首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
CO2浓度升高对两个种植密度下红桦生长和养分含量的影响   总被引:3,自引:3,他引:0  
采用控制环境生长室,研究了CO2浓度升高对2个种植密度下红桦幼苗生长和氮(N)、磷(P)含量的影响。试验设置CO2浓度为350和700μmol.mol-12个水平,每个CO2浓度水平下又设密度28和84株.m-22个水平。结果表明:CO2浓度升高,红桦株高和叶面积指数(LAI)均增加,净同化率(NAR)值增加,叶质比(LMR)和比叶面积(SLA)均下降,但相对生长率(RGR)提高。CO2浓度增加,红桦幼苗茎枝、叶、根和总生物量提高,氮(N)、磷(P)含量降低,但单株N、P总吸收量均增加。CO2浓度升高,氮磷利用效率(NUE和PUE)提高,氮磷累积速率(NAcR和PAcR)显著增加。CO2浓度升高,红桦幼苗体内N、P浓度下降是由于生物量迅速增加引起的稀释效应造成的,而NUE和PUE的提高可以有效缓解CO2浓度升高后,亚高山和高山地区森林土壤中养分元素不足对森林生产力的限制。CO2浓度升高导致的植物生长的增加量会随植株密度的增加而降低,不同器官养分吸收量的增加量在低密度条件下比高密度条件下大得多,主要是因为高种植密度显著降低了植株各部位的干质量。  相似文献   

2.
CO2浓度和温度升高对红桦根际微生物的影响   总被引:7,自引:0,他引:7  
肖玲  王开运  张远彬 《生态学报》2006,26(6):1701-1708
应用自控、封闭、独立的生长室系统,研究升高的大气CO2浓度(环境CO2浓度 350(±25)μmol.mol-1,EC)和温度(环境温度 2.0(±0.5)℃,ET)及其交互作用(ECT)对不同栽植密度条件下红桦根际土壤可培养微生物数量的影响。结果表明:(1)EC显著增加了高密度条件下根际细菌数量;在整个生长季中,最大的根际细菌数量增加出现在7月份;而EC对低密度处理的根际细菌数量影响不显著。除了5月和6月份,ET在其余月份均显著增加了根际细菌数量,但是与密度处理没有有意义的相关;ECT对高低密度处理的根际细菌数量均未产生有统计意义的影响。(2)EC对低密度条件下的根际放线菌数量有显著增加,而对高密度条件下的根际放线菌数量无显著影响;ET和ECT对高低密度条件下的根际放线菌数量均未产生有统计意义的影响。(3)EC和ET对高低密度条件下的根际真菌数量无显著增加,而ECT显著增加了根际真菌数量。  相似文献   

3.
营养元素含量及化学计量比可反映植物器官营养元素的分配及互作关系,亦可反映其营养利用效率及生长环境的养分限制状况。以青桐(Firmiana platanifolia)幼苗为材料,分析4种不同光强(全光照,50%、75%和95%遮荫)对青桐幼苗生长,C、N、P、K含量及其化学计量特征的影响。结果表明:遮荫对青桐幼苗的生长性状、生物量、元素含量和积累量及化学计量比均有显著影响(P<0.05)。苗高和比叶面积随遮荫强度增加而升高,而地径和粗壮度随遮荫强度增加而减小。总生物量在75%遮荫下最大,在95%遮荫下最小。在各遮荫处理下,叶片C、N、P、K含量均大于根和茎,且N含量顺序为叶>根>茎,K含量顺序为叶>茎>根。C、P、K积累量随遮荫强度增大而增加,在75%遮荫下达到最大值,而在95%遮荫下达到最小值。青桐幼苗C∶N和C∶P呈现出相同的变化趋势,随遮荫强度变大先增加后减小,均在50%遮荫下达最大值。青桐各器官N∶P远低于14,即青桐幼苗在不同遮荫条件下的生长严重受N限制。这些结果说明,遮荫可调节青桐幼苗在不同光环境中的养分积累与分配,进而影响生物量。因此,青桐苗期培育宜选75%遮荫,有助于苗高、比叶面积、生物量、养分含量和积累量的增加,而过度遮荫可抑制幼苗生长发育。  相似文献   

4.
利用稻田FACE(Free Air gas Concentration Enrichment)系统,设置对照(Ambient,环境空气)、CO2浓度增高(EC,比Ambient增200μmol·mol-1)、温度增高(ET,比Ambient增2℃)和CO2浓度与温度同步增高(EC+ET)4个处理,研究其对超级杂交籼稻Ⅱ优084生长发育的影响。结果表明:与Ambient相比,EC或EC+ET使水稻抽穗和成熟期推迟1~3d,但ET对生育期没有影响;EC、EC+ET使水稻成熟期单茎干重分别增加49%、40%,均达显著水平,但ET则呈相反趋势;与Ambient相比,EC使成熟期叶片、茎鞘、稻穗及地上部干重分别增加40%、69%、30%和39%,均达极显著水平;ET使对应部位干重分别减少11%、21%、31%和26%,除茎鞘外均达显著或极显著水平;EC+ET使对应部位干重分别增加40%、47%、10%和18%,除稻穗外均达显著水平;抽穗期和抽穗后20 d各器官干重及地上部总重对各处理的响应趋势一致,但幅度明显小于成熟期;与生物量不同,各处理对结实期物质分配比例影响较小;EC、EC+ET使水稻成熟期茎鞘非结构性碳水化合物浓度和含量显著增加,但ET表现出相反趋势。综上所述,大气CO2浓度和温度同时升高情形下,超级稻Ⅱ优084收获期茎鞘同化物浓度和含量、各器官干重以及地上部生长总量均明显增加,但增幅略小于单独CO2浓度升高环境下生长的水稻。  相似文献   

5.
应用自控、封闭、独立的生长室系统,研究川西亚高山林线复合群落根际、非根际土壤微生物数量以及根际、非根际土壤酶活性对大气CO2浓度升高(环境CO2浓度+350(±25)μmol.mol-1,EC)和温度升高(环境温度+2.0(±0.5)℃,ET)及其两者同时升高(ECT)的响应。结果表明:(1)与对照(CK)相比,EC、ET和ECT处理能够增加土壤根际微生物数量,但不同微生物种类对EC、ET和ECT的反应有所差异。(2)不同种类的根际土壤酶对EC、ET和ECT的响应不同。(3)与CK相比,EC、ET和ECT的非根际土壤微生物数量以及非根际土壤酶活性均无显著提高。(4)EC、ET和ECT处理对复合群落土壤微生物总数的根际效应明显;除ET处理的转化酶为负根际效应,其余处理的过氧化氢酶,脲酶及转化酶均表现为正根际效应。  相似文献   

6.
施肥对短枝木麻黄幼苗总酚和可溶性缩合单宁含量的影响   总被引:1,自引:0,他引:1  
Zhang LH  Lin YM  Ye GF 《应用生态学报》2010,21(8):1959-1966
研究了施用氮肥和磷肥对短枝木麻黄幼苗总酚(total phenolics,TP)和可溶性缩合单宁(extractable condensed tannin,ECT)含量的影响,探讨短枝木麻黄单宁形成的养分效应.结果表明:施加氮肥使短枝木麻黄幼苗小枝的TP和ECT含量显著降低,支持碳氮平衡假说和生长分化平衡假说,但对氮含量没有显著影响,从而导致TP/N和ECT/N降低;施加磷肥对TP和ECT含量没有显著影响;随着处理时间的延长,短枝木麻黄幼苗小枝TP含量升高了9.91%~14.32%,而ECT含量降低了14.32%~298.88%;TP或ECT与有机物质含量的关系则相反,表明不同类型单宁的合成途径不同,但由于TP和ECT均与氮含量无显著相关性,故不支持蛋白质竞争模型;在贫瘠土壤条件下,TP/N和ECT/N的水平较高,有利于提高短枝木麻黄的防御水平,降低凋落物的分解率,减少养分损失,从而保持较高的生产力.  相似文献   

7.
羊留冬  杨燕  王根绪  郭剑英  杨阳 《生态学报》2011,31(13):3668-3676
2009年5月至10月,在中国科学院贡嘎山高山森林生态系统观测站附近,采用红外灯加热人工模拟气候变暖研究了增温对峨眉冷杉(Abies fabiri (Mast) Craib)幼苗生长和养分及其化学计量特征的影响。由于红外灯的增温作用,在幼苗的整个生长季节,增温样地地表下5 cm、10 cm、20 cm处土温平均高于对照样地5.04 ℃、4.81 ℃、4.35 ℃,而土壤含水量则分别降低了7.03%、6.10%、6.40%;地表20 cm处空气温度相比对照样地上升了1.12 ℃,而空气相对湿度则降低了6.30%。除茎重比外,增温处理降低了峨眉冷杉幼苗的根长、基径、株高、总生物量、根重比、叶重比、根冠比和比叶面积。经方差分析发现,增温处理后幼苗根、茎和叶的C平均含量与对照差异性均不显著(P>0.05),其中除茎的提高了2.76%外,根和叶分别降低了7.15%和2.29%;N平均含量除茎显著降低之外(P<0.05),根、叶分别提高了9.78%和5.70%;幼苗根、茎、叶的P平均含量均低于对照11.97%、10.69%和2.99%,并且根和茎与对照存在显著性差异(P<0.05)。增温处理后幼苗根、茎、叶各器官的C︰N、C︰P 、N︰P与对照均不存在显著性差异(P>0.05),其中C︰P均大于对照,而C︰N和N︰P与对照相比,均有不同程度的减小;C︰N、N︰P和C︰P的平均值(标准差)大小顺序依次为茎(92.594.92)>根(61.891.65)>叶(60.813.23)、叶(4.990.22)>根(4.440.58)>茎(3.640.10)和茎(336.358.70)>叶(302.854.49)>根(274.865.27)。实验结果表明:增温对幼苗生长和生物量积累具有明显的限制作用,对叶片生长的阻碍作用尤为突出;增温改变了幼苗根茎叶的CNP含量及其化学计量比格局;在养分供应上,增温和对照处理下幼苗生长均受N素限制。  相似文献   

8.
采用控制环境生长室,研究了CO2浓度升高对2个种植密度下红桦幼苗生长和氮(N)、磷(P)含量的影响。试验设置CO2浓度为350和700 μmol·mol-12个水平,每个CO2浓度水平下又设密度28和84株·m-22个水平。结果表明:CO2浓度升高,红桦株高和叶面积指数(LAI)均增加,净同化率(NAR)值增加,叶质比(LMR)和比叶面积(SLA)均下降,但相对生长率(RGR)提高。CO2浓度增加,红桦幼苗茎枝、叶、根和总生物量提高,氮(N)、磷(P)含量降低,但单株N、P总吸收量均增加。CO2浓度升高,氮磷利用效率(NUE和PUE)提高,氮磷累积速率(NAcR和PAcR)显著增加。CO2浓度升高,红桦幼苗体内N、P浓度下降是由于生物量迅速增加引起的稀释效应造成的,而NUE和PUE的提高可以有效缓解CO2浓度升高后,亚高山和高山地区森林土壤中养分元素不足对森林生产力的限制。CO2浓度升高导致的植物生长的增加量会随植株密度的增加而降低,不同器官养分吸收量的增加量在低密度条件下比高密度条件下大得多,主要是因为高种植密度显著降低了植株各部位的干质量。  相似文献   

9.
应用自控、封闭、独立的生长室系统,研究了川西亚高山岷江冷杉根际土壤微生物数量对大气CO2浓度升高 (环境CO2浓度+350(±25)μmol·mol-1,EC)和温度升高(环境温度+2.2(±0.5)℃,ET)及其CO2浓度和温度同时升高 (ECT)的响应.结果表明,1)同对照(CK)相比,在6月、8月和10月,EC处理的根际细菌数量分别增加了35%、164%和312%,ET处理增加了30%、115%和209%,而EC和ET处理对根际放线菌和根际真菌数量影响不显著;ECT处理的根际放线菌数量分别增加了49%、50%和96%,根际真菌数量增加了151%、57%和48%,而ECT对根际细菌数量影响不显著.2)3种处理对非根际土壤微生物数量影响均不显著.3)在EC、ET和ECT处理下,微生物总数的根际效应明显,其R/S值分别为1.93、1.37和1.46(CK的R/S值为0.81).  相似文献   

10.
 蒙古栎(Quercus mongolica)是东北地区天然次生林重要组成树种, 研究该树种对未来气候变暖的响应, 可为预测未来气候变暖情况下蒙古栎林的发展动态、制定合理的经营措施提供科学参考。该文旨在探讨不同的供氮水平下, CO2浓度和温度升高综合作用对蒙古栎幼苗生物量及其分配的影响。实验采用人工气候箱控制, 控制条件分别为温度升高4 ℃(ET)、CO2浓度倍增(700 μmol CO2 ·mol–1) × 温度升高4 ℃ (ECET)和对照(正常温度, CO2浓度为400 μmol CO2·mol–1) (CK), 每个控制条件幼苗的基质分别用3种氮素水平处理: N1 (15 mmol·L–1 N)、N2 (7.5 mmol·L–1 N)和N3 (不施氮)。研究结果显示, 1)在ET条件下, N1明显促进幼苗茎的高生长、径生长和生物量积累, 幼苗生物量的分配随氮素浓度的增加, 地下生物量所占的比例增大。2) ECET条件下N1明显促进幼苗的高生长, 但对径生长影响不显著, 对幼苗总生物量积累的影响不显著。但N1增加了地下生物量的比例。3) ET与ECET条件下幼苗叶片的碳氮比均随供氮水平降低而升高, 但ECET下碳氮比的升高是由于叶片碳含量较高引起的, 而ET条件下则是由于叶片氮含量的降低而引起的。ECET和ET条件较低的氮素供应水平综合作用对蒙古栎幼苗的生物量积累无促进作用。因此, 在未来气候变化情况下, 土壤中充足的氮供给可能将促进蒙古栎幼苗的生长, 增加其天然更新潜力, 并增加其碳库容。  相似文献   

11.
红豆草与土壤氮含量对大气二氧化碳浓度升高的响应   总被引:1,自引:0,他引:1  
在封闭的植物培养箱中,通过盆栽实验,研究了红豆草和土壤氮含量对CO2浓度增加的响应.结果表明,与正常CO2浓度(355~370 μmol·mol-1)相比,CO2浓度升高(700 μmol·mol-1),植物生物量增加25.1%(P<0.01),但植物体氮浓度降低25.3%(P<0.001),植物全氮没有显著的变化.经3个月盆栽实验后,与原始土壤相比,两种CO2浓度处理土壤全N、NO3--N和NH4+-N都有所降低,而土壤微生物氮则显著增加,这可能与植物生长有关.不同CO2浓度处理土壤NH4+-N浓度基本一致,但在高CO2浓度下,土壤NO3--N浓度显著降低,而微生物生物氮显著增加.对整个土壤-植物系统而言,盆栽实验后,整个系统全氮有少量增加,但变化不显著,特别是在高CO2浓度条件下,土壤-植物系统全氮最大,这可能与培养材料红豆草为豆科植物,而且在高CO2浓度下生物量增加,导致氮的固定量增加有关.  相似文献   

12.
 研究在不同CO2浓度下水生克隆植物刺苦草(Vallisneria spinulosa)整个生活周期中生长的动态变化及对营养元素积累情况。在不损伤植物体的前提下,采用刺苦草形态学指标组合史估计了植株生物量的动态变化。结果表明:刺苦草鳞茎的萌发不受CO2浓度变化的影响。在高浓度CO2即(1000±50) μmol·mol-1下,刺苦草源株地上部分生长速率在整个生长前期和中期都远远高于低浓度CO2即(400±20) μmol·mol-1,而在后期则出现相反的现象,其中一个原因是因为高浓度CO2下后期光合物质向地下大量转移形成鳞茎引起地上部分生长减慢。但高浓度CO2下克隆株中的初级和次级分株生长速率均高于低浓度CO2。在两种CO2浓度下相同克隆植株构件中的总碳含量没有明显差异;除鳞茎外,根、叶、匍匐茎中的总磷含量随CO2浓度升高显著增加;由于各构件生物量增加有明显差异,导致叶和鳞茎因为生物稀释作用而使其含氮量降低了12%~14%,但根和茎中含量基本保持不变。在高浓度CO2中植株总生物量显著升高,所以总碳、总氮和总磷吸收量均显著大于在低浓度CO2中的吸收量。研究结果揭示,大气CO2浓度升高对沉水克隆植物生长的促进,有利于提高水生克隆植物在群落中的竞争能力;水生植物克隆生长将增加水生生态系统中碳的沉积;水环境中N、P含量将直接影响到水生克隆植物生长。  相似文献   

13.
The response of biological nitrogen fixation (BNF) to elevated CO(2) was examined in white clover (Trifolium repens)-dominated swards under both high and low phosphorus availability. Mixed swards of clover and buffalo grass (Stenotaphrum secundatum) were grown for 15 months in 0.2 m2 sand-filled mesocosms under two CO2 treatments (ambient and twice ambient) and three nutrient treatments [no N, and either low or high P (5 or 134 kg P ha(-1)); the third nutrient treatment was supplied with high P and N (240 kg N ha(-1))]. Under ambient CO2, high P increased BNF from 410 to 900 kg ha(-1). Elevated CO2 further increased BNF to 1180 kg ha(-1) with high P, but there was no effect of CO2 on BNF with low P. Allocation of N belowground increased by approx. 50% under elevated CO2 irrespective of supplied P. The results suggest that where soil P availability is low, elevated CO2 will not increase BNF, and pasture quality could decrease because of a reduction in aboveground N.  相似文献   

14.
Kandeler  E.  Tscherko  D.  Bardgett  R.D.  Hobbs  P.J.  Kampichler  C.  Jones  T.H. 《Plant and Soil》1998,202(2):251-262
We investigate the response of soil microorganisms to atmospheric CO2 and temperature change within model terrestrial ecosystems in the Ecotron. The model communities consisted of four plant species (Cardamine hirsuta, Poa annua, Senecio vulgaris, Spergula arvensis), four herbivorous insect species (two aphids, a leaf-miner, and a whitefly) and their parasitoids, snails, earthworms, woodlice, soil-dwelling Collembola (springtails), nematodes and soil microorganisms (bacteria, fungi, mycorrhizae and Protista). In two successive experiments, the effects of elevated temperature (ambient plus 2 °C) at both ambient and elevated CO2 conditions (ambient plus 200 ppm) were investigated. A 40:60 sand:Surrey loam mixture with relatively low nutrient levels was used. Each experiment ran for 9 months and soil microbial biomass (Cmic and Nmic), soil microbial community (fungal and bacterial phospholipid fatty acids), basal respiration, and enzymes involved in the carbon cycling (xylanase, trehalase) were measured at depths of 0–2, 0–10 and 10–20 cm. In addition, root biomass and tissue C:N ratio were determined to provide information on the amount and quality of substrates for microbial growth.Elevated temperature under both ambient and elevated CO2 did not show consistent treatment effects. Elevation of air temperature at ambient CO2 induced an increase in Cmic of the 0–10 cm layer, while at elevated CO2 total phospholipid fatty acids (PLFA) increased after the third generation. The metabolic quotient qCO2 decreased at elevated temperature in the ambient CO2 run. Xylanase and trehalase showed no changes in both runs. Root biomass and C:N ratio were not influenced by elevated temperature in ambient CO2. In elevated CO2, however, elevated temperature reduced root biomass in the 0–10 cm and 30–40 cm layers and increased N content of roots in the deeper layers. The different response of root biomass and C:N ratio to elevated temperature may be caused by differences in the dynamics of root decomposition and/or in allocation patterns to coarse or fine roots (i.e. storage vs. resource capture functions). Overall, our data suggests that in soils of low nutrient availability, the effects of climate change on the soil microbial community and processes are likely to be minimal and largely unpredicatable.  相似文献   

15.
The hypothesis that elevated [CO(2)] alleviates ureide inhibition of N(2)-fixation was tested. Short-term responses of the acetylene reduction assay (ARA), ureide accumulation and total non-structural carbohydrate (TNC) levels were measured following addition of ureide to the nutrient solution of hydroponically grown soybean. The plants were exposed to ambient (360 micromol mol(-1)) or elevated (700 micromol mol(-1)) [CO(2)]. Addition of 5 and 10 mM ureide to the nutrient solution inhibited N(2)-fixation activity under both ambient and elevated [CO(2)] conditions. However, the percentage inhibition following ureide treatment was significantly greater under ambient [CO(2)] as compared with that under elevated [CO(2)]. Under ambient [CO(2)] conditions, ARA was less than that under elevated [CO(2)] 1 d after ureide treatment. Under ambient [CO(2)], the application of ureide resulted in a significant accumulation of ureide in all plant tissues, with the highest concentration increases in the leaves. However, application of exogenous ureide to plants subjected to elevated [CO(2)] did not result in increased ureide concentration in any tissues. TNC concentrations were consistently higher under elevated [CO(2)] compared with those under ambient [CO(2)]. For both [CO(2)] treatments, the application of ureide induced a significant decrease of TNC concentrations in the leaves and nodules. For both leaves and nodules, a negative correlation was observed between TNC and ureide levels. Results indicate that product(s) of ureide catabolism rather than tissue ureide concentration itself are critical in the regulation of N(2)-fixation.  相似文献   

16.
二氧化碳浓度升高对太湖沉水植物马来眼子菜生长的影响   总被引:1,自引:0,他引:1  
通过室外培养试验,研究不同CO2浓度条件下沉水植物马来眼子菜的生长及生理变化.结果表明:CO2浓度升高(1000 μmol·mol-1)条件下,马来眼子菜单株的平均生物量增加了44.3%(P<0.01),茎生物量比重下降了5.5%(P<0.05);根和叶中氮含量分别下降了18.1%和6.4%(P<0.05),而茎中氮含量变化不明显(P>0.05);根、茎、叶中磷含量分别增加了22.2%(P<0.05)、26.6%(P>0.05)和38.8%(P<0.05);可溶性糖含量增加了27.3%、18.3%和37.5%(P<0.05);根、茎和叶中全碳含量增加了4.6%、5.3%和2.0%;CO2浓度升高使水体中氮、磷含量分别下降了7.9%和5.1%(P<0.05),但对底泥中氮、磷的含量影响不明显.CO2浓度升高将对沉水植物生长及其生境有一定影响.  相似文献   

17.
大气CO2浓度升高和N沉降以及二者之间的耦合作用对陆地森林生态系统的影响是当前国际生态学界关注的热点之一。该实验运用大型开顶箱(open-top chamber, OTC)研究: 1)高CO2浓度(700 μmol×mol-1) +高N沉降(100 kg N×hm-2×a-1) (CN); 2)高CO2浓度(700 μmol×mol-1)和背景N沉降(CC); 3)高N沉降(100 kg N×hm-2×a-1)和背景CO2浓度(NN); 4)背景CO2和背景N沉降(CK) 4种处理对南亚热带主要乡土树种木荷(Schima superba)、红锥(Castanopsis hystrix)、肖蒲桃(Acmena acuminatissima)、红鳞蒲桃(Syzygium hancei)、海南红豆(Ormosia pinnata)叶片元素含量的影响。研究结果表明, 大气CO2浓度升高对5种乡土树种叶片元素含量有较大的影响, 除海南红豆叶片的Ca含量外, 其他树种的叶片元素含量在高CO2浓度处理下都显著升高(p < 0.05); 而在N沉降处理下, 5个树种的叶片K和Ca含量都降低。大气CO2浓度升高与N沉降处理对5种乡土树种植物叶片元素含量影响的交互作用不是很明显, 仅仅木荷和红鳞蒲桃的叶片Ca和Mn以及海南红豆的叶片Mn含量在大气CO2浓度上升和N沉降交互处理下显著下降, 而肖蒲桃的叶片P含量在大气CO2浓度上升和N沉降交互处理下显著上升。  相似文献   

18.
Carbon allocation and N acquisition by plants following defoliation may be linked through plant-microbe interactions in the rhizosphere. Plant C allocation patterns and rhizosphere interactions can also be affected by rising atmospheric CO(2) concentrations, which in turn could influence plant and microbial responses to defoliation. We studied two widespread perennial grasses native to rangelands of western North America to test whether (1) defoliation-induced enhancement of rhizodeposition would stimulate rhizosphere N availability and plant N uptake, and (2) defoliation-induced enhancement of rhizodeposition, and associated effects on soil N availability, would increase under elevated CO(2). Both species were grown at ambient (400 μL L(-1)) and elevated (780 μL L(-1)) atmospheric [CO(2)] under water-limiting conditions. Plant, soil and microbial responses were measured 1 and 8 days after a defoliation treatment. Contrary to our hypotheses, we found that defoliation and elevated CO(2) both reduced carbon inputs to the rhizosphere of Bouteloua gracilis (C(4)) and Pascopyrum smithii (C(3)). However, both species also increased N allocation to shoots of defoliated versus non-defoliated plants 8 days after treatment. This response was greatest for P. smithii, and was associated with negative defoliation effects on root biomass and N content and reduced allocation of post-defoliation assimilate to roots. In contrast, B. gracilis increased allocation of post-defoliation assimilate to roots, and did not exhibit defoliation-induced reductions in root biomass or N content. Our findings highlight key differences between these species in how post-defoliation C allocation to roots versus shoots is linked to shoot N yield, but indicate that defoliation-induced enhancement of shoot N concentration and N yield is not mediated by increased C allocation to the rhizosphere.  相似文献   

19.
The effect of differences in nitrogen (N) availability and source on growth and nitrogen metabolism at different atmospheric CO(2) concentrations in Prosopis glandulosa and Prosopis flexuosa (native to semiarid regions of North and South America, respectively) was examined. Total biomass, allocation, N uptake, and metabolites (e.g., free NO(3)(-), soluble proteins, organic acids) were measured in seedlings grown in controlled environment chambers for 48 d at ambient (350 ppm) and elevated (650 ppm) CO(2) and fertilized with high (8.0 mmol/L) or low (0.8 mmol/L) N (N(level)), supplied at either 1 : 1 or 3 : 1 NO(3)(-) : NH(4)(+) ratios (N(source)). Responses to elevated CO(2) depended on both N(level) and N(source), with the largest effects evident at high N(level). A high NO(3)(-) : NH(4)(+) ratio stimulated growth responses to elevated CO(2) in both species when N was limiting and increased the responses of P. flexuosa at high N(level). Significant differences in N uptake and metabolites were found between species. Seedlings of both species are highly responsive to N availability and will benefit from increases in CO(2), provided that a high proportion of NO(3)- to NH(4)-N is present in the soil solution. This enhancement, in combination with responses that increase N acquisition and increases in water use efficiency typically found at elevated CO(2), may indicate that these semiarid species will be better able to cope with both nutrient and water deficits as CO(2) levels rise.  相似文献   

20.
Increased concentrations of atmospheric carbon dioxide (CO2) and drought stress have greatly influenced plant growth, the status of nitrogen (N) and phosphorus (P), and N:P ratios. We identified the plant biomass, N and P distributional patterns, and N:P stoichiometry of a grass species on the Loess Plateau in China under elevated CO2 concentration and drought stress conditions. Bothriochloa ischaemum, a C4 perennial herbaceous grass, was grown in pots at CO2 concentrations of 400 (ambient) and 800 (elevated) μmol mol?1 and at 60 ± 5 and 40 ± 5 % of field capacity. The elevated CO2 concentration significantly increased plant total biomass, N concentration, N and P content, allocation of biomass to roots, and allocation of N to shoots, and increased the N:P ratios of whole plants and the shoots, especially under well-watered conditions. Drought stress significantly decreased plant biomass and plant N and P content, especially under elevated CO2. Drought stress decreased the N:P ratios, but was only significant in the roots under ambient CO2. Drought stress may attenuate the stimulation of plant growth and N and P acquisition by CO2 enrichment, and projected elevated CO2 concentrations may partially offset the negative effects of increased drought by increasing the assimilation of N and P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号