首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
高胆固醇饲料喂养造成的动脉粥样硬化(As)模型家兔通过静脉注射人血浆HDL制剂,观察HDL对As家兔肝细胞膜LDL受体活性的影响.结果发现,摄取高胆固醇饲料的As家兔,其肝细胞膜LDL受体Kd值虽无明显变化但Bmax值显著减小(P<0.01,与正常对照组比较);注射HDL制剂后,As家兔肝细胞膜LDL受体Kd值仍无明显改变,但Bmax值却显著回升(P<0.01,与高脂组比较).表明人血浆HDL具有增加As家兔肝细胞膜LDL受体活性的作用.  相似文献   

2.
本文研究了小鼠腹腔巨噬细胞极低密度脂蛋白(VLDL)受体的调节。用富含甘油三酯(TG)的VLDL与小鼠巨噬细胞预温育后,细胞结合~(125)I-VLDL的最大结合容量(Bmax)比对照细胞只降低5%(1071/1127ng/mg细胞蛋白质),当细胞内TG增加到对照的2.5倍时,细胞摄取及降解~(125)I-VLDL的量分别下降40%和22%;乙酰-低密度脂蛋白(AC-LDL)预温育的细胞结合~(125)I-VLDL的Bmax比对照细胞只降低14%(633/831ng/mg细胞蛋白质),当细胞内胆固醇(Ch)增加到对照的23倍时,细胞摄取及降解~(125)I-VLDL的量只分别下降10%和21%。此后随着细胞内TG或Ch含量的增加,摄取及降解~(125)I-VLDL的量仍保持不变。 结论:细胞内TG或Ch含量对VLDL受体的调节作用微弱,与TG相比,Ch的调节作用更弱。  相似文献   

3.
前文曾报道若干外源凝集素和糖苷对~(125)I-标记胰岛素和其受体结合有影响,并认为在胰岛素受体分子表面可能存在能与伴刀豆球蛋白A等外源凝集素专一结合的糖基(如甘露糖基),而且这些糖基可能参与了和胰岛素的结合。我们也曾观察到牛血清白蛋白存在时,标记胰岛素的凝胶过滤图谱中可出现两个放射活性峰,犹如胰岛素和其受体结合的图谱。为了进一步探讨胰岛素和其受体相互作用的原理,以及牛血清白蛋白中是何种组分和胰岛素结合,本文研究了一些糖蛋白和不含糖基的蛋白对标记胰岛素和人胎盘细胞膜结合的影响;并用高纯度的人胎盘白蛋白代替牛血清白蛋白作保护剂观察标记胰岛素的凝胶过滤行为。人胎盘细胞膜的制备按前文报道。~(125)I-胰岛素的制备见前文。结合实验按前文,37℃保温30分钟后迅速置冰水浴中冷却,4℃保温24小时。表1是一些糖蛋白和不含糖基的蛋白对标记胰岛素和人胎盘细胞膜结合的影响。在  相似文献   

4.
胆固醇是动物细胞细胞膜的重要组成成分,其做为细胞和环境之间的屏障调节细胞膜的流动性。胆固醇是体内所有的类固醇激素和胆酸合成的前体物质,参与体内代谢。同时胆固醇在神经系统的发育中也起着重要的作用。在血浆中胆固醇以低密度脂蛋白和高密度脂蛋白这两种胆固醇运载血脂蛋白的形式运输。动物细胞通过细胞表面的低密度脂蛋白受体(LDL receptor,LDLR)介导的内吞可以从血液中摄取富含胆固醇的低密度脂蛋白,当细胞表面的LDLR的功能缺陷时,可以导致高胆固醇血症,继而引起动脉粥样硬化、冠心病和中风等严重疾病。本文综述了LDL受体的概述及其通过内吞调节血液中低密度脂蛋白胆固醇水平的作用,并对LDL受体的调节进行了阐述。  相似文献   

5.
应用亲和层析法从三齿草藤(Vicia bungei Ohwi)种子中纯化的三齿草藤凝集素(VBL),可以凝集兔和豚鼠的红细胞,也可凝集人、牛和羊的精细胞,说明这些细胞表面存在有VBL的受体。用FITC和~(125)I进行标记,可得到FITC-VBL和~(125)I-VBL,其生物学活性不受影响。氯胺T法的标记率可达55%;应用FITC-VBL研究牛精细胞和兔红细胞膜上VBL受体的分布,发现二者由胞膜上受体分布据不一致。VBL与牛精细胞结合条件的正交试验表明细胞浓度的影响最大。用不同量的未标记的VBL对~(125)I-VBL与兔红细胞和人精细胞的结合实验,以Scatchard法作图,兔红细胞得一类似于双曲线的凹形曲线,提示该细胞膜上受体的性质有所不同,而人精细胞却有很大差异。若以兔红细胞膜上存在有高低亲和力两种受体进行计算,可求得结合常数和每个细胞上的受体数。应用几种单糖和外源凝集素影响~(125)I-VBL与兔红细胞的结合,当单糖(D-Man,D-Glc)浓度为0.01M时,相对结合率开始急剧下降,单糖浓度若增至0.1M时,其相对结合率仅为40%,而PHA-P和SML浓度为1mg/ml时,相对结合率开始下降,当浓度达10mg/ml时,相对结合率下降至30%左右。  相似文献   

6.
以辣根过氧化物酶标记人LDL、兔抗人LDLIgG或羊抗兔IgG抗体作为示踪剂,作用于培养的人胚肺细胞,经DAB-H_2O_2显色,超薄切片,电镜观察,结果表明: (1)细胞能与很低浓度LDL-HRP产生特异性结合,显示LDL受体的高亲和力。 (2)兔抗人LDLIgG-HRP与已结合在受体上的LDL的结合可被未标记的兔抗人LDLIgG封闭,而封闭后以羊抗兔IgG-HRP作用又显示特异性反应,这种反应只能在已有LDL结合的细胞膜上显示,IgG不能阻断这种反应。 (3)肝素或高浓度LDL对LDL-HRP与受体的结合产生竞争性抑制;事先经高脂培养,这种结合也受到抑制(反馈性抑制)。 (4)细胞对游离HRP不显示特异性高亲和力的结合。 (5)生长在不含LDL-HRP是培养液中的细胞也无这种特殊性反应。上述纳果说明,LDL-HRP是结合于质膜表面有外被区特异性的、高亲和力的LDL受体上。  相似文献   

7.
烙铁头Trimeresurus Mucrosquamatus蛇毒对血小板的活化作用   总被引:2,自引:0,他引:2  
烙铁头Trimeresurus Mucrosquamatus蛇毒(TMV)可引起人和多种动物(狗、家兔、豚鼠)血小板的活化,发生聚集。血小板聚集强度与加入TMV的量有关。豚鼠血小板对TMV最为敏感,TMV引起豚鼠、家兔、狗和人的血小板聚集的最低剂量分别为0.6、12.5、2.0、2.0μg/ml。EDTA抑制而肝素不影响TMV对血小板的聚集作用。TMV的血小板聚集反应伴有5羟色胺的释放,引起家兔血小板5羟色胺最大释放(72%)的TMV剂量为100μg/ml。TMV还可以诱导血小板血栓恶烷A_2的形成。阿斯匹林能阻断TMV诱导的血栓恶烷A_2的生成,但并不抑制TMV引起的血小板聚集反应,提示TMV可能通过不依赖于血栓恶烷A_2的途径活化。初步结果表明TMV是研究血小板生理机制的有用工具。  相似文献   

8.
牛肾上腺皮质LDL受体经Triton X-100增溶,DEAE_(32)离子交换柱和LpB Sepharose亲和柱层析,在SDS-PAGE中有三条区带,分别在原点;Mr 160kD;Mr125kD处。进一步用8%SDS-PAGE纯化三个区带的蛋白质分别免疫新西兰大白兔所得的抗体,应用免疫印迹和ECL非同位素标记法可对牛肾上腺皮质和人皮肤纤维细胞膜上的LDL受体进行测定。  相似文献   

9.
《遗传》2020,(10)
血清低密度脂蛋白胆固醇(low density lipoprotein cholesterol, LDL-C)水平的升高是导致心血管疾病发生的主要危险因素。低密度脂蛋白受体(LDL receptor, LDLR)介导的低密度脂蛋白(low density lipoprotein, LDL)清除是决定循环中LDL-C水平的主要因素。LDL与细胞表面的LDLR结合后通过经典的网格蛋白小窝(clathrin-coated vesicles)内化进入细胞。在酸性核内体中,LDLR与LDL解离并循环回到细胞表面,释放的LDL将被运送到溶酶体中降解。前蛋白转化酶枯草溶菌素9 (proprotein convertase subtilisin kexin type 9, PCSK9)编码一种肝脏分泌型蛋白,其突变与LDL-C水平密切相关。前期研究已经证明,PCSK9直接与细胞表面的LDLR相互作用,二者一起通过网格蛋白小窝内化进入细胞。然而,在酸性核内体中,PCSK9和LDLR形成紧密的复合物,并进入溶酶体中进行降解,从而减少肝细胞表面LDLR的水平,降低肝脏对LDL-C的清除,该过程对于维持血浆中LDL在相对恒定的水平具有重要作用。因此,阻断PCSK9功能已成为治疗高胆固醇血症的新策略。本文综述了PCSK9的功能和机制研究的最新进展,并着重介绍了PCSK9抑制剂的研究进展,旨在为PCSK9-LDLR通路的研究和胆固醇代谢的调控提供参考。  相似文献   

10.
用~(125)Ⅰ标记从尖吻蝮蛇(Agkistrodon acutus)毒中分离出的出血毒素(Ⅰ Aa-HI),得到Ⅰ~(125)Ⅰ—AaHI。静脉注射~(125)Ⅰ—AaHI到家兔体内,对~(125)Ⅰ—AaHI在动物体内的分布和药物代谢动力学进行研究。注射~(125)Ⅰ—AaHI 5小时后将家兔杀死,测定各组织的放射性强度。结果表明有血脑屏障存在。~(125)Ⅰ—AaHI代谢的大量产物由肾通过尿排出。对于药物代谢动力学,计算机模似结果为一室模型,其中生物半衰期T_(1/2)为55.9分钟,K值为0.0124分钟。我们认为在动物体内可能有AaHI相关的结合位点或受体存在。  相似文献   

11.
The proportion of the electronegative low density lipoprotein [LDL(-)] subfraction, which is atherogenic, is increased in type 2 diabetes but is not reduced by glycemic control. Therefore, we evaluated the ability of a new technique, capillary isotachophoresis (cITP), to quantify charge-based LDL subfractions and examined the relation between insulin resistance and the cITP fast-migrating (f) LDL levels. Seventy-five 10-year-old boys were included. The two cITP LDL subfractions, fLDL and major LDL subfractions, were proportional to the LDL protein content within the range of 0.1-0.8 mg/ml LDL protein. Levels of cITP fLDL were positively correlated with triglyceride (TG) levels and negatively correlated with LDL size. Insulin resistance as assessed by the homeostasis model assessment (HOMA-IR) was positively correlated (P < 0.01) with cITP fLDL levels (r = 0.41). The relation between HOMA-IR and cITP fLDL levels depended on TG levels but was independent of body mass index and LDL size. cITP lipoprotein analysis is an accurate and sensitive method for quantifying charge-based LDL subfractions in human plasma, and insulin resistance is related to cITP fLDL independent of LDL size.  相似文献   

12.
Perlecan is a major heparan sulfate (HS) proteoglycan in the arterial wall. Previous studies have linked it to atherosclerosis. Perlecan contains a core protein and three HS side chains. Its core protein has five domains (DI–DV) with disparate structures and DII is highly homologous to the ligand-binding portion of LDL receptor (LDLR). The functional significance of this domain has been unknown. Here, we show that perlecan DII interacts with LDL. Importantly, the interaction largely relies on O-linked glycans that are only present in the secreted DII. Among the five repeat units of DII, most of the glycosylation sites are from the second unit, which is highly divergent and rich in serine and threonine, but has no cysteine residues. Interestingly, most of the glycans are capped by the negatively charged sialic acids, which are critical for LDL binding. We further demonstrate an additive effect of HS and DII on LDL binding. Unlike LDLR, which directs LDL uptake through endocytosis, this study uncovers a novel feature of the perlecan LDLR-like DII in receptor-mediated lipoprotein retention, which depends on its glycosylation. Thus, perlecan glycosylation may play a role in the early LDL retention during the development of atherosclerosis.  相似文献   

13.
Electronegative LDL [LDL(–)] is a minor modified LDL subfraction present in blood with inflammatory effects. One of the antiatherogenic properties of HDL is the inhibition of the deleterious effects of in vitro modified LDL. However, the effect of HDL on the inflammatory activity of LDL(–) isolated from plasma is unknown. We aimed to assess the putative protective role of HDL against the cytokine released induced in monocytes by LDL(–). Our results showed that LDL(–) cytokine release was inhibited when LDL(–) was coincubated with HDL and human monocytes and also when LDL(–) was preincubated with HDL and reisolated prior to cell incubation. The addition of apoliprotein (apo)AI instead of HDL reproduced the protective behavior of HDL. HDL preincubated with LDL(–) promoted greater cytokine release than native HDL. Incubation of LDL(–) with HDL decreased the electronegative charge, phospholipase C-like activity, susceptibility to aggregation and nonesterified fatty acid (NEFA) content of LDL(–), whereas these properties increased in HDL. NEFA content in LDL appeared to be related to cytokine production because NEFA-enriched LDL induced cytokine release. HDL, at least in part through apoAI, inhibits phospholipase-C activity and cytokine release in monocytes, thereby counteracting the inflammatory effect of LDL(–). In turn, HDL acquires these properties and becomes inflammatory.  相似文献   

14.
The mechanisms by which LDLs and HDLs cross the vascular endothelium from plasma into interstitial fluid are not understood, and have never been studied in humans in vivo. We determined whether the plasma-to-lymph clearance rates of LDL and HDL conform with those predicted by passive ultrafiltration through intercellular pores, or if it is necessary to invoke an active process such as receptor-mediated transcytosis. Plasma and afferent peripheral lymph were collected under steady-state conditions from 30 healthy men, and assayed for seven globular proteins of molecular radii 2.89–8.95 nm, complement C3, and apo AI, apo AII, and apo B. Plasma-to-lymph clearance rates of the seven proteins fitted the relation expected for molecules of their size when transported through two populations of pores of radius 4.95 and 20.1 nm. The same model parameters were then found to accurately predict the clearance rates of both HDL and LDL. The apparent clearance of complement C3, previously shown to be secreted by cultured endothelium, exceeded that predicted by the model. We conclude that the transport of HDL and LDL from plasma into interstitial fluid across the peripheral vascular endothelium in healthy humans can be explained by ultrafiltration without invoking an additional active process such as transcytosis.  相似文献   

15.
The relative contributions of ACAT2 and LCAT to the cholesteryl ester (CE) content of VLDL and LDL were measured. ACAT2 deficiency led to a significant decrease in the percentage of CE (37.2 +/- 2.1% vs. 3.9 +/- 0.8%) in plasma VLDL, with a concomitant increase in the percentage of triglyceride (33.0 +/- 3.2% vs. 66.7 +/- 2.5%). Interestingly, the absence of ACAT2 had no apparent effect on the percentage CE in LDL, whereas LCAT deficiency significantly decreased the CE percentage (38.6 +/- 4.0% vs. 54.6 +/- 1.9%) and significantly increased the phospholipid percentage (11.2 +/- 0.9% vs. 19.3 +/- 0.1%) of LDL. When both LCAT and ACAT2 were deficient, VLDL composition was similar to VLDL of the ACAT2-deficient mouse, whereas LDL was depleted in core lipids and enriched in surface lipids, appearing discoidal when observed by electron microscopy. We conclude that ACAT2 is important in the synthesis of VLDL CE, whereas LCAT is important in remodeling VLDL to LDL. Liver perfusions were performed, and perfusate apolipoprotein B accumulation rates in ACAT2-deficient mice were not significantly different from those of controls; perfusate VLDL CE decreased from 8.0 +/- 0.8% in controls to 0 +/- 0.7% in ACAT2-deficient mice. In conclusion, our data establish that ACAT2 provides core CE of newly secreted VLDL, whereas LCAT adds CE during LDL particle formation.  相似文献   

16.
Apolipoprotein E (apoE) associates with lipoproteins and mediates their interaction with members of the LDL receptor family. ApoE exists as three common isoforms that have important distinct functional and biological properties. Two apoE isoforms, apoE3 and apoE4, are recognized by the LDL receptor, whereas apoE2 binds poorly to this receptor and is associated with type III hyperlipidemia. In addition, the apoE4 isoform is associated with the common late-onset familial and sporadic forms of Alzheimer's disease. Although the interaction of apoE with the LDL receptor is well characterized, the specificity of other members of this receptor family for apoE is poorly understood. In the current investigation, we have characterized the binding of apoE to the VLDL receptor and the LDL receptor-related protein (LRP). Our results indicate that like the LDL receptor, LRP prefers lipid-bound forms of apoE, but in contrast to the LDL receptor, both LRP and the VLDL receptor recognize all apoE isoforms. Interestingly, the VLDL receptor does not require the association of apoE with lipid for optimal recognition and avidly binds lipid-free apoE. It is likely that this receptor-dependent specificity for various apoE isoforms and for lipid-free versus lipid-bound forms of apoE is physiologically significant and is connected to distinct functions for these receptors.  相似文献   

17.
In familial hypercholesterolemia (FH), low HDL cholesterol (HDL-C) levels are associated with functional alterations of HDL particles that reduce their capacity to mediate the reverse cholesterol transport (RCT) pathway. The objective of this study was to evaluate the consequences of LDL apheresis on the efficacy of the RCT pathway in FH patients. LDL apheresis markedly reduced abnormal accelerated cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester (CE) transfer from HDL to LDL, thus reducing their CE content. Equally, we observed a major decrease (-53%; P < 0.0001) in pre-β1-HDL levels. The capacity of whole plasma to mediate free cholesterol efflux from human macrophages was reduced (-15%; P < 0.02) following LDL apheresis. Such reduction resulted from a marked decrease in the ABCA1-dependent efflux (-71%; P < 0.0001) in the scavenger receptor class B type I-dependent efflux (-21%; P < 0.0001) and in the ABCG1-dependent pathway (-15%; P < 0.04). However, HDL particles isolated from FH patients before and after LDL apheresis displayed a similar capacity to mediate cellular free cholesterol efflux or to deliver CE to hepatic cells. We demonstrate that rapid removal of circulating lipoprotein particles by LDL apheresis transitorily reduces RCT. However, LDL apheresis is without impact on the intrinsic ability of HDL particles to promote either cellular free cholesterol efflux from macrophages or to deliver CE to hepatic cells.  相似文献   

18.
Modified LDL in human plasma including small, dense LDL (sdLDL) and oxidized LDL carries a more negative charge than unmodified LDL and is atherogenic. We examined the effects of apolipoprotein A-I (apoA-I)/POPC discs on charge-based LDL subfractions as determined by capillary isotachophoresis (cITP). Three normal healthy subjects and seven patients with metabolic disorders were included in the study. LDL in human plasma was separated into two major subfractions, fast- and slow-migrating LDL (fLDL and sLDL), by cITP. Normal LDL was characterized by low fLDL, and mildly oxidized LDL in vitro and mildly modified LDL in human plasma were characterized by increased fLDL. Moderately oxidized LDL in vitro and moderately modified LDL in a patient with hypertriglyceridemia and HDL deficiency were characterized by both increased fLDL and a new LDL subfraction with a faster mobility than fLDL [very-fast-migrating LDL as determined by cITP (vfLDL)]. cITP LDL subfractions with faster electrophoretic mobility (fLDL vs. sLDL, vfLDL vs. fLDL) were associated with an increased content of sdLDL. Incubation of a plasma fraction with d>1.019 g/ml (depleted of triglyceride-rich lipoproteins) in the presence of apoA-I/POPC discs at 37 degrees C greatly decreased vfLDL and fLDL but increased sLDL. Incubation of whole plasma from patients with an altered distribution of cITP LDL subfractions in the presence of apoA-I/POPC discs also greatly decreased fLDL but increased sLDL. ApoA-I/POPC discs decreased the cITP fLDL level, the free cholesterol concentration, and platelet-activating factor acetylhydrolase activity in the sdLDL subclasses (d=1.040-1.063 g/ml) and increased the size of LDL. ApoA-I/POPC discs reduced charge-modified LDL in human plasma by remodeling cITP fLDL into sLDL subfractions.  相似文献   

19.
20.
LPL mediates the uptake of lipoproteins into different cell types independent of its catalytic activity. The mechanism of this process and its physiological relevance are not clear. Taking into account the importance of the endothelial barrier for lipoprotein uptake, in vitro studies with primary aortic endothelial cells from wild-type and low density lipoprotein receptor (LDLR)-deficient (LDLR(-/-)) mice were performed. Addition of LPL almost doubled the uptake of LDL into wild-type cells. However, there was virtually no LPL-mediated change of LDL uptake into LDLR(-/-) cells. Upregulation of LDLR by lipoprotein-deficient serum/lovastatin in wild-type cells resulted in a 7-fold increase of LPL-mediated LDL uptake. Uptake of chylomicron remnants was not affected by LDLR expression. In proteoglycan-deficient cells, LPL did not increase the uptake of lipoproteins. The physiological relevance of this pathway was studied in mice that were both LDLR(-/-) and transgenic for catalytically inactive LPL in muscle. In the presence of LDLR, inactive LPL reduced LDL cholesterol significantly (13-24%). In the absence of LDLR, LDL cholesterol was not affected by transgenic LPL. Metabolic studies showed that in the presence of LDLR, LPL increased the muscular uptake of LDL by 77%. In the absence of LDLR, transgenic LPL did not augment LDL uptake. Chylomicron uptake was not affected by the LDLR genotype. We conclude that LPL-mediated cellular uptake of LDL, but not of chylomicrons, is dependent on the presence of both LDLR and proteoglycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号