the BRP peptide to bevacizumab-treated tumor vasculature. In summary, a novel 12-mer peptide BRP selected using phage display techniques allowed non-invasive visualization of early responses to anti-angiogenic treatment. Suitably labeled BRP peptide may be potentially useful pre-clinically and clinically for monitoring treatment response.  相似文献   

2.
Recently, phage display technology has been announced as the recipient of Nobel Prize in Chemistry 2018. Phage display technique allows high affinity target-binding peptides to be selected from a complex mixture pool of billions of displayed peptides on phage in a combinatorial library and could be further enriched through the biopanning process; proving to be a powerful technique in the screening of peptide with high affinity and selectivity. In this review, we will first discuss the modifications in phage display techniques used to isolate various cancer-specific ligands by in situ, in vitro, in vivo, and ex vivo screening methods. We will then discuss prominent examples of solid tumor targeting-peptides; namely peptide targeting tumor vasculature, tumor microenvironment (TME) and overexpressed receptors on cancer cells identified through phage display screening. We will also discuss the current challenges and future outlook for targeting peptidebased therapeutics in the clinics.  相似文献   

3.
In vivo phage display is a new approach to acquire peptide molecules that bind stably to a given target. Phage peptide display libraries have been selected in mice and humans and numerous vasculature-targeting peptides have been reported. However, in vivo phage display has not typically produced molecules that extravasate to target specific organ or tumor antigens. Phage selections in animals have been performed for very short times without optimization for biodistribution or clearance rates to a particular organ. It is hypothesized that peptides that home to a desired antigen/organ can be obtained from in vivo phage experiments by optimization of incubation times, phage extraction and propagation procedures. To accomplish this goal, one must first gain a better understanding of the in vivo biodistribution and rate of clearance of engineered phage peptide display libraries. While the fate of wild type phage in rodents has been reported, the in vivo biodistribution of the commonly used engineered fd-tet M13 phage peptide display libraries (such as in the fUSE5 vector system) have not been well established. Here we report the biodistribution and clearance properties of fd-tet fifteen amino acid random peptide display libraries in fUSE5 phage in three common mouse models employed for drug discovery - CF-1, nude, and SCID mice.  相似文献   

4.
利用噬菌体展示技术已选出了多条与靶结合的肽.然而,即使是体内直接筛选得到的,肽与肿瘤或靶器官的体内结合并不理想.为了更好地理解噬菌体在体内的循环,通过MAG399mTc标记噬菌体肽库,研究了肽库在体内分布.体内分布实验结果显示,99mTc-噬菌体主要分布在肝和脾中,而心脏、肌肉、脑和胰腺这些器官或组织中的分布非常低.99mTc-噬菌体在胃、肠和骨中的累积,随着时间延长在不断升高,其他器官中的吸收则在不断降低.从5min到30min,99mTc-噬菌体在血中清除迅速.当噬菌体在体内循环足够长的时间后,一些噬菌体颗粒可以穿透血管进入并内化在器官或组织中.总之,为了筛选具有高特异性和亲和性的肽,应该根据靶器官和筛选部位的不同,在筛选前确定合适的噬菌体在体内的循环时间.  相似文献   

5.
Since tenascin C is a factor expressed highly in the tumor-associated matrix, it would be a desirable first step for targeting the tumor-specific microenvironment. In fact, a high level of tenascin C expression has been reported in most solid tumors, including lung cancer, colon cancer and glioblastoma. Therefore, the targeted binding of tenascin C in tumor stroma would inhibit tumor metastasis by modulating cancer cell growth and migration. We isolated a peptide that bound to tenascin C by phage display peptide library selection, and the selected peptide specifically recognized tenascin C protein in xenograft mouse tissue. We also observed exclusive staining of tenascin C by the selected peptide in tumor patient tissues. Moreover, the peptide reduced tenascin C-induced cell rounding and migration. We propose that the tenascin C targeting peptide may be useful as a specific anti-cancer diagnostic and therapeutic tool for most human solid tumors.  相似文献   

6.
Phage display is the technology that allows expression of exogenous (poly)peptides on the surface of phage particles. The concept is simple in principle: a library of phage particles expressing a wide diversity of peptides is used to select those that bind the desired target. The filamentous phage M13 is the most commonly used vector to create random peptide display libraries. Several methods including recombinant techniques have been developed to increase the diversity of the library. On the other extreme, libraries with various biases can be created for specific purposes. For instance, when the sequence of the peptide that binds the target is known, its affinity and selectivity can be increased by screening libraries created with limited mutagenesis of the peptide. Phage libraries are screened for binding to synthetic or native targets. The initial screening of library by basic biopanning has been extended to column chromatography including negative screening and competition between selected phage clones to identify high affinity ligands with greater target specificity. The rapid isolation of specific ligands by phage display is advantageous in many applications including selection of inhibitors for the active and allosteric sites of the enzymes, receptor agonists and antagonists, and G-protein binding modulatory peptides. Phage display has been used in epitope mapping and analysis of protein-protein interactions. The specific ligands isolated from phage libraries can be used in therapeutic target validation, drug design and vaccine development. Phage display can also be used in conjunction with other methods. The past innovations and those to come promise a bright future for this field.  相似文献   

7.
Hepatocellular carcinoma (HCC), one of the most common and malignant tumors worldwide, is unresponsive to any of the available therapies. Using intact HCC cells as therapeutic targets, we isolated a novel peptide, denoted HCC79 (KSLSRHDHIHHH), from a phage display peptide library. HCC79 can bind to hepatoma cell membranes with high affinity and specificity. Remarkably, competitive binding assays demonstrated that HCC79 competed with HAb25, a specific antibody for HCC, in binding to hepatoma cells. The corresponding synthetic peptide did not inhibit tumor proliferation directly, but repressed tumor invasion significantly in a cell migration assay. Moreover, we explored the potential of the selected peptide to deliver a superantigen (SAg) to cancer cells, to attain a significant cell-targeting effect. When the peptide is fused to the TSST-1 SAg, the resulting fusion protein could bind to hepatoma cells with high affinity in vitro and improved the tumor inhibition effect by activating T lymphocyte cells in vitro and in vivo, compared with TSST-1 alone. Taken together, our results indicate that this peptide and its future derivatives may have the potential to be developed into highly specific therapeutic agents against cancer.  相似文献   

8.
Protein Kinase CK2 is a serine-threonine kinase frequently deregulated in many human tumors. Here, we hypothesized that a peptide binder to the CK2 phosphoacceptor site could exhibit anticancer properties in vitro, in tumor animal models, and in cancer patients. By screening a random cyclic peptide phage display library, we identified the CIGB-300 (formerly P15-Tat), a cyclic peptide which abrogates the CK2 phosphorylation by blocking recombinant substrates in vitro. Interestingly, synthetic CIGB-300 led to a dose-dependent antiproliferative effect in a variety of tumor cell lines and induced apoptosis as evidenced by rapid caspase activation. Importantly, CIGB-300 elicited significant antitumor effect both by local and systemic administration in murine syngenic tumors and human tumors xenografted in nude mice. Finally, we performed a First-in-Man trial with CIGB 300 in patients with cervical malignancies. The peptide was found to be safe and well tolerated in the dose range studied. Likewise, signs of clinical benefit were clearly identified after the CIGB-300 treatment as evidenced by significant decrease of the tumor lesion area and histological examination. Our results provide an early proof-of-principle of clinical benefit by using an anti-CK2 approach in cancer. Furthermore, this is the first clinical trial where an investigational drug has been used to target the CK2 phosphorylation domain.  相似文献   

9.
Within cancer research, phage display libraries have been widely used for the identification of tumor targeting peptides and antibodies. Additionally, phages are known to be highly immunogenic; therefore we evaluated the immunotherapeutic potential of tumor specific phages to treat established solid tumors in a mouse model of melanoma. We developed two tumor specific phages, one derived from a peptide phage display library and one Fab expressing phage with known specificity, for the treatment of mice bearing palpable B16-F10 or B16/A2Kb tumors. Therapy in B16-F10 tumor bearing mice with tumor specific phages was superior to treatment with non-tumor specific phages and lead to delayed tumor growth and increased survival. In B16/A2Kb tumor bearing mice, therapy with tumor specific phages resulted in complete tumor regression and long-term survival in 50% of the mice. Histological analysis of tumors undergoing treatment with tumor specific phages revealed that phage administration induced a massive infiltration of polymorphonuclear neutrophils. Furthermore, phages induced secretion of IL-12 (p70) and IFN-γ as measured in mouse splenocyte culture supernatants. These results demonstrate a novel, immunotherapeutic cancer treatment showing that tumor specific phages can promote regression of established tumors by recruitment of inflammatory cells and induction of Th1 cytokines.  相似文献   

10.
Li Z  Zhang J  Zhao R  Xu Y  Gu J 《BioTechniques》2005,39(4):493-497
Ligand or peptide-targeted phagemid particles are being pursued as vehicles for receptor-mediated gene delivery. Here we describe a helper phage in which the protein III (pIII) protein is modified by the addition of a ligand peptide sequence at the amino terminus. Phagemid particles can be prepared with the help of this modified helper phage and should display the ligand peptide in most of the pIII proteins on the phagemid surface. Using such a method, it is not necessary for the phagemid to encode the pIII protein, which leaves a larger space for cloning genes of interest. In addition, the technique should allow for the rapid testing of peptide ligands selected from phage display libraries using phagemids encoding various reporter genes (e.g., green fluorescent protein, luciferase, beta-galactosidase) and therapeutic genes.  相似文献   

11.
BACKGROUND: Adenovirus efficiently infects a broad range of target cells, thereby preventing selective gene transfer. Moreover, several cell types and tissues including primary tumors are refractory to adenoviral infection, mainly because of low expression levels of coxsackie-adenovirus receptor (CAR). Thus, identification of cancer-selective ligands which yield gene transfer to neoplastic cells by minimizing transduction of normal cells is a key issue for successful cancer therapy. METHODS: We initially analyzed adenoviral receptor expression in human medullary thyroid carcinoma (MTC) cells. MTC cell-specific peptides were isolated by biopanning a phage display peptide library on cultured cancer cells and on tumors in vivo and further characterized. RESULTS: We found significant differences in CAR and alphav-integrin protein levels between MTC-derived TT cells in vitro and established xenograft tumors in mice, indicating a lack of alphav-integrin expression on growing tumors. MTC-specific candidates were identified by performing three rounds of subtraction. Selected phages showed up to 22-fold higher binding efficiency for TT cells when compared with wild-type M13 phage or other human cell lines and tumor tissue in vivo. Homing to TT cells of the best binding phage was clearly blocked in the presence of specific peptide, whereas no phage competition was observed with an unspecific peptide. The best binding peptide mediated efficient internalization of the phage. Importantly, specific binding and internalization was also mediated by the identified peptide within the adenoviral context. CONCLUSIONS: Our results indicate that the identified ligand should be suitable to improve selectivity of adenoviral gene transfer to medullary thyroid tumors in vivo.  相似文献   

12.
Cystic fibrosis (CF), a life‐shortening genetic disease, is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that codes for the CFTR protein, the major chloride channel expressed at the apical membrane of epithelial cells. The development of an imaging probe capable of non‐invasively detect CFTR at the cell surface could be of great advantage for the management of CF. With that purpose, we synthesized the first extracellular loop of CFTR protein (ECL1) through fluorenylmethyloxycarbonyl (Fmoc)‐based microwave‐assisted solid‐phase peptide synthesis (SPPS), according to a reported methodology. However, aspartimide formation, a well‐characterized side reaction in Fmoc‐SPPS, prompted us to adopt a different side‐chain protection strategy for aspartic acid residues present in ECL1 sequence. The peptide was subsequently modified via PEGylation and biotinylation, and cyclized through disulfide bridge formation, mimicking the native loop conformation in CFTR protein. Herein, we report improvements in the synthesis of the first extracellular loop of CFTR, including peptide modifications that can be used to improve antigen presentation in phage display for selection of novel antibodies against plasma membrane CFTR.  相似文献   

13.
A peptide was fused to the C terminus of the M13 bacteriophage major coat protein (P8), and libraries of P8 mutants were screened to select for variants that displayed the peptide with high efficiency. Over 600 variants were sequenced to compile a comprehensive database of P8 sequence diversity compatible with assembly into the wild-type phage coat. The database reveals that, while the alpha-helical P8 molecule was highly tolerant to mutations, certain functional epitopes were required for efficient incorporation. Three hydrophobic epitopes were located approximately equidistantly along the length of the alpha-helix. In addition, a positively charged epitope was required directly opposite the most C-terminal hydrophobic epitope and on the same side as the other two epitopes. Both ends of the protein were highly tolerant to mutations, consistent with the use of P8 as a scaffold for both N and C-terminal phage display. Further rounds of selection were used to enrich for P8 variants that supported higher levels of C-terminal peptide display. The largest improvements in display resulted from mutations around the junction between P8 and the C-terminal linker, and additional mutations in the N-terminal region were selected for further improvements in display. The best P8 variants improved C-terminal display more than 100-fold relative to the wild-type, and these variants could support the simultaneous display of N and C-terminal fusions. These finding provide information on the requirements for filamentous phage coat assembly, and provide improved scaffolds for phage display technology.  相似文献   

14.
与许多疾病相关的血管生成作用是由一些血管生成因子介导的 ,其中就包括表皮生长因子 .在肿瘤生长、关节炎等疾病中 ,表皮生长因子参与了其中的血管生成作用 ,拮抗表皮生长因子介导的血管生成就有可能对与其相关的疾病起到治疗作用 ,因此 ,表皮生长因子的拮抗剂可能具有重要的临床价值 .拮抗表皮生长因子的作用可以通过许多途径 ,其中之一就是找到能与表皮生长因子结合并能干预其与受体结合的分子 ,因而表皮生长因子可作为药物靶分子 .从噬菌体文库中筛选药物靶分子的拮抗剂和激动剂已被证明是一种有效的方法 .以表皮生长因子作为药物靶分子 ,从多肽噬菌体文库中筛选与表皮生长因子结合的噬菌体多肽 ,这些潜在的表皮生长因子拮抗剂先导分子经过优化可能具有重要的临床价值 .  相似文献   

15.
Bladder cancer is one of the most common tumors of the genitourinary tract. Here, we use phage display to identify a peptide that targets bladder tumor cells. A phage library containing random peptides was screened for binding to cells from human bladder tumor xenografts. Phage clones were further selected for binding to a bladder tumor cell line in culture. Six clones displaying the consensus sequence CXNXDXR(X)/(R)C showed selective binding to cells from primary human bladder cancer tissue. Of these, the CSNRDARRC sequence was selected for further study as a synthetic peptide. Fluorescein-conjugated CSNRDARRC peptide selectively bound to frozen sections of human bladder tumor tissue, whereas only negligible binding to normal bladder tissue was observed. When the fluorescent peptide was introduced into the bladder lumen, in a carcinogen-induced rat tumor model, it selectively bound to tumor epithelium. Moreover, when the peptide was intravenously injected into the tail vein, it homed to the bladder tumor but was not detectable in normal bladder and control organs. Next, we examined whether the peptide can detect tumor cells in urine. The fluorescent peptide bound to cultured bladder tumor cells but not to other types of tumor cell lines. Moreover, it bound to urinary cells of patients with bladder cancer, while showing little binding to urinary cells of patients with inflammation or healthy individuals. The CSNRDARRC peptide may be useful as a targeting moiety for selective delivery of therapeutics and as a diagnostic probe for the detection of bladder cancer.  相似文献   

16.
We investigated whether the T7 system of phage display could produce peptide libraries of greater diversity than the M13 system of phage display due to the differing processes of lytic and filamentous phage morphogenesis. Using a bioinformatics-assisted computational approach, collections of random peptide sequences obtained from a T7 12-mer library (X(12)) and a T7 7-mer disulfide-constrained library (CX(7)C) were analyzed and compared with peptide populations obtained from New England BioLabs' M13 Ph.D.-12 and Ph.D.-C7C libraries. Based on this analysis, peptide libraries constructed with the T7 system have fewer amino acid biases, increased peptide diversity, and more normal distributions of peptide net charge and hydropathy than the M13 libraries. The greater diversity of T7-displayed libraries provides a potential resource of novel binding peptides for new as well as previously studied molecular targets. To demonstrate their utility, several of the T7-displayed peptide libraries were screened for streptavidin- and neutravidin-binding phage. Novel binding motifs were identified for each protein.  相似文献   

17.
应用噬菌体展示肽库技术,以重组的脑膜炎大肠杆菌致病蛋白IbeA作为靶分子,经过吸附-洗脱-扩增-再吸附的亲和筛选,随机挑选亲和力强的噬菌体克隆,进行ELISA、竞争抑制实验和序列测定。结果显示,经3轮淘选后,间接ELISA鉴定得到高亲和性结合IbeA蛋白的15个阳性克隆。竞争抑制实验结果表明,游离IbeA蛋白能竞争抑制噬菌体结合肽克隆与固相包被的IbeA蛋白的结合,其抑制作用随游离IbeA蛋白浓度的降低而减弱。测序结果得到5种阳性噬菌体克隆展示肽序列。上述结果提示以脑膜炎大肠杆菌IbeA蛋白为靶筛选所获得的噬菌体12肽克隆,具有特异性,其结合肽序列呈现相对保守性。建立的从噬菌体随机肽库筛选IbeA蛋白结合肽的方法具有方便、灵活和高效可行的特点。  相似文献   

18.
Peptaibols comprise a family of peptide antibiotics with high contents of 2-aminoisobutyric acid (Aib) residues and C-terminal amino alcohols. These peptides form alpha-helical structures leading to voltage-gated ion channels in lipid membranes. In the present study, amphiphilic helical Aib-containing peptides of various chain-lengths, Ac-(Aib-Lys-Aib-Ala)n-NH2 (n = 1-5), were designed to investigate the mechanisms of the aggregation and transmembrane orientation of helical motifs in lipid bilayer membranes. Peptide synthesis was performed by the conventional stepwise Fmoc solid-phase method. The crude peptides were obtained in high yields (66-85%) with high purities (69-95%). Conformational analysis of the synthetic peptides was performed by CD spectroscopy. It was found that these peptides take on highly helical structures, and the helicity of the peptides increases with an increase in chain-length. The longest peptide, Ac-(Aib-Lys-Aib-Ala)5-NH2, self-aggregates and adopts a barrel-stave conformation in liposomes. Ac-(Aib-Lys-Aib-Ala)5-NH2 exhibited potent antimicrobial activity against Gram-positive bacteria. Patch-clamp measurements revealed that this peptide can form well-defined ion channels with a long lifetime at relatively low transbilayer potentials and peptide concentrations. For this peptide, the single-channel conductance of the most frequent event is 227 pS, which could be related to a single-state tetrameric pore.  相似文献   

19.
以原核表达的具有明胶水解活性的人基质金属蛋白酶 2的催化区 (MCD)为靶标 ,筛选噬菌体随机环七肽库和十二肽库 .找到 6种与MCD特异结合的小肽 ,将 6种小肽基因分别与GST表达质粒重组 ,进行GST融合表达 ,制备融合蛋白 .采用Glutathione Sepharose 4B亲和层析法纯化融合蛋白 ,通过酶抑制实验、体外侵袭实验检测融合蛋白的活性 .结果表明 ,GST C71能够抑制MCD水解 β酪蛋白的活性 ,并且对人纤维肉瘤细胞HT10 80的体外侵袭有明显的抑制作用  相似文献   

20.
In the post-genomic era, validation of candidate gene targets frequently requires proteinbased strategies. Phage display is a powerful tool to define protein-protein interactions by generating peptide binders against target antigens. Epitope phage display libraries have the potential to enrich coding exon sequences from human genomic loci. We evaluated genomic and cDNA phage display strategies to identify genes in the 5q31 Interleukin gene cluster and to enrich cell surface receptor tyrosine kinase genes from a breast cancer cDNA library. A genomic display library containing 2 x 106 clones with exon-sized inserts was selected with antibodies specific for human Interleukin-4 (IL-4) and Interleukin-13. The library was enriched significantly after two selection rounds and DNA sequencing revealed unique clones. One clone matched a cognate IL-4 epitope; however, the majority of clone insert sequences corresponded to E. coli genomic DNA. These bacterial sequences act as 'mimotopes' (mimetic sequences of the true epitope), correspond to open reading frames, generate displayed peptides, and compete for binding during phage selection. The specificity of these mimotopes for IL-4 was confirmed by competition ELISA. Other E. coli mimotopes were generated using additional antibodies. Mimotopes for a receptor tyrosine kinase gene were also selected using a breast cancer SKBR-3 cDNA phage display library, screened against an anti-erbB2 monoclonal antibody. Identification of mimotopes in genomic and cDNA phage libraries is essential for phage display-based protein validation assays and two-hybrid phage approaches that examine protein-protein interactions. The predominance of E. coli mimotopes suggests that the E. coli genome may be useful to generate peptide diversity biased towards protein coding sequences.ABBREVIATIONS USED: IL, interleukin; ELISA, enzyme linked immunoabsorbant assay; PBS, phospho-buffered saline; cfu, colony forming units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号