首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Bats of the speciesNoctilio albiventris, trained to discriminate differences in target distance, emitted pairs of pulses at a rate of 7–10/s, the first a constant frequency (CF) pulse of about 8 ms duration and 75 kHz frequency, followed after about 28 ms by a CF/FM pulse having a 6 ms, 75 kHz CF component that terminates in a 2 ms FM sweep to about 57 kHz.Loud free-running artificial pulses, simulating the bat's natural CF/FM echolocation sound, interfered with distance discrimination at repetition rates exceeding 5/s. Systematic modifications in the temporal and frequency structure of the artificial pulses resulted in orderly changes in the degree of interference. Artificial pulses simulating the natural CF or FM components alone had no effect, nor did 10/s white noise pulses, although constant white noise of the same intensity masked the behavior.Interference occurred when the CF of the artificial pulses was between 52 and 77 kHz, ending with a downward FM sweep of 25 kHz from the CF. For interference to occur there was a much more critical requirement that the FM sweep begin at approximately the frequency of the CF component. The FM sweep needed to be 11 kHz or greater bandwidth. Interference occurred when the duration of the CF component of the CF/FM artificial pulse was between 2 and 30 ms, with maximal effect between 10 and 20 ms. However, a brief (2.0 ms) CF signal 2–27 ms before an isolated FM signal was as effective as a continuous CF component of the same duration.When coupled with the bat's own emissions, artificial CF/FM pulses interfered if they occurred after the bat's CF/FM pulse and before the next natural emission. A 2 ms FM sweep alone was effective in interfering with distance discrimination when it came 8–27 ms after the onset of the bat's own CF/FM pulse. Neither CF/FM nor FM artificial pulses interfered when they began during the bat's own emission. A 10 ms CF pulse alone had no effect at any time.These findings indicate thatN. albiventris uses both the CF and FM components of its short-CF/FM echolocation sound for distance discrimination. The CF onset activates a gating mechanism that, during a narrowly defined subsequent time window, enables the nervous system to process FM pulse-echo pairs for distance information, within a fairly broad frequency range, as long as the frequencies of the CF and the beginning of the FM sweep are nearly identical.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

2.
皮氏菊头蝠回声定位声波与年龄的关系   总被引:2,自引:0,他引:2  
皮氏菊头蝠 (Rhinolophuspearsoni)雌性成体 5只和幼体 2只采自贵州省贞丰县珉谷镇。采用超声波探测仪 (D980 ,ULTRASOUNDDETECTOR)接收皮氏菊头蝠的回声定位声波 ,转换到原频率的 1 / 1 0后导入计算机 ,然后用专业声谱分析软件 (Batsound 3 1 0 )进行分析。成蝠在飞行和悬挂状态下的声波结构相似 ,只是声波各项参数值略有不同 :它们发射FM CF FM型声波 ,具有 2~ 3个谐波 ,主频率在飞行时为 5 6 80± 0 6 2kHz ,悬挂时为 5 8 0 5± 0 2 4kHz ;声脉冲时间和间隔在飞行时分别为 3 4 6 2± 5 2 9ms和 86 5 0± 1 9 72ms ,悬挂时分别为 4 1 0 8± 5 87ms和 1 1 7 2 9± 6 6 4 4ms ;能率环飞行时为 ( 4 4 0 6± 1 2 5 8) % ,悬挂时为 ( 4 6 0 0±2 4 2 5 ) %。幼蝠声波为CF FM型 ,谐波数为 5~ 8个 ,主频率明显低于成体 ,FM带宽窄于成体 ,声脉冲时间和间隔短于成体 ,能率环低于成体。皮氏菊头蝠回声定位声波与年龄有关 ,这可能因成体的声波主要是探测食物和周围环境的详细信息 ,而幼体主要是与母蝠进行交流。  相似文献   

3.
2012年6月,对湖南省石门县壶瓶山国家级自然保护区神景洞短嘴金丝燕的回声定位叫声进行研究,在黑暗山洞内使用录音仪器录制其自由飞行状态的声音后使用声音软件进行分析.短嘴金丝燕捕食归巢时,快速飞入洞口,在洞内有光区域不发声,到达洞内黑暗区域后开始发出回声定位叫声,且飞行速度减慢.声音分析结果表明其回声定位叫声为双脉冲组的噪声脉冲串型(noise burst),组内脉冲间隔很短[(6.6±0.42)ms],组间脉冲间隔较长[(99.3±3.86) ms],两者差异显著(P<0.01).对比第一、第二脉冲声音参数发现,主频和脉冲时程差异不显著,第一、第二脉冲主频分别为(6.2±0.08) kHz和(6.2±0.10) kHz (P>0.05);脉冲时程分别为(2.9±0.12) ms和(3.2±0.17) ms (P>0.05);最高和最低频率差异显著,第一、第二脉冲最高频率分别为(20.1±1.10) kHz和(15.4±0.98) kHz (P<0.01),最低频率分别为(3.7±0.12) kHz和(4.0±0.09)kHz (P<0.05);第一脉冲频宽((16.5±1.17) kHz)宽于第二脉冲((11.4±1.01) kHz) (P<0.01);且第一脉冲能量[(-32.5±0.60) dB]高于第二脉冲[(-35.2±0.94) dB] (P<0.05).另外,短嘴金丝燕在黑暗山洞内的回声定位叫声还包含了部分超声波,最高频率可达33.2 kHz.  相似文献   

4.
We recorded and characterized the echolocation calls emitted by the common vampire bat Desmodus rotundus during foraging in natural habitats in Chile. Signal design typically shows multiple harmonics consisting of a brief quasi-constant frequency (QCF) component at the beginning of the pulse followed by a downward frequency modulated component. Calls are characterized by long durations (5.5 ms) and emitted as single pulses or in groups of 2–3 pulses at a repetition rate of 29 Hz. The higher frequency ranges (85–35 kHz) and the unusual QCF component that characterized multiharmonic signals of free-flying D. rotundus in Chile is a remarkable feature for acoustic identification with other Chilean bats.  相似文献   

5.
Summary The rufous horseshoe bat, Rhinolophus rouxi, was trained to discriminate differences in target distance. Loud free running artificial pulses, simulating the bat's natural long-CF/FM echolocation sounds, interfered with the ability of the bat to discriminate target distance. Interference occurred when the duration of the CF component of the CF/FM artificial pulse was between 2 and 70 ms. A brief (2.0 ms) CF signal 2–68 ms before an isolated FM signal was as effective as a continuous CF component of the same duration. When coupled with the bat's own emissions, a 2 ms FM sweep alone was effective in interfering when it came 42 to 69 ms after the onset of the bat's pulse. The coupled FM artificial pulses did not interfere when they began during the bat's own emissions.It appears that the onset of the CF component activates a gating mechanism that establishes a time window during which FM component signals must occur for proper neural processing. A comparison with a similar gating mechanism in Noctillo albiventris, which emits short-CF/FM echolocation sounds, reveals that the temporal parameters of the time window of the gating mechanism are species specific and specified by the temporal structure of the echolocation sound pattern of each species.Abbreviations FM frequency modulated - CF constant frequency  相似文献   

6.
While the evasive responses of many flying acoustic insects to aerial‐hawking bats are duly recognized and studied, the responses of non‐aerial insects to gleaning bats are generally overlooked. It has been assumed that acoustic insects are deaf to these predators because gleaning bat echolocation calls are typically low in amplitude, brief (1–3 ms) and very high in frequency (>60 kHz). We tested this assumption in a series of playback experiments with a moth (Achroia grisella) that uses hearing in both predator evasion and mating. We report that ultrasound pulses ≥78 dB peSPL (peak equivalent sound pressure level) and ≥1 ms in duration inhibit stationary males from broadcasting their own ultrasonic advertisement calls, provided that the pulsed stimuli are delivered at a repetition rate ≤30/s. Further analyses suggest that inhibition by pulsed ultrasound comprises two processes performed serially. First, a startle response with a latency <50 ms is elicited by a single pulse ≥1 ms duration. Here, a male misses broadcasting several calls over a 50–100 ms interval. Secondly, the startle may be extended as a silence response lasting several to many seconds if subsequent pulses occur at a rate ≤30/s. Call inhibition cannot represent a simple response to acoustic power because of the inverse interaction between pulse duration and rate. On the other hand, the temporal and energy characteristics of inhibitory stimuli match those of gleaning bat echolocation calls, and we infer that inhibition is a specialized defensive behavior by which calling males may avoid detection by eavesdropping bats.  相似文献   

7.
无尾蹄蝠的回声定位声波特征及分析   总被引:1,自引:0,他引:1  
采用超声波监听仪U30录制无尾蹄蝠自由飞行状态的回声定位声波,经Batsound3.0分析,其声波为高频(145.4±10.9kHz)、宽带(62.6±9.2kHz)、具两个谐波的短(1.67±0.4ms)FM型,不同于蹄蝠科其他蝙蝠的CF型,表明该科内物种声波类型存在多态性。头骨的形态测定分析支持其通过鼻腔发射声波,与蹄蝠科其他蝙蝠一致,表明该科内声波发射方式的单一性。适应环境的选择压力及翼型和声波的适应性可能是其选择FM型叫声的重要原因。  相似文献   

8.
Summary Bats of the speciesNoctilio albiventris emit short-constant frequency/frequency modulated (short-CF/FM) pulses with a CF component frequency at about 75 kHz. Bats sitting on a stationary platform were trained to discriminate target distance by means of echolocation. Loud, free-running artificial pulses, simulating the bat's natural CF/FM echolocation sounds or with systematic modifications in the frequency of the sounds, were presented to the bats during the discrimination trials. When the CF component of the artificial CF/FM sound was between 72 and 77 kHz, the bats shifted the frequency of the CF component of their own echolocation sounds toward that of the artificial pulse, tracking the frequency of the artificial CF component.Bats flying within a large laboratory flight cage were also presented with artificial pulses. Bats in flight lower the frequency of their emitted pulses to compensate for Doppler shifts caused by their own flight speed and systematically shift the frequency of their emitted CF component so that the echo CF frequency returns close to that of the CF component of the artificial CF/FM pulse, over the frequency range where tracking occurs.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

9.
Calls emitted by the brown meagre Sciaena umbra (L., fam. Sciaenidae) were recorded at the Natural Marine Reserve of Miramare (Trieste, Italy) in seven nocturnal surveys (12-h continuous sampling) during the summer of 2009. Calls consist of pulses, with the main energy content below 2 kHz and mean peak frequency of c. 270 Hz. Pulses were short, with an average duration of 20 ms and a pulse period of 100 ms. Sounds lasted approximately 500 ms. Three types of sound patterns were recognized: irregular (I), regular (R) and the chorus (C). Their acoustic parameters are described showing that I, R and C differ in pulse duration, pulse peak frequency and pulse period. Occurrence of the three call types changes throughout the night: the R pattern occurred mainly at dawn and dusk, C predominated after nightfall, while I calls were produced sporadically during the whole nocturnal period. Our results indicate that S. umbra has a pronounced nocturnal rhythm in vocalizing behaviour and highlight how the diagnostic time–frequency pattern of S. umbra calls can be used to identify the species in the field. Considering that the abundance of S. umbra is currently declining, the information presented here will be relevant in developing non-invasive and low-cost monitoring acoustic systems for managing S. umbra conservation and fishery along the Mediterranean Sea.  相似文献   

10.
Summary Bats of the speciesNoctilio albiventris were trained to detect the presence of a target or to discriminate differences in target distance by means of echolocation. During the discrimination trials, the bats emitted pairs of pulses at a rate of 7–10/s. The first was an 8 ms constant frequency (CF) signal at about 75 kHz. This was followed after about 28 ms by a short-constant frequency/ frequency modulated (short-CF/FM) signal composed of a 6 ms CF component at about 75 kHz terminating in a 2 ms FM component sweeping downward to about 57 kHz. There was no apparent difference in the pulse structure or emission pattern used for any of the tasks. The orientation sounds of bats flying in the laboratory and hunting prey under natural conditions follow the same general pattern but differ in interesting ways.The bats were able to discriminate a difference in target distance of 13 mm between two simultaneously presented targets and of 30 mm between single sequentially presented targets around an absolute distance of 35 cm, using a criterion of 75% correct responses.The bats were unable to detect the presence of the target or to discriminate distance in the presence of continuous white noise of 54 dB or higher SPL. Under conditions of continuous white noise, the bats increased their pulse repetition rate and the relative proportion of CF/FM pulses.The bats required a minimum of 1–2 successive CF/FM pulse-echo pairs for target detection and 2–3 to discriminate a 5 cm difference in distance. When the distance discrimination tasks were made more difficult by reducing the difference in distance between the two targets the bats needed to integrate information from a greater number of successive CF/FM pulse-echo pairs to make the discrimination.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

11.
The acoustic structure of echolocation pulses emitted by Japanese pipistrellePipistrellus abramus (Temminck, 1840) bats during different phases of aerial hawking is described here for the first time. Behavioural observations of the foraging flight in conjunction with acoustical analysis of echolocation pulses indicated a flight path consisting of four distinct phases following the reconnaissance or search phase. Short (∼4.68 ms) and relatively broadband frequencymodulated (FM) pulses (∼23.55 kHz bandwidth) were emitted at a repetition rate of 15 Hz during presumed target approach. Presumed insect capture consisted of an early and a late buzz phase. Both buzz types were emitted at high repetition rates (111 Hz in early to 222 Hz in late) and consisted of very short, broadband FM pulses (1.26 ms in early to 0.3 ms in late). There was also a characteristically sharp drop in both the peak and terminal frequencies of each echolocation pulse during the transition from early to late buzz. No pulses were recorded during the final phase of foraging referred to as a “post-buzz pause”. Thus the foraging behaviour of this species consisted of five sequential phases involving four broad types of echolocation pulses.  相似文献   

12.
Echolocation calls from 10 individually marked female northern bats (Eptesicus nilssonii) were recorded as the bats foraged at three distinct feeding sites (territories) near their maternity roost in southern Sweden (57° N). In addition, recordings of unmarked bats were made in northern Sweden (65° N). The frequency at maximum amplitude of “search phase” echolocation pulses was bimodally distributed, with peaks around 29–30 kHz and 31–32 kHz and was negatively correlated with pulse duration. The frequency at maximum amplitude was related to flight altitude (bats used higher frequencies when they flew near the ground) and also differed among the feeding sites. Hence, much of the variation, probably including regional differences, was behavioural and is interpreted as short term (in the order of s or min) adaptation to current foraging situations. Variation among individual bats, caused by age and size, seemed to be of less importance. Individuals did not use exclusive frequency bands.  相似文献   

13.
Summary The echolocation and hunting behavior ofPipistrellus kuhli was studied in the field using multi-exposure photography synchronized with high-speed tape recordings. During the search phase, the bats used 8–12 ms signals with sweeps (sweep width 3–6 kHz) and pulse intervals near 100 ms or less often near 200 ms (Figs. 1 and 2). The bats seemed to have individual terminal frequencies that could lie between 35 and 40 kHz. The duty cycle of searching signals was about 8%. The flight speed of hunting bats was between 4.0 and 4.5 m/s. The bats reacted to insect prey at distances of about 70 to 120 cm. Given the flight speed, the detection distance was estimated to about 110 to 160 cm. Following detection the bat went into the approach phase where the FM sweep steepened (to about 60 kHz bandwidth) and the repetition rate increased (to about 30 Hz). The terminal phase or buzz, which indicates prey capture (or attempted capture), was composed of two sections. The first section contained signals similar to those in the approach phase except that the pulse duration decreased and the repetition rate increased. The second section was characterized by a sharp drop in the terminal frequency (to about 20 kHz) and by very short pulses (0.3 ms) at rates of up to 200 Hz (Figs. 1 and 3). Near the beginning of the buzz the bat prepared for capturing the prey by extending the wings and forming a tail pouch (Fig. 4). A pause of about 100 ms in sound emission after the buzz indicated a successful capture (Fig. 4). Pulse duration is discussed in relation to glint detection and detection distance. It is argued that the minimum detection distance can be estimated from the pulse duration as the distance where pulse-echo overlap is avoided.Abbreviations CF constant frequency - FM frequency modulated  相似文献   

14.
回声定位声波地理差异及其形成原因是蝙蝠生态学研究领域一个基本而关键的问题,对于探索物种生存机制、物种形成及其保护具有重要科学意义。本研究从较大地理尺度上(9个地理种群)研究了菲菊头蝠(Rhinolophus pusillus)回声定位声波结构的地理差异,并进一步探讨了影响回声定位声波地理种群差异的因素。结果表明,菲菊头蝠雌性的体型较雄性略大,其主频较高。不同地理种群之间回声定位声波差异明显,包括脉冲持续时间、脉冲间隔、主频以及带宽在不同的地理种群之间均表现出一定程度的差异。进一步分析发现,不同地理种群之间的雌性菲菊头蝠前臂长和体重均与主频呈较弱的负相关,降雨量与雌性的主频呈较强的正相关;而不同地理种群之间的雄性前臂长、体重和降雨量与回声定位声波参数均无相关性;此外,地理距离、温度、湿度均与雌雄回声定位声波参数无相关性。本研究结果表明,菲菊头蝠不同地理种群间的回声定位声波出现明显差异,其中,体型和降雨量为主要影响因子,说明蝙蝠回声定位叫声的进化主要受到了当地生境的影响,表现出动物对不同生境的适应性进化。  相似文献   

15.
The neotropical vampire bats (Desmodus rotundus) echolocate using ultrasonic pulses like those of the Latin American phyllostomatid bats. In this paper the orally produced echolocation sounds of Desmodus are analysed and the performance of the echolocation system is studied in two-choice training experiments on two vampire bats. Ability to detect objects is relatively limited; both animals were capable of discerning the presence of a 1 cm wide metal strip at a distance of 50 cm, but they failed with 0.5 cm wide strips. The ultrasonic pulses produced at a distance of 50 cm appear to sample an area with a diameter of 2.5 to 3.0 cm (i. e., the solid angle tested with each pulse is 3° to 3° 40′ in extent).  相似文献   

16.
Summary Horseshoe bats (Rhinolophus rouxi) were deafened in their 3rd–5th postnatal week. Subsequently their vocalisations were monitored to evaluate the impact of audition on the development of echolocation pulses. Hearing impairment affected the echolocation pulses as follows: the frequency of the constant frequency (CF) component was altered by between + 4 kHz and – 14 kHz, and the dominance of the second harmonic of the pulses was neutralised by a relative increase in intensity of the first and third harmonics.A second experiment focused on possible influences of acoustical self-stimulation with echolocation pulses on the establishment of auditory fovea representation in the inferior colliculus (IC). Frequency control of echolocation pulses was disrupted by larynx denervation. Thereafter, the bats produced multiharmonic echolocation signals (4–11 harmonics) varying in frequency. IC tonotopy, however, as monitored by stereotaxic electrophysiology, showed the same developmental dynamics as seen in control specimens (Fig. 10).Both experiments indicate that throughout postnatal development echolocation pulses are under auditory feedback control, whereas maturation of the auditory fovea and shifts in its frequency tuning represent an innate process. The significance of this postnatal development might be the adjustment of the vocal motor system of each bat to the frequency of its personal auditory fovea.Abbreviations CF constant frequency - CF1, CF2, CF3 harmonics of pure tone components of the echolocation pulses - FM frequency modulation - IC inferior colliculus of the midbrain  相似文献   

17.
18.
ABSTRACT

We recorded echolocation and ultrasonic social signals of the bat Myotis septentrionalis. The bats foraged for insects resting on or fluttering about an outdoor screen to which they were attracted by a ‘backlight’. The bats used nearly linearly modulated echolocation signals of high frequency (117 to 49 kHz, see Tables) with a weak second harmonic. The orientational signals from patrolling bats were about 2.4 ms in duration and occurred at a repetition rate of about 18 Hz (see Figure 3). The signals used by bats as they approached the screen were of shorter duration (0.72 ms) and occurred at higher rates (33.8 Hz) (Table 2 and Figure 4). We registered one feeding ‘buzz’ (Figure 5). We recorded social signals when two bats patrolled the hunting area. The social signals were characterized by their longer durations (6 ms, see Table 1), lower frequencies (70 to 30 kHz), and curvilinear sweeps (Figures 7 and 8). We calculated the source levels of orientational and social signals using the differences in arrival times at three microphones in a linear array (Figures 1 and 2). The source levels were on average 102 dB peSPL at 10 cm (Table 1). We could not calculate source levels of the signals used by bats as they approached the screen at close range, but these signals were much weaker (about 65 dB peSPL at the microphone).  相似文献   

19.
ABSTRACT

The mating calls of the Iberian midwife toads, A.o. boscai and A. cisternasii show clear differences. The calls of A.o. boscai have a shorter duration (104.8ms) and a lower fundamental frequency (1.33 kHz) than those of A. cisternasii (172.0 ms and 1.45 kHz), between 12° and 16°C. In both species signal duration was found to be influenced by temperature.  相似文献   

20.
Temporal cues are important for some forms of auditory processing, such as echolocation. Among odontocetes (toothed whales, dolphins, and porpoises), it has been suggested that porpoises may have temporal processing abilities which differ from other odontocetes because of their relatively narrow auditory filters and longer duration echolocation signals. This study examined auditory temporal resolution in two Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) using auditory evoked potentials (AEPs) to measure: (a) rate following responses and modulation rate transfer function for 100 kHz centered pulse sounds and (b) hearing thresholds and response amplitudes generated by individual pulses of different durations. The animals followed pulses well at modulation rates up to 1,250 Hz, after which response amplitudes declined until extinguished beyond 2,500 Hz. The subjects had significantly better hearing thresholds for longer, narrower-band pulses similar to porpoise echolocation signals compared to brief, broadband sounds resembling dolphin clicks. Results indicate that the Yangtze finless porpoise follows individual acoustic signals at rates similar to other odontocetes tested. Relatively good sensitivity for longer duration, narrow-band signals suggests that finless porpoise hearing is well suited to detect their unique echolocation signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号