首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
叶锈病是小麦生产中的重要病害,培育持久抗性品种可以有效控制该病害。本研究以抗病品种莱州137、感病对照品种郑州5389、慢锈性品种SAAR以及36个已知抗叶锈病基因的载体品种为材料,在苗期和成株期进行了2年2点的接种鉴定,通过系谱分析、基因推导和12个与抗叶锈病基因连锁的分子标记检测,发现莱州137携带Lr26、Lr10、Lr14b以及其他未知抗叶锈病基因,且表现成株抗性的特点,说明其可能含有未知的成株抗性基因,可作为新的小麦抗叶锈病抗源加以利用。  相似文献   

2.
摘要:小麦叶锈病是小麦生产中的重要病害,培育持久抗叶锈性品种可以有效、经济地控制该病害。本文通过基因推导、分子检测结合系谱分析成株抗性鉴定对小麦重要生产品种中抗病基因进行分析,从而确定小麦品种中所携带的抗病基因。本试验用20个不同毒力的叶锈菌菌系、36个已知抗叶锈基因载体品种以及感病对照品种郑州5389对供试品种莱州137进行苗期抗叶锈病基因推导分析,并分别用12个与抗叶锈病基因连锁的分子标记进行目的基因的分子检测,同时利用系谱分析法来验证莱州137所携带的已知抗叶锈病基因;在2014-2015年度和2015-2016年度将莱州137、慢锈性对照品种SAAR和感病对照品种郑州5389种植于河北农业大学小麦试验田和河南周口黄泛区农场试验田,用田间混合生理小种(FHRT、THTT、THJT)接种进行成株期抗病性鉴定。结果表明,通过苗期基因推导分析,莱州137对小种FGBQ、PGJQ、TGTT、THSM、PHGM、PHST、FHJS、FHGQ、FNTQ、PRSQ和KHGQ表现抗病,而Lr26对FGBQ、PGJQ和TGTT高抗,Lr10和Lr14b分别对小种THSM、PHGM和PHST、PHGM、THTT表现高抗,同时系谱分析和分子检测也验证已知抗叶锈基因Lr26和Lr10,因此在供试品种莱州137中鉴定出Lr26、Lr10、Lr14b以及未知的抗叶锈病基因;根据2年2点的田间抗叶锈病鉴定,莱州137表现出成株抗性特点,且经分子标记检测该品种中未含有Lr34和Lr46,故小麦品种莱州137中含有未知的成株抗叶锈性基因,可作为新的小麦叶锈病抗源加以利用。  相似文献   

3.
为明确河北省12个小麦主栽品种(系)的抗叶锈性及抗叶锈基因,在苗期选用20个不同毒性谱的小麦叶锈菌菌系接种12个小麦品种(系)以及37个含有已知抗叶锈病基因的载体品种以进行基因推导,同时利用11个与已知抗叶锈病基因紧密连锁的分子标记对12个品种(系)进行标记检测。为进一步鉴定成株期抗性,2014-2015年和2015-2016年连续2年分别在河北保定和河南周口对供试材料进行田间严重度调查。结果表明,在12个品种(系)中检测到Lr1、Lr26、LrB和Lr46共4个抗叶锈病基因,其中8个品种(系)推测含有Lr26,石新618可能含有Lr1,藁优2018可能含有LrB,冀5265可能含有Lr46。2年2点的田间鉴定结果表明,石新733、藁优2018和石优17为慢锈品种(系),可作为抗源材料加以利用。  相似文献   

4.
以抗叶锈病小麦品系Hussar的衍生品系H103P为抗病亲本,郑州5389为感病亲本杂交得到的234个F4家系群体为材料,进行抗叶锈病基因定位分析。利用带有不同毒力的16个叶锈菌生理小种进行苗期抗叶锈性鉴定,结果表明周麦22及携带Lr13、Lr23和Lr16单基因的载体品种对16个叶锈菌生理小种均表现感病,H103P对除PHKT外的所有小种表现抗病,表明H103P抗叶锈性与携带Lr13、Lr23和Lr16单基因的载体品种不同。利用5种强毒力混合菌种(THTT、PHTT~((2))、FHJS~((2))、PHKS、PHTT~((1)))进行田间抗叶锈性鉴定,结果表明H103P、SAAR、周麦22以及Lr13载体品种田间表现均为高抗,234个F4家系群体抗性呈连续性分布,在田间表现出良好的成株期抗性。抗叶锈病基因定位分析结果表明,在小麦品系H103P中定位到1个位于小麦2BS染色体上的抗叶锈病基因,暂命名为LrHu。利用含有Lr13的特异性引物对H103P和郑州5389的扩增产物进行特异性酶切,结果发现小麦品系H103P含有抗叶锈病基因Lr13。小麦抗叶锈病基因LrHu与Lr13的关系还需...  相似文献   

5.
利用KHST、FHKT和FHJT②3个小麦叶锈菌混合菌株对182份小麦品种(系)进行苗期抗叶锈鉴定,对筛选出的抗性品种利用15个小麦叶锈菌生理小种进行基因推导,结合与20个抗叶锈基因连锁的25个分子标记进行抗叶锈基因分析。182份小麦品种(系)中,14个品种(泰科麦5303、驻麦305、豫圣麦118、存麦18号、轩麦6号、农丰川、丹麦118、郑麦103、郑麦119、赛德麦5号、郑麦369、许科918、豫麦668和AF116-120)表现抗性,其余品种(系)均表现高感;基因推导结果显示,驻麦305、存麦18号、农丰川、郑麦119、赛德麦5号、郑麦369、许科918含有抗叶锈基因Lr33+34;郑麦103含有抗叶锈基因Lr10和Lr33+34;AF116-120含有抗叶锈基因Lr10、Lr16、Lr20和Lr33+34;泰科麦5303、豫圣麦118、丹麦118和豫麦668可能含有其他抗叶锈基因;分子检测结果显示,农川丰、轩麦6号、郑麦103和许科918含有抗叶锈基因Lr1和Lr26;泰科麦5303、豫圣麦118、郑麦119和郑麦369含有抗叶锈基因Lr1;驻麦305、存麦18号和豫麦668含有抗叶锈基因Lr26;AF116-120含有抗叶锈基因Lr1和Lr2c;丹麦118含有抗叶锈基因Lr26和Lr37。所检测小麦品种含抗叶锈基因丰富度低,缺乏有效抗叶锈基因。182份黄淮海麦区小麦品种对小麦叶锈菌的抗病性及抗性品种中抗性基因组成的分析,可以为该地区小麦品种推广、合理布局及叶锈病防治与抗病育种提供科学依据。  相似文献   

6.
为了明确河南省小麦品种的抗叶锈性及抗叶锈基因的分布,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据,本研究利用2015年采自河南省的5个小麦叶锈菌流行小种混合菌株,对近几年河南省16个主栽小麦品种进行了苗期抗性鉴定,然后选用12个小麦叶锈菌生理小种对这些品种进行苗期基因推导,同时利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对该16个品种进行了抗叶锈基因分子检测。结果显示,供试品种苗期对小麦叶锈菌混合流行小种均表现高度感病;基因推导与分子检测结果表明,供试品种可能含有Lr1、Lr16、Lr26和Lr30这4个抗叶锈基因,其中先麦8号含有Lr1和Lr26;郑麦366和郑麦9023含有Lr1;西农979和怀川916含有Lr16;中麦895、偃展4110、郑麦7698、平安8号、众麦1号、周麦16、衡观35和矮抗58含有Lr26;周麦22中含有Lr26,还可能含有Lr1和Lr30;豫麦49-198和洛麦23可能含有本研究中检测以外的其他抗叶锈基因。因此,河南省主栽小麦品种的抗叶锈基因丰富度较低,今后育种工作应注重引入其他抗叶锈性基因,提高抗叶锈性,有效控制小麦叶锈病。  相似文献   

7.
8个小麦育种亲本抗叶锈基因分析   总被引:1,自引:0,他引:1  
选取19个小麦叶锈菌生理小种对8个小麦育种亲本进行成株期和苗期抗叶锈病鉴定及基因推导,同时利用与24个抗叶锈基因紧密连锁或共分离的31个分子标记进行分子检测。推测出L83#-5与L83#-6含有Lr1,可能含有Lr2c和Lr42;L/PL2003-1含有Lr1,可能含有Lr2c、Lr28和Lr42;贵农13号可能含有Lr28;92R137可能含有Lr2c和Lr28;L201含有Lr1,可能含有Lr2c、Lr16和Lr28;TM可能含有Lr41和其他抗叶锈基因。研究结果表明,测试的8个小麦育种亲本中TM的抗叶锈性最好,具有很好的抗叶锈病应用潜力,可作为小麦抗叶锈病育种的重要抗源。  相似文献   

8.
山东省12个主栽小麦品种(系)抗叶锈性分析   总被引:1,自引:0,他引:1  
本研究旨在明确山东省12个小麦主栽品种(系)抗叶锈性及抗叶锈基因,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据。利用2015年采自山东省的5个小麦叶锈菌流行小种的混合小种对这些材料进行苗期抗性鉴定,然后选用15个小麦叶锈菌生理小种对这些品种(系)进行苗期基因推导,并利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对其进行抗叶锈基因分子检测。结果显示,山东省12个主栽小麦品种(系)苗期对该省2015年的5个小麦叶锈菌混合流行小种均表现高度感病。通过基因推导与分子检测发现,济南17含有Lr16,矮抗58和山农20含有Lr26,其余济麦系列、烟农系列、良星系列等9个品种(系)均未检测到所供试标记片段。此外,本研究还对山东省3个非主栽品种进行了检测,结果发现,中麦175含有抗叶锈基因Lr1和Lr37,含有成株抗性基因;皖麦38只检测到Lr26,济麦20未检测到所供试标记片段。综合以上结果,山东省主栽小麦品种(系)所含抗叶锈基因丰富度较低,尤其不含有对我国小麦叶锈菌流行小种有效的抗锈基因,应该引起高度重视,今后育种工作应注重引入其他抗叶锈基因,提高抗叶锈性。  相似文献   

9.
新疆的小麦品种(系)苗期和成株期抗叶锈性鉴定   总被引:1,自引:0,他引:1  
对来自新疆的104个小麦品种、高代品系及35个含有已知抗叶锈基因载体品种,在苗期接种12个中国小麦叶锈菌生理小种进行抗叶锈基因推导分析和分子检测;2007-2008年和2008-2009年连续2年度对这些材料进行成株抗叶锈性鉴定并筛选慢叶锈性品种。研究结果显示,在41个品种中共鉴定出6个已知抗叶锈基因Lr26、Lr34、Lr50、Lr3ka、Lr1和Lr14a,其中Lr26存在于21个品种中,Lr34在17个品种被发现,Lr1和Lr14a分别存在于3个品种中,还有2个品种携带Lr3ka以及1个品种携带Lr50。2年田间抗叶锈性鉴定筛选出7个慢叶锈性品种,可用于小麦抗病育种。  相似文献   

10.
5R618是高抗叶锈病小麦品系。为了确定该品系所携带的抗叶锈基因,以5R618与感病小麦品种郑州5389杂交获得F1,自交获得F2分离群体以及F2∶3家系,用叶锈菌生理小种THJP对亲本、F2分离群体以及F2∶3家系进行叶锈抗性鉴定,然后进行分子标记分析。结果显示,5R618对生理小种THJP的抗病性由1对显性基因控制,该基因暂命名为Lr5R。经过亲本和抗感池间分子标记筛选以及F2∶3家系的标记检测,Lr5R定位于染色体3DL上,barc71和STS24-16是Lr5R最近的2个标记,遗传距离分别为0.9 c M和2.1 c M。  相似文献   

11.
Thirty-seven wheat cultivars originating from seven European countries were examined by using sequence tagged site (STS) markers for seven Lr (leaf rust = brown rust) resistance genes against the fungal pathogen of wheat Puccinia recondita f. sp. tritici (Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37). Additionally, 22 accessions with various Lr genes from two germplasm collections were tested. A Scar (sequence-characterized amplified region) marker for Lr24 and a CAPS (Cleaved Amplified Polymorphic Sequence) marker for Lr47 were also used to identify those genes in the wheat accessions. Each marker amplified one specific DNA fragment. Three Lr gene markers were identified in wheat cultivars (Lr10, Lr26 and Lr37). Another four markers (Lr9, Lr19, Lr24 and Lr47) were found in breeding lines carrying leaf rust resistance genes. The results were compared with leaf rust resistance gene postulations made in previous studies, based on multipathotype testing. Markers for Lr10, Lr26 and Lr37 may be useful in marker-assisted breeding.  相似文献   

12.
Puccinia triticina (Pt), the causal agent of leaf rust evolves through forming new pathotypes that adversely affect the growth and yield of wheat cultivars. Therefore, continued production of resistant varieties through exploring novel sources of resistance in wild relatives which are abundantly found in Iran and the neighbouring regions is a major task in wheat breeding programs. The aim of the present study was to explore 60 wild wheat genotypes selected from the species Triticum monococcum, Aegilops tauschii, Ae. neglecta, Ae. cylindrica, Ae. triuncialis, Ae. umbellulata, Ae. speltoides, Ae. columnaris, Ae. crassa and Ae. ventricosa for resistance to leaf rust. The cultivar ‘Boolani’ and Thatcher near-isogenic lines were used as controls. Two-week-old seedlings were inoculated using 10 Pt pathotypes, and the infection types were recorded. The genotypes were also analysed for polymorphism using six sequence-tagged sites (STS) and sequence characterized amplified region (SCAR) markers. Forty-eight genotypes produced high infection types (3+) for two pathotypes, but the remaining genotypes produced low infection types of ‘0; =’ to ‘1+CN’ to all pathotypes. The latter included three accessions of Ae. tauschii, two accessions of each Ae. umbellulata, Ae. columnaris and Triticum monococcum, and one accession from each Ae. triuncialis, Ae. ventricosa and Ae. neglecta. Analysis for STS and SCAR markers suggested several genotypes could carry the genes Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37 or their potential orthologs in addition to unknown resistance genes. In conclusion, the identified resistant genotypes could be further characterized and used in wheat breeding programs for leaf rust resistance.  相似文献   

13.
Diversity of resistance to leaf rust caused by Puccinia triticina can be enhanced in wheat (Triticum aestivum) cultivars through a better knowledge of resistance genes that are present in important cultivars and germplasm. Multi-pathotype tests on 84 wheat cultivars grown in Denmark, Finland, Norway and Sweden during 1992-2002 and 39 differential testers enabled the postulation of nine known genes for seedling resistance to leaf rust. Genes Lr1, Lr2a, Lr3, Lr10, Lr13, Lr14a, Lr17, Lr23 and Lr26 were found singly or in combination in 47 of the cultivars (55.9%). The most frequently occurring genes in cultivars grown in Sweden were Lr13 (20.4%), Lr14a (14.8%) and Lr26 (14.8%). Lr14a was the most common gene in cultivars grown in Norway (18.7%), Lr13 in Denmark (35.5%) and Lr10 in Finland (20.0%). Although 28 cultivars (33.3%) exhibited a response pattern that could not be assigned to resistance genes or combinations present in the tester lines, several pathotypes carried virulence and hence these genes or combinations are of limited use. Nine cultivars (10.7%) lacked detectable seedling resistance. One cultivar was resistant to all pathotypes used in the study.  相似文献   

14.
From 2001 to 2003, leaf rust was collected in different regions of Germany and the Russian Federation to generate single spore isolates and to study the structure of the pathogen populations by analyses of virulence. The virulence of isolates was tested with 38 near‐isogenic lines each carrying a different resistance gene. The analyses of variance revealed significant effects for the frequency of virulent isolates, the regions and most interactions with years and regions, but no significance was found for the effects of years. In Germany, an increase of virulence frequencies was detected for Lr1 and Lr2a while a decrease was found for Lr3a, Lr3bg and Lr3ka. Such clear trends did not occur in Russia which may be due to the great agroclimatic differences between regions. The variance of the frequency of virulent isolates was used to estimate adequate sample sizes for the analysis of regional populations of leaf rust. This procedure resulted in more reliable information about the dynamic processes within the pathogen populations. In 2002 and 2003, all pathotypes in Germany had a combined virulence to Lr1, Lr2a, Lr2b, Lr15, Lr17 and Lr20 supplemented by a few other genes. The complexity of virulence was lower in the most frequent pathotypes. In Russia virulence to the alleles at locus Lr3 was very common. Using detached leaf segments in Germany and Russia it turned out that the most virulent pathotypes carry 34 and 32 virulence genes, respectively. Virulence to Lr9, Lr19, Lr24 and Lr38 was rare or even absent. The use of major genes, not overcome by corresponding virulent pathotypes, may contribute to more durable types of resistance in case they are combined with genes having different effects, e.g. adult plant resistance.  相似文献   

15.
Wheat leaf rust (Puccinia triticina) is becoming a serious concern in Spanish wheat, especially on durum wheat where acreage has enormously increased. Host resistance is the preferred method of disease control, but the virulence spectrum of the leaf rust population in Spain is currently unknown. In order to deploy effective Lr genes, this study was conducted to characterize the virulence spectrum of leaf rust in Andalusia (Spain). Isolates were obtained from surveys of wheat fields across Andalusia from 1998 to 2000. From 56 isolates phenotyped, 35 pathotypes were identified. Virulence to Lr10, Lr11, Lr14a, Lr14b and Lr18 was high (>96%), while virulence to Lr9 and Lr24 were not found. None of the isolates collected from durum wheat were virulent to Lr1, Lr3, Lr3ka, Lr3bg, Lr15, Lr16 and Lr17, while many of the isolates collected on bread wheat showed virulence on these genes, indicating a certain specialization in the leaf rust infecting durum wheat. Population dynamics of current wheat leaf rust pathotypes in terms of mutation and migration are discussed.  相似文献   

16.
Genomic prediction for rust resistance in diverse wheat landraces   总被引:1,自引:0,他引:1  

Key message

We have demonstrated that genomic selection in diverse wheat landraces for resistance to leaf, stem and strip rust is possible, as genomic breeding values were moderately accurate. Markers with large effects in the Bayesian analysis confirmed many known genes, while also discovering many previously uncharacterised genome regions associated with rust scores.

Abstract

Genomic selection, where selection decisions are based on genomic estimated breeding values (GEBVs) derived from genome-wide DNA markers, could accelerate genetic progress in plant breeding. In this study, we assessed the accuracy of GEBVs for rust resistance in 206 hexaploid wheat (Triticum aestivum) landraces from the Watkins collection of phenotypically diverse wheat genotypes from 32 countries. The landraces were genotyped for 5,568 SNPs using an Illumina iSelect 9 K bead chip assay and phenotyped for field-based leaf rust (Lr), stem rust (Sr) and stripe rust (Yr) responses across multiple years. Genomic Best Linear Unbiased Prediction (GBLUP) and a Bayesian Regression method (BayesR) were used to predict GEBVs. Based on fivefold cross-validation, the accuracy of genomic prediction averaged across years was 0.35, 0.27 and 0.44 for Lr, Sr and Yr using GBLUP and 0.33, 0.38 and 0.30 for Lr, Sr and Yr using BayesR, respectively. Inclusion of PCR-predicted genotypes for known rust resistance genes increased accuracy more substantially when the marker was diagnostic (Lr34/Sr57/Yr18) for the presence-absence of the gene rather than just linked (Sr2). Investigation of the impact of genetic relatedness between validation and reference lines on accuracy of genomic prediction showed that accuracy will be higher when each validation line had at least one close relationship to the reference lines. Overall, the prediction accuracies achieved in this study are encouraging, and confirm the feasibility of genomic selection in wheat. In several instances, estimated marker effects were confirmed by published literature and results of mapping experiments using Watkins accessions.  相似文献   

17.
Leaf rust caused by Puccinia recondita f.sp. tritici is a wheat disease of worldwide importance. Wheat genotypes known to carry specific rust resistance genes and segregating lines that originated from various cross combinations and derived from distinct F2 lineage, so as to represent a diverse genetic background, were included in the present study for validation of molecular markers for Lr19 and Lr24. STS markers detected the presence of the leaf rust resistance gene Lr19 in a Thatcher NIL (Tc*Lrl9) and Inia66//CMH81A575 and of the gene Lr24 in the genotypes Arkan, Blue Boy II, Agent and CI 17907. Validation of molecular markers for Lr19 and Lr24 in parental lines, followed by successful detection of these genes in F3 lines from various cross combinations, was carried out. The molecular test corresponded well with the host-pathogen interaction test response of these lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号