首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relationships among cultivated and wild lentils revealed by RAPD analysis   总被引:5,自引:0,他引:5  
RAPD markers were used to distinguish between six different Lens taxa, representing cultivated lentil and its wild relatives. Twenty-four arbitrary sequence 10-mer primers were identified which revealed robust and easily interpretable amplification-product profiles. These generated a total of 88 polymorphic bands in 54 accessions and were used to partition variation within and among Lens taxa. The data showed that, of the taxa examined, ssp. orientalis is most similar to cultivated lentil. L. ervoides was the most divergent wild taxon followed by L. nigricans. The genetic similarity between the latter two species was of the same magnitude as between ssp. orientalis and cultivated lentil. In addition, species-diagnostic amplification products specific to L. odemensis, L. ervoides and L. nigricans were identified. These results correspond well with previous isozyme and RFLP studies. RAPDs, however, appear to provide a greater degree of resolution at a sub-species level. The level of variation detected within cultivated lentils suggests that RAPD markers may be an appropriate technology for the construction of genetic linkage maps between closely related Lens accessions.On sabbatical leave from HP Agricultural University, Palampur 176 062, India  相似文献   

2.
Amplified fragment length polymorphism (AFLP) analysis is a PCR-based technique capable of detecting more than 50 independent loci in a single PCR reaction. The objectives of the present study were to: (1) assess the extent of AFLP variation in cultivated (Gycine max L. Merr.) and wild soybean (G. soja Siebold & Zucc.), (2) determine genetic relationships among soybean accessions using AFLP data, and (3) evaluate the usefulness of AFLPs as genetic markers. Fifteen AFLP primer pairs detected a total of 759 AFLP fragments in a sample of 23 accessions of wild and cultivated soybean, with an average of 51 fragments produced per primer pair per accession. Two-hundred and seventy four fragments (36% of the total observed) were polymorphic, among which 127 (17%) were polymorphic in G. max and 237 (31%) were polymorphic in G. soja. F2 segregation analysis of six AFLP fragments indicated that they segregate as stable Mendelian loci. The number of polymorphic loci detected per AFLP primer pair in a sample of 23 accessions ranged from 9 to 27. The AFLP phenotypic diversity values were greater in wild than in cultivated soybean. Cluster and principal component analyses using AFLP data clearly separated G. max and G. soja accessions. Within the G. max group, adapted soybean cultivars were tightly clustered, illustrating the relatively low genetic diversity present in cultivated soybean. AFLP analysis of four soybean near-isogenic lines (NILs) identified three AFLP markers putatively linked to a virus resistance gene from two sources. The capacity of AFLP analysis to detect thousands of independent genetic loci with minimal cost and time requirements makes them an ideal marker for a wide array of genetic investigations.  相似文献   

3.
A restriction-site analysis of chloroplast DNA (cpDNA) variation in Lens was conducted to: (1) assess the levels of variation in Lens culinaris ssp. culinaris (the domesticated lentil), (2) identify the wild progenitor of the domesticated lentil, and (3) construct a cpDNA phylogeny of the genus. We analyzed 399 restriction sites in 114 cultivated accessions and 11 wild accessions. All but three accessions of the cultivar had identical cpDNAs. Two accessions exhibited a single shared restriction-site loss, and a small insertion was observed in the cpDNA of a third accession. We detected 19 restriction-site mutations and two length mutations among accessions of the wild taxa. Three of the four accessions of L. culinaris ssp. orientalis were identical to the cultivars at every restriction site, clearly identifying ssp. orientalis as the progenitor of the cultivated lentil. Because of its limited cpDNA diversity, we conclude that either the cultivated lentil has passed through a genetic bottleneck during domestication and lost most of its cytoplasmic variability or else was domesticated from an ancestor that was naturally depauperate in cpDNA restriction-site variation. However, because we had access to only a small number of populations of the wild taxa, the levels of variation present in ssp. orientalis can only be estimated, and the extent of such a domestication bottleneck, if applicable, cannot be evaluated. The cpDNA-based phylogeny portrays Lens as quite distinct from its putative closest relative, Vicia montbretii. L. culinaris ssp. odemensis is the sister of L. nigricans; L. culinaris is therefore paraphyletic given the current taxonomic placement of ssp. odemensis. Lens nigricans ssp. nigricans is by far the most divergent taxon of the genus, exhibiting ten autapomorphic restriction-site mutations.  相似文献   

4.
The utility of RFLP (restriction fragment length polymorphism), RAPD (random-amplified polymorphic DNA), AFLP (amplified fragment length polymorphism) and SSR (simple sequence repeat, microsatellite) markers in soybean germplasm analysis was determined by evaluating information content (expected heterozygosity), number of loci simultaneously analyzed per experiment (multiplex ratio) and effectiveness in assessing relationships between accessions. SSR markers have the highest expected heterozygosity (0.60), while AFLP markers have the highest effective multiplex ratio (19). A single parameter, defined as the marker index, which is the product of expected heterozygosity and multiplex ratio, may be used to evaluate overall utility of a marker system. A comparison of genetic similarity matrices revealed that, if the comparison involved both cultivated (Glycine max) and wild soybean (Glycine soja) accessions, estimates based on RFLPs, AFLPs and SSRs are highly correlated, indicating congruence between these assays. However, correlations of RAPD marker data with those obtained using other marker systems were lower. This is because RAPDs produce higher estimates of interspecific similarities. If the comparisons involvedG. max only, then overall correlations between marker systems are significantly lower. WithinG. max, RAPD and AFLP similarity estimates are more closely correlated than those involving other marker systems.Abbreviations RFLP restriction fragment length plymorphism - RAPD random-amplified polymorphic DNA - AFLP amplified fragment length polymorphism - SSR simple sequence repeat - PCR polymerase chain reaction - TBE Tris-borate-EDTA buffer - MI marker index - SENA sum of effective numbers of alleles  相似文献   

5.
Broadening of the genetic base and systematic exploitation of heterosis in cultivated lentils requires reliable information on genetic diversity in the germplasm. The ability of random amplified polymorphic DNA (RAPD) to distinguish among different taxa of Lens was evaluated for several geographically dispersed accessions/cultivars of four diploid Lens species. This study was carried out to assess whether RAPD data can provide additional evidence about the origin of the cultivated lentil and to measure genetic variability in lentil germplasm. Three cultivars of Lens culinaris ssp. culinaris, including one microsperma, and two macrosperma types, and four wild species (L. culinaris ssp. orientalis, L. odemensis and L. nigricans) were evaluated for genetic variability using a set of 1 11-mer and 14 random 10-mer primers. One hundred and fifty-eight reproducible and scorable DNA bands were observed from these primers. Genetic distances between each of the accessions were calculated from simple matching coefficients. Split decomposition analysis of the RAPD data allowed construction of an unrooted tree. This study revealed that (1) the level of intraspecific genetic variation in cultivated lentils is narrower than that in some wild species. (2) L. culinaris ssp. orientalis is the most likely candidate as a progenitor of the cultivated species, (3) L. nigricans accession W6 3222 (unknown) and L. c. ssp. orientalis W6 3244 (Turkey) can be reclassified as species of L. odemensis and (4) transmission of genetic material in Lens interspecific hybrids is genotypically specific, as identified by the RAPD markers in our study.  相似文献   

6.
 A genetic linkage map of Lens sp. was constructed with 177 markers (89 RAPD, 79 AFLP, six RFLP and three morphological markers) using 86 recombinant inbred lines (F6:8) obtained from a partially interspecific cross. The map covered 1073 cM of the lentil genome with an average distance of 6.0 cM between adjacent markers. Previously mapped RFLP markers were used as anchor probes. The morphological markers, pod indehiscence, seed-coat pattern and flower-color loci were mapped. Out of the total linked loci, 8.4% showed segregation distortion. More than one-fourth of the distorted loci were clustered in one linkage group. AFLP markers showed more segregation distortion than the RAPD markers. The AFLP and RAPD markers were intermingled and clustering of AFLPs was seldom observed. This is the most extensive genetic linkage map of lentil to-date. The marker density of this map could be used for the identification of markers linked to quantitative trait loci in this population. Received: 6 November 1997 / Accepted: 10 February 1998  相似文献   

7.
The application of AFLPs, RAPDs and SSRs to examine genetic relationships in the primary northwestern European cultivated potato gene pool was investigated. Sixteen potato cultivars were genotyped using five AFLP primer combinations, 14 RAPD primers, and 17 database-derived SSR primer pairs. All three approaches successfully discriminated between the 16 cultivars using a minimum of one assay. Similarity matrices produced for each marker type on the basis of Nei and Li coefficients showed low correlations when compared with different statistical tests. Dendrograms were produced from these data for each marker system. The usefulness of each system was examined in terms of number of loci revealed (effective multiplex ratio, or EMR) and the amount of polymorphism detected (diversity index, or DI). AFLPs had the highest EMR, and SSRs the highest DI. A single parameter, marker index (MI), which is the product of DI and EMR, was used to evaluate the overall utility of each marker system. The use of these PCR-based marker systems in potato improvement and statutory applications is discussed.Abbreviations: PCR, polymerase chain reaction; AFLP, amplified fragment length polymorphism; RAPD, randomly amplified polymorphic DNA; DNA, deoxyribonucleic acid; EMR, effective multiplex ratio; DI, diversity index; MI, marker index; RFLP, restriction fragment length polymorphism.  相似文献   

8.
Carthamus tinctorius (2n = 2x = 24), commonly known as safflower, is widely cultivated in agricultural production systems of Asia, Europe, Australia, and the Americas as a source of high quality vegetable and industrial oil. Twenty-two RAPD primers, 18 SSR primers, and 10 AFLP primer combinations were used to assess: (1) the genetic diversity of 85 accessions (originating from 24 countries) representing global germplasm variability of safflower and (2) the interrelationships among safflower ‘centers of similarity’ or ‘regional gene pools’ proposed earlier. The RAPD and SSR primers and AFLP primer combinations revealed 57.6, 68.0, and 71.2% polymorphism, respectively, among 111, 72, and 330 genetic loci amplified from the accessions. The sum of effective number of alleles (66.44), resolving power (59.16), and marker index (51.3) explicitly revealed the relative superiority of AFLP as a marker system in uncovering variation in safflower. Overall, AFLP markers could recognize ‘centers of similarity’ or ‘regional gene pools’. Analysis of molecular variance and Shannon’s information index provided corroborating evidences for the present and previous studies that concluded fragmentation of safflower gene pool into many gene pools. Divergent directional selection is likely to have played an important role in shaping the diversity. From the practical applications standpoint, the diversity of Iran–Afghanistan gene pool is very high, equivalent to the total diversity of the species. The Far East gene pool is the least diverse. The present comprehensive input, first of its own kind in safflower, will assist marker based improvement programmes in the crop.  相似文献   

9.
Randomly amplified polymorphic DNA (RAPD) markers were used to estimate intra- and interspecific variations in the genus Lens (lentil). Twenty cultivars of L. culinaris ssp. culinaris, including 11 microsperma (small-seeded) and nine macrosperma (large-seeded) types, and 16 wild relatives (four accessions each of L. culinaris ssp. orientalis, L. odemensis, L. nigricans and L. ervoides), were evaluated for genetic variability using a set of 40 random 10-mer primers. Fifty reproducibly scorable DNA bands were observed from ten of the primers, 90% of which were polymorphic. Genetic distances between each of the accessions were calculated from simple matching coefficients. A dendrogram showing genetic relationships between them was constructed by an unweighted pair-group method with arithmetical averages (UPGMA). This study revealed that (1) expect for L. ervoides, the level of intraspecific variation in cultivated lentil is lower than that in wild species, (2) L. culinaris ssp. orientalis is the most likely candidate for a progenitor of the cultivated species, and (3) microsperma and macrosperma cultivars were indistinguishable by the RAPD markers identified here.  相似文献   

10.
This work represents the first application of the amplified fragment length polymorphism (AFLP) technique and the random amplified polymorphic DNA (RAPD) technique in the study of genetic variation within and among five geographical populations of M. nemurus. Four AFLP primer combinations and nine RAPD primers detected a total of 158 and 42 polymorphic markers, respectively. The results of AFLP and RAPD analysis provide similar conclusions as far as the population clustering analysis is concerned. The Sarawak population, which is located on Borneo Island, clustered by itself and was thus isolated from the rest of the populations located in Peninsular Malaysia. Both marker systems revealed high genetic variability within the Universiti Putra Malaysia (UPM) and Sarawak populations. Three subgroups each from the Kedah, Perak, and Sarawak populations were detected by AFLP but not by RAPD. Unique AFLP fingerprints were also observed in some unusual genotypes sampled in Sarawak. This indicates that AFLP may be a more efficient marker system than RAPD for identifying genotypes within populations.  相似文献   

11.
Even though lentil has been an important food legume for centuries, genetic studies in lentil are still in their infancy. Genetic diversity and relationships among wild Lens species from Turkey has seldom been investigated. Additionally, a limited number of simple sequence repeat (SSR) markers have been developed for use in breeding and genetic studies of lentil crop. In this study, molecular characterization of 50 accessions mostly from Turkey, belonging to 6 wild and 1 cultivated Lens species, was performed using newly developed inter-primer binding site (iPBS) retrotransposons and inter-SSR (ISSR) markers. The 10 iPBS primers generated a total of 151 scorable bands, of which 150 were polymorphic (99.3%) with an average of 15.0 polymorphic fragments per primer. The 10 ISSR primers detected 138 scorable bands showing 100% polymorphism, with an average of 13.5 bands per primer. The average polymorphism information content (PIC) value for ISSR markers (0.97) was higher than that for iPBS markers (0.90). Lens orientalis was found to be the most diverse species, raising the possibility of wide crosses with cultivated species Lens culinaris. Cultivated varieties also showed high level of polymorphism, at 82.92% and 51.92% with ISSR and iPBS markers, respectively. Lens lamottei and Lens tomentosus were found as the least polymorphic species using both marker systems. The grouping of accessions and species within clusters were almost similar when iPBS and ISSR graphs were compared. Our data also suggested the role of iPBS-retrotransposons as ‘a universal marker’ for molecular characterization of wild and cultivated Lens species.  相似文献   

12.
13.
Genomic DNA of twenty four accessions belonging to seven small millet species were analyzed for RAPD, RFLP and AFLP profiles for a comprehensive understanding of the level of genetic diversity within the species and relationships between them. Thirty random primers generated a total of 115 amplification products of which 70 were polymorphic across all species.Twenty-five probe enzyme combinations were used for RFLP analysis that revealed 87 loci of which 62 were polymorphic across the species.AFLP analysis was done at inter-specific level using 12 primer combinations.This generated a total of 869 fragments of which 821 were polymorphic across the species analyzed. Species-specific AFLP profiles were obtained in 10 of the 12 primer combinations tested. It was noticed that the intra-specific variability in all the RAPD and RFLP marker systems was negligible. Species-specific polymorphic loci were observed for all the marker systems.The results are discussed in relation to the genetic relationship among the seven species analyzed.  相似文献   

14.
中国食用向日葵种质资源遗传变异的RAPD及AFLP分析   总被引:7,自引:0,他引:7  
本研究采用RAPD和AFLP方法对23个中国不同地区的食用向日葵(Helianthus annuus L.)骨干品种进行了遗传变异分析,同时对两种标记系统进行了比较。26个RAPD引物产生了总计192条DNA条带,大小分布 于0.26kb-1.98kb之间,其中165条(86.12%)具有多态性,每条引物产生DNA条带的平均数为7.38。8对AFLP引物组合共产生了576条带,分布于100bp-500bp之间,其中的341条具有多态性,多态百分率为76.00%,每对引物组合产生DNA条带的平均数为72。RAPD方法检测的每位点有效等位基因数(1.76)大于AFLP(1.65),AFLP标记位点的平均多态性信息量(PIC)(0.38)低于RAPD标记位点PIC(0.41),但AFLP标记具有很高的多态性检测效率(Ai=38.52)。用RAPD标记分析23个食用向日葵材料的亲缘关系,Nei氏相似性系数分布在47.84%-82.06%,平均相似性系数为0.6495,而采用AFLP的Nei氏相似性系数分布在54.15%-83.52%,平均相似性系数为0.6884。RAPD数据的标准差为0.13,而AFLP数据的标准差为0.08。因此,采用RAPD和AFLP方法分析食用向日葵遗传变异,RAPD标记具有较低相似性系数和较高方差而AFLP则相反。源于两种不同标记的遗传相似矩阵的相关系数为0.51,说明采用RAPD和AFLP系统分析食用向日葵遗传变异得到的结果有一定的相关性,无论采用RAPD还是AFLP标记进行聚类分析,都将23个不同基因型的食用向日葵材料分成了三个类群。  相似文献   

15.
Velvetbean (Mucuna sp.) is a self-pollinated crop classified within the Leguminosae. Using AFLP markers, gene diversity and phenetic relationships were estimated in a collection of 40 velvetbean accessions from cultivated species and different eco-geographic regions. Eleven selective primer combinations generated a total of 508 amplification products. The average number of scorable fragments was 23 per primer combination. A total of 251 polymorphic markers was detected. The polymorphisms obtained ranged from 36% to 61% with an average of 49%. The final phenetic trees were constructed using Nei and Li’s coefficient of similarity with UPGMA. Other clustering algorithms were examined and all had high co-phenetic correlations, indicating the goodness of fit for the resulting phylogenetic trees. The phenetic tree as well as principal component analysis (PCA) separated the 40 velvetbean accessions into two main clusters. Bootstrap and Jackknife analyses were completed and their values indicated strong to moderate support for the two main clusters. This grouping confirmed the existing phenological difference with regard to maturity. The high values of the similarity coefficients observed (0.87 to 0.97) imply that the accessions used in this study are similar. The level of genetic variability detected within the velvetbean accessions with AFLP analysis suggests that it is a reliable, efficient, and effective marker technology for determining genetic relationships in velvetbean. Received: 19 June 2000 / Accepted: 1 March 2001  相似文献   

16.
Accuracy and reproducibility of genetic distances (GDs) based on molecular markers are crucial issues for identification of essentially derived varieties (EDVs). Our objectives were to investigate (1) the amount of variation for amplified fragment length polymorphism (AFLP) markers found among different accessions within maize inbreds and doubled haploid (DH) lines, (2) the proportion attributable to genetic and technical components and marker system specific sources, (3) its effect on GDs between maize lines and implications for identification of EDVs, and (4) the comparison to published SSR data from the same plant materials. Two to five accessions from nine inbred lines and five DH lines were taken from different sources of maintenance breeding or drawn as independent samples from the same seed lot. Each of the 41 accessions was genotyped with 20 AFLP primer combinations revealing 988 AFLP markers. Map positions were available for 605 AFLPs covering all maize chromosomes. On average, six (0.6%) AFLP bands were polymorphic between different accessions of the same line. GDs between two accessions of the same line averaged 0.013 for inbreds and 0.006 for DH lines. The correlation of GDs based on AFLPs and SSRs was tight (r = 0.97**) across all 946 pairs of accessions but decreased (r = 0.55**) for 43 pairs of accessions originating from the same line. On the basis of our results, we recommend specific EDV thresholds for marker systems with different degree of polymorphism. In addition, precautions should be taken to warrant a high level of homogeneity for DNA markers within maize lines before applying for plant variety protection.  相似文献   

17.
The AFLP technique was used to assess the genetic relationships among the cultivated papaya ( Carica papaya L.) and related species native to Ecuador. Genetic distances based on AFLP data were estimated for 95 accessions belonging to three genera including C. papaya, at least eight Vasconcella species and two Jacaratia species. Cluster analysis using different methods and principal co-ordinate analysis (PCO), based on the AFLP data from 496 polymorphic bands generated with five primer combinations, was performed. The resulted grouping of accessions of each species corresponds largely with their taxonomic classifications and were found to be consistent with other studies based on RAPD, isozyme and cpDNA data. The AFLP analysis supports the recent rehabilitation of the Vasconcella group as a genus; until recently Vasconcella was considered as a section within the genus Carica. Both cluster and PCO analysis clearly separated the species of the three genera and illustrated the large genetic distance between C. papaya accessions and the Vasconcella group. The specific clustering of the highly diverse group of Vasconcella x heilbornii accessions also suggests that these genotypes may be the result of bi-directional introgression events between Vasconcella stipulata and Vasconcella cundinamarcensis.  相似文献   

18.
The genus Origanum is often referred to as an under-utilized taxon because of its complex taxonomy. Origanum vulgare L., the most variable species of the genus, is a spice and medicinal herb that is characterized by high morphological diversity (six subspecies). In this study, the relative efficiencies of two PCR-based marker approaches, amplified fragment length polymorphism (AFLP) and selectively amplified microsatellite polymorphic loci (SAMPL), were used for comparable genetic diversity surveys and subspecies discrimination among 42 oregano accessions. Seven assays each of AFLP and SAMPL markers were utilized. Effective multiplex ratio (EMR), average heterozygosity (Hav-p), marker index (MI), and resolving power (RP) of the primer combinations were calculated for the two marker systems. UPGMA and Structure analysis along with PCoA plots derived from the binary data matrices of the two markers depicted the genetic distinction of accessions. Our results indicate that both marker systems are suitable but SAMPL markers are slightly more efficient in differentiating accessions and subspecies than AFLPs.  相似文献   

19.
Nineteen cashew accessions were analysed with 50 random primers, 12 ISSR primers and 6 AFLP primer pairs to compare the efficiency and utility of these techniques for detecting variation in cashew germplasm. Each marker system could discriminate between all of the accessions, albeit with varied efficiency of polymorphism detection. AFLP exhibited maximum discrimination efficiency with a genotype index of 1. The utility of each molecular marker technique, expressed as marker index, was estimated as a function of average band informativeness and effective multiplex ratio. Marker index was calculated to be more than 10 times higher in AFLP than in RAPD and ISSR. Similarity matrices were determined based on the data generated by molecular and morphometric analyses, and compared for congruency. AFLP displayed no correspondence with RAPD and ISSR. Correlation between ISSR and RAPD similarity matrices was low but significant (r = 0.63; p < 0.005). The similarity matrix based on morphometric markers exhibited no correlation with any of the molecular markers. AFLP, with its superior marker utility, was concluded to be the marker of choice for cashew genetic analysis.  相似文献   

20.
The genetic diversity of nuclear genomes of five Daucus species and seven Daucus carota L. subspecies involving 26 accessions was characterized with random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP). AFLP produced more than four times as many discrete bands per reaction compared with RAPD analysis, while both AFLP and RAPD basically led to similar conclusions. The dendrograms constructed with both RAPD and AFLP revealed that all accessions of D. carota were grouped into a major cluster delimited from other Daucus species, in good agreement with the classification by morphological char-acteristics. All accessions of cultivated carrots [(D. carota ssp. sativus (Hoffm.) Arcang.] were clustered in the same group while the variation within D. carota was relatively extensive. Genetic diversity of mitochondrial genomes was also documented with RAPD for the same accessions. The mitochondrial dendrogram differed from that of the nuclear genome, suggesting that nuclear and mitochondrial genomes of some accessions had separate evolutionary histories. Received: 20 September 1997 / Revision received: 19 January 1998 / Accepted: 28 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号