首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Simpson RJ  Jensen SS  Lim JW 《Proteomics》2008,8(19):4083-4099
Exosomes are 40-100 nm membrane vesicles of endocytic origin secreted by most cell types in vitro. Recent studies have shown that exosomes are also found in vivo in body fluids such as blood, urine, amniotic fluid, malignant ascites, bronchoalveolar lavage fluid, synovial fluid, and breast milk. While the biological function of exosomes is still unclear, they can mediate communication between cells, facilitating processes such as antigen presentation and in trans signaling to neighboring cells. Exosome-like vesicles identified in Drosophila (referred to as argosomes) may be potential vehicles for the spread of morphogens in epithelia. The advent of current MS-based proteomic technologies has contributed significantly to our understanding of the molecular composition of exosomes. In addition to a common set of membrane and cytosolic proteins, it is becoming increasingly apparent that exosomes harbor distinct subsets of proteins that may be linked to cell-type associated functions. The secretion of exosomes by tumor cells and their implication in the transport and propagation of infectious cargo such as prions and retroviruses such as HIV suggest their participation in pathological situations. Interestingly, the recent observation that exosomes contain both mRNA and microRNA, which can be transferred to another cell, and be functional in that new environment, is an exciting new development in the unraveling exosome saga. The present review aims to summarize the physical properties that define exosomes as specific cell-type secreted membrane vesicles.  相似文献   

2.
3.
Pancreatic cancer (PC) is one of the most lethal cancers known worldwide, and its prognosis is poor in most patients. Exosomes are nanosized extracellular vesicles, which are released from various cell types. They are involved in cellular communication. The diagnosis and treatment of PC were improved substantially with exosomes. In this study, we isolated PC-derived exosomes and investigated their proteomic profile. Then, we conducted bioinformatic analysis on proteomic data. Differential ultracentrifugation was performed to isolate exosomes from human serum samples and four PC cell lines. Transmission electron microscopy and Western blot analysis were used to characterize the isolated exosomes. Liquid chromatography coupled with tandem mass spectrometry was conducted to identify the proteome of serum exosomes. Proteomic analysis demonstrated that all the serum exosomes were derived from three cohorts of human subjects; these serum exosomes contained a total of 655 proteins, out of which 315 proteins overlapped with ExoCarta database. Gene oncology and kyoto encyclopedia of genes and genomes analyses provided the functional annotation of the proteome. Interestingly, 18 or 14 proteins were upregulated and 11 or 14 proteins were downregulated in serum exosomes derived from patients with PC as compared with in serum exosomes derived from healthy volunteers or from pancreatitis patients respectively. Annexin A11, a calcium-dependent phospholipid-binding protein, was expressed in a PC cell line (CFPAC-1)-derived exosomes and in tumor tissues of patients with PC, respectively. Our data provided a basic foundation for further studies on the protein composition of PC-derived exosomes and its involvement in PC biology.  相似文献   

4.
Lee EY  Park KS  Yoon YJ  Lee J  Moon HG  Jang SC  Choi KH  Kim YK  Gho YS 《PloS one》2012,7(3):e33330
Cancer vaccines with optimal tumor-associated antigens show promise for anti-tumor immunotherapy. Recently, nano-sized vesicles, such as exosomes derived from tumors, were suggested as potential antigen candidates, although the total yield of exosomes is not sufficient for clinical applications. In the present study, we developed a new vaccine strategy based on nano-sized vesicles derived from primary autologous tumors. Through homogenization and sonication of tumor tissues, we achieved high yields of vesicle-bound antigens. These nanovesicles were enriched with antigenic membrane targets but lacked nuclear autoantigens. Furthermore, these nanovesicles together with adjuvant activated dendritic cells in vitro, and induced effective anti-tumor immune responses in both primary and metastatic melanoma mouse models. Therefore, autologous tumor-derived nanovesicles may represent a novel source of antigens with high-level immunogenicity for use in acellular vaccines without compromising safety. Our strategy is cost-effective and can be applied to patient-specific cancer therapeutic vaccination.  相似文献   

5.
Exosomes are cell-derived vesicles that are secreted by both normal and cancer cells. Over the last decade, a few studies have revealed that exosomes cross talk and/or influence major tumor-related pathways such as angiogenesis and metastasis involving many cell types within the tumor microenvironment. The protein composition of the membrane of an exosome reflects that of the membrane of the cell of origin. Because of this, tumor-derived exosomes differ from exosomes that are derived from normal cells. The detection of tumor exosomes and analysis of their molecular composition hold promise for diagnosis and prognosis of cancer. Here, we present hydrogel microarrays (biochips), which contain a panel of immobilized antibodies that recognize tetraspanins (CD9, CD63, CD81) and prognostic markers for colorectal cancer (A33, CD147). These biochips make it possible to analyze the surface proteins of either isolated exosomes or exosomes that are present in the serum samples without isolation. These biochips were successfully used to analyze the surface proteins of exosomes from serum that was collected from a colorectal cancer patient and healthy donor. Biochip-guided immunofluorescent analysis of the exosomes has made it possible for us to detect the A33 antigen and CD147 in the serum sample of the colorectal cancer patient with normal levels of CEA and CA19-9.  相似文献   

6.
Tumor cells utilize different strategies to communicate with neighboring tissues for facilitating tumor progression and invasion, one of these strategies has been shown to be the release of exosomes. Exosomes are small nanovesicles secreted by all kind of cells in the body, especially cancer cells, and mediate cell to cell communications. Exosomes play an important role in cancer invasiveness by harboring various cargoes that could accelerate angiogenesis. Here first, we will present an overview of exosomes, their biology, and their function in the body. Then, we will focus on exosomes derived from tumor cells as tumor angiogenesis mediators with a particular emphasis on the underlying mechanisms in various cancer origins. Also, exosomes derived from stem cells and tumor-associated macrophages will be discussed in this regard. Finally, we will discuss the novel therapeutic strategies of exosomes as drug delivery vehicles against angiogenesis.  相似文献   

7.
Prospects for exosomes in immunotherapy of cancer   总被引:8,自引:0,他引:8  
Exosomes are nanometer sized membrane vesicles invaginating from multivesicular bodies and secreted from epithelial and hematopoietic cells. They were first described "in vitro" but vesicles with the hallmarks of exosomes are present in vivo in germinal centers and biological fluids. Their protein and lipid composition are unique and could account for their expanding functions such as eradication of obsolete proteins, antigen presentation or "Trojan horses" for viruses or prions. Exosome secretion could be a regulated process participating in the transfer of molecules inbetween immune cells. Despite numerous questions pertaining to their biological relevance, the potential of dendritic cell derived-exosomes as cell-free cancer vaccines is currently being assessed. This review will summarize the composition and formation of exosomes, preclinical data, Phase I trials and optimization protocols for improving their immunogenicity in tumor bearing patients.  相似文献   

8.
Many tumor cells shed specialized membrane vesicles known as exosomes. In this study, we show that pretreatment of mice with exosomes produced by TS/A or 4T.1 murine mammary tumor cells resulted in accelerated growth of implanted tumor cells in both syngeneic BALB/c mice and nude mice. As implanted TS/A tumor cells grew more rapidly in mice that had been depleted of NK cells, we analyzed the effects of the tumor-derived exosomes on NK cells. The tumor-derived exosomes inhibit NK cell cytotoxic activity ex vivo and in vitro as demonstrated by chromium release assays. The treatment of mice with TS/A tumor exosomes also led to a reduction in the percentages of NK cells, as determined by FACS analysis, in the lungs and spleens. Key features of NK cell activity were inhibited, including release of perforin but not granzyme B, as well as the expression of cyclin D3 and activation of the Jak3-mediated pathways. Human tumor cell lines also were found to produce exosomes that were capable of inhibiting IL-2-stimulated NK cell proliferation. Exosomes produced by dendritic cells or B cells did not. The presentation of tumor Ags by exosomes is under consideration as a cancer vaccine strategy; however, we found that pretreatment of mice with tumor exosomes blunted the protective effect of syngeneic dendritic cells pulsed ex vivo with tumor exosomes. We propose that tumor exosomes contribute to the growth of tumors by blocking IL-2-mediated activation of NK cells and their cytotoxic response to tumor cells.  相似文献   

9.
Exosomes hold great potential to deliver therapeutic reagents for cancer treatment due to its inherent low antigenicity. However, several technical barriers, such as low productivity and ineffective cancer targeting, need to be overcome before wide clinical applications. The present study aims at creating a new biomanufacturing platform of cancer‐targeted exosomes for drug delivery. Specifically, a scalable, robust, high‐yield, cell line based exosome production process is created in a stirred‐tank bioreactor, and an efficient surface tagging technique is developed to generate monoclonal antibody (mAb)‐exosomes. The in vitro characterization using transmission electron microscopy, NanoSight, and western blotting confirm the high quality of exosomes. Flow cytometry and confocal laser scanning microscopy demonstrate that mAb‐exosomes have strong surface binding to cancer cells. Furthermore, to validate the targeted drug delivery efficiency, romidepsin, a histone deacetylase inhibitor, is loaded into mAb‐exosomes. The in vitro anti‐cancer toxicity study shows high cytotoxicity of mAb‐exosome‐romidepsin to cancer cells. Finally, the in vivo study using tumor xenograft animal model validates the cancer targeting specificity, anti‐cancer efficacy, and drug delivery capability of the targeted exosomes. In summary, new techniques enabling targeted exosomes for drug delivery are developed to support large‐scale animal studies and to facilitate the translation from research to clinics.  相似文献   

10.
Exosomes are important mediators in cell‐to‐cell communication and, recently, their role in melanoma progression has been brought to light. Here, we characterized exosomes secreted by seven melanoma cell lines with varying degrees of aggressivity. Extensive proteomic analysis of their exosomes confirmed the presence of characteristic exosomal markers as well as melanoma‐specific antigens and oncogenic proteins. Importantly, the protein composition differed among exosomes from different lines. Exosomes from aggressive cells contained specific proteins involved in cell motility, angiogenesis, and immune response, while these proteins were less abundant or absent in exosomes from less aggressive cells. Interestingly, when exposed to exosomes from metastatic lines, less aggressive cells increased their migratory capacities, likely due to transfer of pro‐migratory exosomal proteins to recipient cells. Hence, this study shows that the specific protein composition of melanoma exosomes depends on the cells’ aggressivity and suggests that exosomes influence the behavior of other tumor cells and their microenvironment.  相似文献   

11.
外泌体是细胞分泌的一种纳米级囊泡结构,在血液、唾液、尿液等多种体液中均有分布.作为一类重要的细胞间通信分子,外泌体含有多种具有生物活性的成分,可通过多种方式在人体中发挥调节作用.目前在多种类型的细胞中均发现外泌体的存在,而肿瘤细胞来源的外泌体由于其本身的特性和功能特点,可通过微环境介导肿瘤细胞的增生、血管形成和免疫耐受,并可通过介导上皮-间质转化(epithelial-mesenchymal transition, EMT)
和胞内药物排斥反应等增加肿瘤细胞的化疗抵抗能力.同时,因其含有肿瘤细胞所分泌的特异性成分,因而可通过对外泌体中相关分子改变的检测,对疾病进行诊断和监测,并可为临床个体化用药提供新思路.  相似文献   

12.
A manner in which cells can communicate with each other is via secreted nanoparticles termed exosomes. These vesicles contain lipids, nucleic acids, and proteins, and are said to reflect the cell‐of‐origin. However, for the exosomal protein content, there is limited evidence in the literature to verify this statement. Here, proteomic assessment combined with pathway‐enrichment analysis is used to demonstrate that the protein cargo of exosomes reflects the epithelial/mesenchymal phenotype of secreting breast cancer cells. Given that epithelial‐mesenchymal plasticity is known to implicate various stages of cancer progression, the results suggest that breast cancer subtypes with distinct epithelial and mesenchymal phenotypes may be distinguished by directly assessing the protein content of exosomes. Additionally, the work is a substantial step toward verifying the statement that cell‐derived exosomes reflect the phenotype of the cells‐of‐origin.  相似文献   

13.
Exosomes derived from dendritic cells or tumor cells are a population of nanometer-sized membrane vesicles that can induce specific antitumor immunity. During investigation of the effects of hyperthermia on antitumor immune response, we found that exosomes derived from heat-stressed tumor cells (HS-TEX) could chemoattract and activate dendritic cells (DC) and T cells more potently than that by conventional tumor-derived exosomes. We show that HS-TEX contain chemokines, such as CCL2, CCL3, CCL4, CCL5, and CCL20, and the chemokine-containing HS-TEX are functionally competent in chemoattracting CD11c(+) DC and CD4(+)/CD8(+) T cells both in vitro and in vivo. Moreover, the production of chemokine-containing HS-TEX could be inhibited by ATP inhibitor, calcium chelator, and cholesterol scavenger, indicating that the mobilization of chemokines into exosomes was ATP- and calcium-dependent and via a lipid raft-dependent pathway. We consistently found that the intracellular chemokines could be enriched in lipid rafts after heat stress. Accordingly, intratumoral injection of HS-TEX could induce specific antitumor immune response more efficiently than that by tumor-derived exosomes, thus inhibiting tumor growth and prolonging survival of tumor-bearing mice more significantly. Therefore, our results demonstrate that exosomes derived from HS-TEX represent a kind of efficient tumor vaccine and can chemoattract and activate DC and T cells, inducing more potent antitumor immune response. Release of chemokines through exosomes via lipid raft-dependent pathway may be a new method of chemokine exocytosis.  相似文献   

14.
Extracellular vesicles are known as actual intermediaries of intercellular communications, such as biological signals and cargo transfer between different cells. A variety of cells release the exosomes as nanovesicular bodies. Exosomes contain different compounds such as several types of nucleic acids and proteins. In this study, we focused on exosomes in colorectal cancer as good tools that can be involved in various cancer-related processes. Furthermore, we summarize the advantages and disadvantages of exosome extraction methods and review related studies on the role of exosomes in colorectal cancer. Finally, we focus on reports available on relations between mesenchymal stem cell–derived exosomes and colorectal cancer. Several cancer-related processes such as cancer progression, metastasis, and drug resistance of colorectal cancer are related to the cargoes of exosomes. A variety of molecules, especially proteins, microRNAs, and long noncoding RNAs, play important roles in these processes. The microenvironment features, such as hypoxia, also have very important effects on the properties of the origin cell–derived exosomes. On the other hand, exosomes derived from colorectal cancer cells also interfere with cancer chemoresistance. Furthermore, today it is known that exosomes and their contents can likely be very effective in noninvasive colorectal cancer diagnosis and therapy. Thus, exosomes, and especially their cargoes, play different key roles in various aspects of basic and clinical research related to both progression and therapy of colorectal cancer.  相似文献   

15.
Exosome function: from tumor immunology to pathogen biology   总被引:3,自引:0,他引:3  
Exosomes are the newest family member of 'bioactive vesicles' that function to promote intercellular communication. Exosomes are derived from the fusion of multivesicular bodies with the plasma membrane and extracellular release of the intraluminal vesicles. Recent studies have focused on the biogenesis and composition of exosomes as well as regulation of exosome release. Exosomes have been shown to be released by cells of hematopoietic and non-hematopoietic origin, yet their function remains enigmatic. Much of the prior work has focused on exosomes as a source of tumor antigens and in presentation of tumor antigens to T cells. However, new studies have shown that exosomes might also promote cell-to-cell spread of infectious agents. Moreover, exosomes isolated from cells infected with various intracellular pathogens, including Mycobacterium tuberculosis and Toxoplasma gondii , have been shown to contain microbial components and can promote antigen presentation and macrophage activation, suggesting that exosomes may function in immune surveillance. In this review, we summarize our understanding of exosome biogenesis but focus primarily on new insights into exosome function. We also discuss their possible use as disease biomarkers and vaccine candidates.  相似文献   

16.
Dendritic cells constitutively secrete a population of small (50-90 nm diameter) Ag-presenting vesicles called exosomes. When sensitized with tumor antigenic peptides, dendritic cells produce exosomes, which stimulate anti-tumor immune responses and the rejection of established tumors in mice. Using a systematic proteomic approach, we establish the first extensive protein map of a particular exosome population; 21 new exosomal proteins were thus identified. Most proteins present in exosomes are related to endocytic compartments. New exosomal residents include cytosolic proteins most likely involved in exosome biogenesis and function, mainly cytoskeleton-related (cofilin, profilin I, and elongation factor 1alpha) and intracellular membrane transport and signaling factors (such as several annexins, rab 7 and 11, rap1B, and syntenin). Importantly, we also identified a novel category of exosomal proteins related to apoptosis: thioredoxin peroxidase II, Alix, 14-3-3, and galectin-3. These findings led us to analyze possible structural relationships between exosomes and microvesicles released by apoptotic cells. We show that although they both represent secreted populations of membrane vesicles relevant to immune responses, exosomes and apoptotic vesicles are biochemically and morphologically distinct. Therefore, in addition to cytokines, dendritic cells produce a specific population of membrane vesicles, exosomes, with unique molecular composition and strong immunostimulating properties.  相似文献   

17.
Exosome-based immunotherapy   总被引:24,自引:0,他引:24  
Exosomes are small membrane vesicles originating from late endosomes and secreted by hematopoietic and epithelial cells in culture. Exosome proteic and lipid composition is unique and might shed some light into exosome biogenesis and function. Exosomes secreted from professional antigen-presenting cells (i.e., B lymphocytes and dendritic cells) are enriched in MHC class I and II complexes, costimulatory molecules, and hsp70–90 chaperones, and have therefore been more extensively studied for their immunomodulatory capacities in vitro and in vivo. This review will present the main biological features pertaining to tumor or DC-derived exosomes, will emphasize their immunostimulatory function, and will discuss their implementation in cancer immunotherapy.Abbreviations APC antigen-presenting cell - ASI active specific immunotherapy - CTL cytotoxic T lymphocyte - DC dendritic cell - FDC follicular dendritic cell - MD-DC monocyte-derived dendritic cell - GMP good manufacturing procedure - HLA human leukocyte antigen - HSP heat shock protein - MHC major histocompatibility complex - MVB multivesicular body - ExAs ascitis-derived exosomes - DEX DC-derived exosome - TEX tumor cell–derived exosome This work was presented at the first Cancer Immunology and Immunotherapy Summer School, 8–13 September 2003, Ionian Village, Bartholomeio, Peloponnese, Greece.  相似文献   

18.
We hereby report studies that suggest a role for serum exosomes in the anchorage-independent growth (AIG) of tumor cells. In AIG assays, fetal bovine serum is one of the critical ingredients. We therefore purified exosomes from fetal bovine serum and examined their potential to promote growth of breast carcinoma cells in soft agar and Matrigel after reconstituting them into growth medium (EEM). In all the assays, viable colonies were formed only in the presence of exosomes. Some of the exosomal proteins we identified, have been documented by others and could be considered exosomal markers. Labeled purified exosomes were up-taken by the tumor cells, a process that could be competed out with excess unlabeled vesicles. Our data also suggested that once endocytosed by a cell, the exosomes could be recycled back to the conditioned medium from where they can be up-taken by other cells. We also demonstrated that low concentrations of exosomes activate MAP kinases, suggesting a mechanism by which they maintain the growth of the tumor cells in soft agar. Taken together, our data demonstrate that serum exosomes form a growth promoting platform for AIG of tumor cells and may open a new vista into cancer cell growth in vivo.  相似文献   

19.
Circulating cancer exosomes are microvesicles which originate from malignant cells and other organs influenced by the disease and can be found in blood. The exosomal proteomic cargo can often be traced to the cells from which they originated, reflecting the physiological status of these cells. The similarities between cancer exosomes and the tumor cells they originate from exhibit the potential of these vesicles as an invaluable target for liquid biopsies. Exosomes were isolated from the serum of eight osteosarcoma-bearing dogs, five healthy dogs, and five dogs with traumatic fractures. We also characterized exosomes which were collected longitudinally from patients with osteosarcoma prior and 2 weeks after amputation, and eventually upon detection of lung metastasis. Exosomal proteins fraction were analyzed by label-free mass spectrometry proteomics and were validated with immunoblots of selected proteins. Ten exosomal proteins were found that collectively discriminate serum of osteosarcoma patients from serum healthy or fractured dogs with an accuracy of 85%. Additionally, serum from different disease stages could be distinguished with an accuracy of 77% based on exosomal proteomic composition. The most discriminating protein changes for both sample group comparisons were related to complement regulation, suggesting an immune evasion mechanism in early stages of osteosarcoma as well as in advanced disease.  相似文献   

20.
Exosomes derived from dendritic cells   总被引:4,自引:0,他引:4  
Dendritic cells (DC) are potent antigen presenting cells and the only ones capable of inducing primary cytotoxic immune responses both in vivo and vitro. DCs secrete a 60-80 nm membrane vesicle population of endocytic origin, called exosomes. The protein composition of exosomes was analyzed using a systematic proteomic approach. Besides MHC and costimulatory molecules, exosomes bear several adhesion proteins, probably involved in their specific targeting. Exosomes also accumulate several cytosolic factors, most likely involved in exoxome's biogenesis in late endosomes. Like DCs, exosomes induce potent anti tumor immune responses in vivo. Indeed, a single injection of DC-derived exosomes sensitized with tumor peptides induced the eradication of established mouse tumors. Tumor-specific cytotoxic T lymphocytes were found in the spleen of exosome treated mice, and depletion of CD8+ T cells in vivo inhibited the anti tumor effect of exosomes. These results strongly support the implementation of human DC-derived exosomes for cancer immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号