首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The utility of RFLP (restriction fragment length polymorphism), RAPD (random-amplified polymorphic DNA), AFLP (amplified fragment length polymorphism) and SSR (simple sequence repeat, microsatellite) markers in soybean germplasm analysis was determined by evaluating information content (expected heterozygosity), number of loci simultaneously analyzed per experiment (multiplex ratio) and effectiveness in assessing relationships between accessions. SSR markers have the highest expected heterozygosity (0.60), while AFLP markers have the highest effective multiplex ratio (19). A single parameter, defined as the marker index, which is the product of expected heterozygosity and multiplex ratio, may be used to evaluate overall utility of a marker system. A comparison of genetic similarity matrices revealed that, if the comparison involved both cultivated (Glycine max) and wild soybean (Glycine soja) accessions, estimates based on RFLPs, AFLPs and SSRs are highly correlated, indicating congruence between these assays. However, correlations of RAPD marker data with those obtained using other marker systems were lower. This is because RAPDs produce higher estimates of interspecific similarities. If the comparisons involvedG. max only, then overall correlations between marker systems are significantly lower. WithinG. max, RAPD and AFLP similarity estimates are more closely correlated than those involving other marker systems.Abbreviations RFLP restriction fragment length plymorphism - RAPD random-amplified polymorphic DNA - AFLP amplified fragment length polymorphism - SSR simple sequence repeat - PCR polymerase chain reaction - TBE Tris-borate-EDTA buffer - MI marker index - SENA sum of effective numbers of alleles  相似文献   

2.
The genus Origanum is often referred to as an under-utilized taxon because of its complex taxonomy. Origanum vulgare L., the most variable species of the genus, is a spice and medicinal herb that is characterized by high morphological diversity (six subspecies). In this study, the relative efficiencies of two PCR-based marker approaches, amplified fragment length polymorphism (AFLP) and selectively amplified microsatellite polymorphic loci (SAMPL), were used for comparable genetic diversity surveys and subspecies discrimination among 42 oregano accessions. Seven assays each of AFLP and SAMPL markers were utilized. Effective multiplex ratio (EMR), average heterozygosity (Hav-p), marker index (MI), and resolving power (RP) of the primer combinations were calculated for the two marker systems. UPGMA and Structure analysis along with PCoA plots derived from the binary data matrices of the two markers depicted the genetic distinction of accessions. Our results indicate that both marker systems are suitable but SAMPL markers are slightly more efficient in differentiating accessions and subspecies than AFLPs.  相似文献   

3.
In order to get an overview on the genetic relatedness of sorghum (Sorghum bicolor) landraces and cultivars grown in low-input conditions of small-scale farming systems, 46 sorghum accessions derived from Southern Africa were evaluated on the basis of amplified fragment length polymorphism (AFLPs), random amplified polymorphic DNAs (RAPDs) and simple sequence repeats (SSRs). By this approach all sorghum accessions were uniquely fingerprinted by all marker systems. Mean genetic similarity was estimated at 0.88 based on RAPDs, 0.85 using AFLPs and 0.31 based on SSRs. In addition to this, genetic distance based on SSR data was estimated at 57 according to a stepwise mutation model (Deltamu-SSR). All UPGMA-clusters showed a good fit to the similarity estimates (AFLPs: r = 0.92; RAPDs: r = 0.88; SSRs: r = 0.87; Deltamu-SSRs: r = 0.85). By UPGMA-clustering two main clusters were built on all marker systems comprising landraces on the one hand and newly developed varieties on the other hand. Further sub-groupings were not unequivocal. Genetic diversity (H, DI) was estimated on a similar level within landraces and breeding varieties. Comparing the three approaches to each other, RAPD and AFLP similarity indices were highly correlated (r = 0.81), while the Spearman's rank correlation coefficient between SSRs and AFLPs was r = 0.57 and r = 0.51 between RAPDs and SSRs. Applying a stepwise mutation model on the SSR data resulted in an intermediate correlation coefficient between Deltamu-SSRs and AFLPs (r = 0.66) and RAPDs ( r = 0.67), respectively, while SSRs and Deltamu-SSRs showed a lower correlation coefficient (r = 0.52). The highest bootstrap probabilities were found using AFLPs (56% on average) while SSR, Deltamu-SSR and RAPD-based similarity estimates had low mean bootstrap probabilities (24%, 27%, 30%, respectively). The coefficient of variation (CV) of the estimated genetic similarity decreased with an increasing number of bands and was lowest using AFLPs.  相似文献   

4.
A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats - SSRs and amplified fragment length polymorphisms - AFLPs) for assessing the genetic diversity of carioca beans. The amount of information provided by Roger's modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively) than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm.  相似文献   

5.
In recent years, Pongamia has been considered as important renewable source of biodiesel, however not much molecular information is available in this species. Molecular characterization of this legume tree will enhance our understanding in improving the optimal yields of oil through breeding and enable us to meet the future demands for biodiesel. To assess the molecular genetic diversity in 46 Pongamia pinnata accessions collected from six different states of India, amplified fragment length polymorphism (AFLP) marker system was employed. Five AFLP primer combinations produced 520 discernible fragments, of which 502 (96.5%) were polymorphic. AFLP primer informativeness was estimated evaluating four parameters namely polymorphism information content (PIC), effective multiplex ratio (EMR), marker index (MI) and resolving power (RP). In total, 51 unique fragments were detected of which 19 unique fragments were observed with primer combination E-ACG / M-CTA. Although neighbour joining (NJ) method did not group accessions strictly according to their region of collection, a good level of genetic diversity was observed in examined germplasm. However, accessions collected from Karnataka showed comparatively higher diversity than accessions from other states. The diverse accessions identified in this study may be useful in Pongamia pinnata improvement to meet the future demands of biodiesel.  相似文献   

6.
利用 RFLP、SSR.AFLP和RAPD 4种分子标记方法研究了 15个玉米(Zea mays L.)自交系的遗传多样性,同时对4种标记系统进行比较。在供试材料中筛选到具多态性的RFLP探针酶组合56个,66对SSR引物,20个RAPD引物和9个AFLP引物组合,分别检测到多态性带167、201、87和108条。SSR标记位点的平均多态性信息量(PIC)最大(0.54),AFLP标记位点最小(0.36),但AFLP标记具有最高的多态性检测效率(Ai,32.2)。4种分子标记所得遗传相似系数相关性显著,比较相关系数表明 RAPD可靠性较低。依据 4种分子标记结果将 15个供试自交系划分为塘四平头、旅大红骨、兰卡斯特、瑞德和PN共5个类群,与系谱分析基本一致。认为SSR和RFLP两种分子标记方法适合进行玉米种质遗传多样性的研究。  相似文献   

7.
To examine the performance and information content of different marker systems, comparative assessment of population genetic diversity was undertaken in nine populations of Athyrium distentifolium using nine genomic and 10 expressed sequence tag (EST) microsatellite (SSR) loci, and 265 amplified fragment length polymorphism (AFLP) loci from two primer combinations. In range-wide comparisons (European vs. North American populations), the EST-SSR loci showed more reliable amplification and produced more easily scorable bands than genomic simple sequence repeats (SSRs). Genomic SSRs showed significantly higher levels of allelic diversity than EST-SSRs, but there was a significant correlation in the rank order of population diversities revealed by both marker types. When AFLPs, genomic SSRs, and EST-SSRs are considered, comparisons of different population diversity metrics/markers revealed a mixture of significant and nonsignificant rank-order correlations. However, no hard incongruence was detected (in no pairwise comparison of populations did different marker systems or metrics detect opposingly significant different amounts of variation). Comparable population pairwise estimates of F(ST) were obtained for all marker types, but whilst absolute values for genomic and EST-SSRs were very similar (F(ST) = 0.355 and 0.342, respectively), differentiation was consistently higher for AFLPs in pairwise and global comparisons (global AFLP F(ST) = 0.496). The two AFLP primer combinations outperformed 18 SSR loci in assignment tests and discriminatory power in phenetic cluster analyses. The results from marker comparisons on A. distentifolium are discussed in the context of the few other studies on natural plant populations comparing microsatellite and AFLP variability.  相似文献   

8.
中国食用向日葵种质资源遗传变异的RAPD及AFLP分析   总被引:7,自引:0,他引:7  
本研究采用RAPD和AFLP方法对23个中国不同地区的食用向日葵(Helianthus annuus L.)骨干品种进行了遗传变异分析,同时对两种标记系统进行了比较。26个RAPD引物产生了总计192条DNA条带,大小分布 于0.26kb-1.98kb之间,其中165条(86.12%)具有多态性,每条引物产生DNA条带的平均数为7.38。8对AFLP引物组合共产生了576条带,分布于100bp-500bp之间,其中的341条具有多态性,多态百分率为76.00%,每对引物组合产生DNA条带的平均数为72。RAPD方法检测的每位点有效等位基因数(1.76)大于AFLP(1.65),AFLP标记位点的平均多态性信息量(PIC)(0.38)低于RAPD标记位点PIC(0.41),但AFLP标记具有很高的多态性检测效率(Ai=38.52)。用RAPD标记分析23个食用向日葵材料的亲缘关系,Nei氏相似性系数分布在47.84%-82.06%,平均相似性系数为0.6495,而采用AFLP的Nei氏相似性系数分布在54.15%-83.52%,平均相似性系数为0.6884。RAPD数据的标准差为0.13,而AFLP数据的标准差为0.08。因此,采用RAPD和AFLP方法分析食用向日葵遗传变异,RAPD标记具有较低相似性系数和较高方差而AFLP则相反。源于两种不同标记的遗传相似矩阵的相关系数为0.51,说明采用RAPD和AFLP系统分析食用向日葵遗传变异得到的结果有一定的相关性,无论采用RAPD还是AFLP标记进行聚类分析,都将23个不同基因型的食用向日葵材料分成了三个类群。  相似文献   

9.
A total of 495 fish from 11 Hardangervidda lakes were genotyped in order to compare amplified fragment length polymorphisms (AFLP) and microsatellites in terms of their capacity to infer population genetic structure. The 11 microsatellites used in this study gave a greater polymorphism information content and greater gene diversity, with an average of 14.8 alleles per locus, than the six AFLP primer combinations used. However, the AFLPs resulted in 178 polymorphic loci and a 3.1 times larger marker index (effective multiplex ratio multiplied with the gene diversity). Comparable population structuring, for example in terms of distinguishing fish from the different river systems, was obtained with both marker systems. An AFLP and microsatellite multilocus Bayesian assignment test with the structure program divided the fish into six groups largely concurrent with main branches on a population neighbour-joining tree. Yet, the admixture status of individuals is mostly contradictory in the AFLP and the microsatellite analyses. The results are discussed concerning migration between lake populations.  相似文献   

10.
Genetic relationships were evaluated among nine cultivars ofBrassica campestris by employing random amplification of polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers. RAPDs generated a total of 125 bands using 13 decamer primers (an average of 9.6 bands per assay) of which nearly 80% were polymorphic. The per cent polymorphism ranged from 60–100%. AFLP, on the other hand generated a total of 319 markers, an average of 64 bands per assay. Of these, 213 were polymorphic in nature (66.8%). AFLP methodology detected polymorphism more efficiently than RAPD approach due to a greater number of loci assayed per reaction. Cultivar-specific bands were identified, for some cultivars using RAPD, and for most cultivars with AFLP. Genetic similarity matrix, based on Jaccard’s index detected coefficients ranging from 0.42 to 0.73 for RAPD, and from 0.48 to 0.925 for AFLPs indicating a wide genetic base. Cluster analyses using data generated by both RAPD and AFLP markers, clearly separated the yellow seeded, self-compatible cultivars from the brown seeded, self-incompatible cultivars although AFLP markers were able to group the cultivars more accurately. The higher genetic variation detected by AFLP in comparison to RAPD was also reflected in the topography of the phenetic dendrograms obtained. These results have been discussed in light of other studies and the relative efficiency of the marker systems for germplasm evaluation.  相似文献   

11.
In our present study assessment of genetic diversity and identification of pigeonpea cultivars has been done by employing 76 random amplified polymorphic DNA (RAPD) primers. Out of 796 amplified products, 587 showed polymorphism (73.7 %) and an average of 10.47 bands were amplified per primer. Cluster analysis based on Jaccard’s similarity coefficient using UPGMA grouped all the cultivars into three clusters. The cluster I consists of 7 cultivars, cluster II of 11 cultivars in 4 sub-clusters and cluster III 4 cultivars. Two cultivars were not included in any cluster. The clustering was strongly supported by high bootstrap values. Furthermore, high values of the average heterozygosity (Hav) and marker index (MI) also indicated the efficiency of RAPD as a marker system.  相似文献   

12.
Cultivated tomato (Solanum lycopersicum L.) germplasm shows limited genetic variation. Many DNA marker systems have been used for genetic diversity studies in wild and cultivated tomatoes, but their usefulness for characterizing phenotypic differences among very closely related cultivars remains uncertain. We have used 19 selected simple sequence repeat (SSR) markers and 7 amplified fragment length polymorphism (AFLP) primer combinations to characterize 48 cultivars of tomato, mainly traditional cultivars from the south-east of Spain. The main types were Solanum lycopersicum L. 'Muchamiel', 'De la pera', and 'Moruno'. The robustness of the dendrograms and the discrimination power reached with each marker type were similar. Unique fingerprinting even of the most closely related tomato cultivars could be obtained using a combination of some SSR and AFLP markers. A better grouping of the 'Muchamiel' cultivars was observed with SSR markers, whereas the grouping of cultivars of 'De la pera' type was best achieved with AFLPs. However, both types of markers adequately grouped cultivars of the main types, confirming the utility of SSR and AFLP markers for the identification of traditional cultivars of tomato.  相似文献   

13.
Several DNA‐based marker systems are available for genetic fingerprinting of plants but information on their relative usefulness for yam germplasm characterisation is lacking. The efficiency of RAPD, AFLP and SSR markers for the assessment of genetic relationships, and for cultivar identification and discrimination among 45 West and Central African white yam cultivars belonging to 22 morphotypes/cultivar groups was investigated. Dendrograms were produced based on band pattern scores using the UPGMA method. Results showed that each of the three techniques could unequivocably identify each cultivar, but that techniques differed in the mean number of profiles generated per primer (or primer pair) per cultivar, referred to as genotype index (GI). The order of merit based on this criterion in this study was AFLPs (GI = 2.56), SSRs (GI = 0.39) and RAPDs (GI = 0.35). Yam genotypes classified in the same cultivar group based on morphology were often genetically different, emphasising the need for molecular fingerprinting in yam germplasm characterisation. AFLPs showed the highest efficiency in detecting polymorphism and revealed genetic relationships that most closely reflected morphological classification.  相似文献   

14.
本文介绍了目前在蕈菌研究中的酯酶同工酶标记,RAPD标记,RFLP标记,AFLP标记,简单重复序列标记和电泳核型等分子标记和生化标记在蕈菌遗传育种、菌株鉴定、遗传多样性研究、亲缘关系和基因定位等方面的研究、应用现状,包括原理、应用领域及最新研究进展。  相似文献   

15.
The main objective of this study was to investigate the efficiency of RAPD, AFLP, and SAMPL marker systems in detecting genetic polymorphism in cowpea landraces (Vigna unguiculata subsp. unguiculata (L.) Walp.) that probably share a similar genetic pool. A second objective was to determine the level of diversity among landraces from a restricted area, to define the most appropriate strategy of on-farm conservation. Each marker system was able to discriminate among the materials analysed, but a clear distinction between all the local varieties was only obtained with AFLP and SAMPL markers. The average diversity index was quite similar for each marker system, but owing to the differences in the effective multiplex ratio values the marker index was higher for the AFLP and SAMPL systems than for the RAPD system. The AFLP and SAMPL techniques appear to be more useful than the RAPD technique in the analysis of limited genetic diversity among the cowpea landraces tested. The significant correlations of SAMPL similarity and cophenetic matrices with those of the other markers, and the lower number of primer combinations required, indicate that this technique is the most valuable. The low genetic similarity detected among landraces suggests that all the cowpea landraces should be maintained on the respective farms from which they came.  相似文献   

16.
Application of association mapping to plant breeding populations has the potential to revolutionize plant genetics. The main objectives of this study were to (i) investigate the extent and genomic distribution of linkage disequilibrium (LD) between pairs of amplified fragment length polymorphism (AFLP) markers, (ii) compare these results with those obtained with simple sequence repeat (SSR) markers, and (iii) compare the usefulness of AFLP and SSR markers for genomewide association mapping in plant breeding populations. We examined LD in a cross-section of 72 European elite inbred lines genotyped with 452 AFLP and 93 SSR markers. LD was significant (p < 0.05) for about 15% of the AFLP marker pairs and for about 49% of the SSR marker pairs in each of the two germplasm groups, flint and dent. In both germplasm groups the ratio of linked to unlinked loci pairs in LD was higher for AFLPs than for SSRs. The observation of LD due to linkage for both marker types suggested that genome-wide association mapping should be possible using either AFLPs or SSRs. The results of our study indicated that SSRs should be favored over AFLPs but the opposite applies to populations with a long history of recombination.  相似文献   

17.
AFLP and RAPDmarkers were employed in sixteen diploid cotton (Gossypium sp) cultivars for genetic diversity estimation and cultivar identification. Polymorphism information content (PIC) and percent polymorphism were found to be more for AFLP markers as compared to RAPD markers. Average Jaccard’s genetic similarity index was found to be almost similar using either AFLP or RAPD markers. All the cultivars could be distinguished from one another using AFLP markers and also by the combined RAPD profiles. Cultivar identification indicators like resolving power, marker index and probability of chance identity of two cultivars suggested the usefulness of AFLP markers over the RAPD markers. AFLP and RAPD analyses revealed limited genetic diversity in the studied cultivars. Cluster analysis of both RAPD and AFLP data produced two clusters, one containing cultivars of G. herbaceum and another containing cultivars of G. arboreum species. Highly positive correlation between cophenetic matrices using RAPD and AFLP markers was observed. AFLP markers were found to be more efficient for genetic diversity estimation, polymorphism detection and cultivar identification.  相似文献   

18.
The genetic variation and population structure of three populations of Anopheles darlingi from Colombia were studied using random amplified polymorphic markers (RAPDs) and amplified fragment length polymorphism markers (AFLPs). Six RAPD primers produced 46 polymorphic fragments, while two AFLP primer combinations produced 197 polymorphic fragments from 71 DNA samples. Both of the evaluated genetic markers showed the presence of gene flow, suggesting that Colombian An. darlingi populations are in panmixia. Average genetic diversity, estimated from observed heterozygosity, was 0.374 (RAPD) and 0.309 (AFLP). RAPD and AFLP markers showed little evidence of geographic separation between eastern and western populations; however, the F ST values showed high gene flow between the two western populations (RAPD: F ST = 0.029; Nm: 8.5; AFLP: F ST = 0.051; Nm: 4.7). According to molecular variance analysis (AMOVA), the genetic distance between populations was significant (RAPD:phiST = 0.084; AFLP:phiST = 0.229, P < 0.001). The F ST distances and AMOVAs using AFLP loci support the differentiation of the Guyana biogeographic province population from those of the Chocó-Magdalena. In this last region, Chocó and Córdoba populations showed the highest genetic flow.  相似文献   

19.
AFLP and RAPD marker techniques have been used to evaluate and study the diversity and phylogeny of 54 lentil accessions representing six populations of cultivated lentil and its wild relatives. Four AFLP primer combinations revealed 23, 25, 52 and 48 AFLPs respectively, which were used to partition variation within and among Lens taxa. The results of AFLP analysis is compared to previous RAPD analysis of the same material. The two methods provide similar conclusions as far as the phylogeny of Lens is concerned. The AFLP technique detected a much higher level of polymorphyism than the RAPD analysis. The use of 148 AFLPs arising from four primer combinations was able to discriminate between genotypes which could not be distinguished using 88 RAPDs. The level of variation detected within the cultivated lentil with AFLP analysis indicates that it may be a more efficient marker technology than RAPD analysis for the construction of genetic linkage maps between carefully chosen cultivated lentil accessions.  相似文献   

20.
This work represents the first application of the amplified fragment length polymorphism (AFLP) technique and the random amplified polymorphic DNA (RAPD) technique in the study of genetic variation within and among five geographical populations of M. nemurus. Four AFLP primer combinations and nine RAPD primers detected a total of 158 and 42 polymorphic markers, respectively. The results of AFLP and RAPD analysis provide similar conclusions as far as the population clustering analysis is concerned. The Sarawak population, which is located on Borneo Island, clustered by itself and was thus isolated from the rest of the populations located in Peninsular Malaysia. Both marker systems revealed high genetic variability within the Universiti Putra Malaysia (UPM) and Sarawak populations. Three subgroups each from the Kedah, Perak, and Sarawak populations were detected by AFLP but not by RAPD. Unique AFLP fingerprints were also observed in some unusual genotypes sampled in Sarawak. This indicates that AFLP may be a more efficient marker system than RAPD for identifying genotypes within populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号