首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Rad51 and Rad54 proteins play a key role in homologous recombination in eukaryotes. Recently, we reported that Ca2+ is required in vitro for human Rad51 protein to form an active nucleoprotein filament that is important for the search of homologous DNA and for DNA strand exchange, two critical steps of homologous recombination. Here we find that Ca2+ is also required for hRad54 protein to effectively stimulate DNA strand exchange activity of hRad51 protein. This finding identifies Ca2+ as a universal cofactor of DNA strand exchange promoted by mammalian homologous recombination proteins in vitro. We further investigated the hRad54-dependent stimulation of DNA strand exchange. The mechanism of stimulation appeared to include specific interaction of hRad54 protein with the hRad51 nucleoprotein filament. Our results show that hRad54 protein significantly stimulates homology-independent coaggregation of dsDNA with the filament, which represents an essential step of the search for homologous DNA. The results obtained indicate that hRad54 protein serves as a dsDNA gateway for the hRad51-ssDNA filament, promoting binding and an ATP hydrolysis-dependent translocation of dsDNA during the search for homologous sequences.  相似文献   

2.
Rad51 and Rad54 are key proteins that collaborate during homologous recombination. Rad51 forms a presynaptic filament with ATP and ssDNA active in homology search and DNA strand exchange, but the precise role of its ATPase activity is poorly understood. Rad54 is an ATP-dependent dsDNA motor protein that can dissociate Rad51 from dsDNA, the product complex of DNA strand exchange. Kinetic analysis of the budding yeast proteins revealed that the catalytic efficiency of the Rad54 ATPase was stimulated by partial filaments of wild-type and Rad51-K191R mutant protein on dsDNA, unambiguously demonstrating that the Rad54 ATPase activity is stimulated under these conditions. Experiments with Rad51-K191R as well as with wild-type Rad51-dsDNA filaments formed in the presence of ATP, ADP or ATP-γ-S showed that efficient Rad51 turnover from dsDNA requires both the Rad51 ATPase and the Rad54 ATPase activities. The results with Rad51-K191R mutant protein also revealed an unexpected defect in binding to DNA. Once formed, Rad51-K191R-DNA filaments appeared normal upon electron microscopic inspection, but displayed significantly increased stability. These biochemical defects in the Rad51-K191R protein could lead to deficiencies in presynapsis (filament formation) and postsynapsis (filament disassembly) in vivo.  相似文献   

3.
Homologous recombination is important for the repair of double-stranded DNA breaks in all organisms. Rad51 and Rad54 proteins are two key components of the homologous recombination machinery in eukaryotes. In vitro, Rad51 protein assembles with single-stranded DNA to form the helical nucleoprotein filament that promotes DNA strand exchange, a basic step of homologous recombination. Rad54 protein interacts with this Rad51 nucleoprotein filament and stimulates its DNA pairing activity, suggesting that Rad54 protein is a component of the nucleoprotein complex involved in the DNA homology search. Here, using physical criteria, we demonstrate directly the formation of Rad54-Rad51-DNA nucleoprotein co-complexes that contain equimolar amounts of each protein. The binding of Rad54 protein significantly stabilizes the Rad51 nucleoprotein filament formed on either single-stranded DNA or double-stranded DNA. The Rad54-stabilized nucleoprotein filament is more competent in DNA strand exchange and acts over a broader range of solution conditions. Thus, the co-assembly of an interacting partner with the Rad51 nucleoprotein filament represents a novel means of stabilizing the biochemical entity central to homologous recombination, and reveals a new function of Rad54 protein.  相似文献   

4.
Homologous recombination is one of the major pathways for repair of DNA double-strand breaks (DSBs). Important proteins in this pathway are Rad51 and Rad54. Rad51 forms a nucleoprotein filament on single-stranded DNA (ssDNA) that mediates pairing with and strand invasion of homologous duplex DNA with the assist of Rad54. We estimated that the nucleus of a mouse embryonic stem (ES) cells contains on average 4.7x10(5) Rad51 and 2.4x10(5) Rad54 molecules. Furthermore, we showed that the amount of Rad54 was subject to cell cycle regulation. We discuss our results with respect to two models that describe how Rad54 stimulates Rad51-mediated DNA strand invasion. The models differ in whether Rad54 functions locally or globally. In the first model, Rad54 acts in cis relative to the site of strand invasion. Rad54 coats the Rad51 nucleoprotein filament in stoichiometric amounts and binds to the target duplex DNA at the site that is homologous to the ssDNA in the Rad51 nucleoprotein filament. Subsequently, it promotes duplex DNA unwinding. In the second model, Rad54 acts in trans relative to the site of strand invasion. Rad54 binds duplex DNA distant from the site that will be unwound. Translocation of Rad54 along the duplex DNA increases superhelical stress thereby promoting duplex DNA unwinding.  相似文献   

5.
Rad54 protein is a Snf2-like ATPase with a specialized function in the recombinational repair of DNA damage. Rad54 is thought to stimulate the search of homology via formation of a specific complex with the presynaptic Rad51 filament on single-stranded DNA. Herein, we address the interaction of Rad54 with Rad51 filaments on double-stranded (ds) DNA, an intermediate in DNA strand exchange with unclear functional significance. We show that Saccharomyces cerevisiae Rad54 exerts distinct modes of ATPase activity on partially and fully saturated filaments of Rad51 protein on dsDNA. The highest ATPase activity is observed on dsDNA containing short patches of yeast Rad51 filaments resulting in a 6-fold increase compared with protein-free DNA. This enhanced ATPase mode of yeast Rad54 can also be elicited by partial filaments of human Rad51 protein but to a lesser extent. In contrast, the interaction of Rad54 protein with duplex DNA fully covered with Rad51 is entirely species-specific. When yeast Rad51 fully covers dsDNA, Rad54 protein hydrolyzes ATP in a reduced mode at 60-80% of its rate on protein-free DNA. Instead, saturated filaments with human Rad51 fail to support the yeast Rad54 ATPase. We suggest that the interaction of Rad54 with dsDNA-Rad51 complexes is of functional importance in homologous recombination.  相似文献   

6.
RecA and Rad51 proteins play an important role in DNA repair and homologous recombination. For RecA, X-ray structure information and single molecule force experiments have indicated that the differential extension between the complementary strand and its Watson–Crick pairing partners promotes the rapid unbinding of non-homologous dsDNA and drives strand exchange forward for homologous dsDNA. In this work we find that both effects are also present in Rad51 protein. In particular, pulling on the opposite termini (3′ and 5′) of one of the two DNA strands in a dsDNA molecule allows dsDNA to extend along non-homologous Rad51-ssDNA filaments and remain stably bound in the extended state, but pulling on the 3′5′ ends of the complementary strand reduces the strand-exchange rate for homologous filaments. Thus, the results suggest that differential extension is also present in dsDNA bound to Rad51. The differential extension promotes rapid recognition by driving the swift unbinding of dsDNA from non-homologous Rad51-ssDNA filaments, while at the same time, reducing base pair tension due to the transfer of the Watson–Crick pairing of the complementary strand bases from the highly extended outgoing strand to the slightly less extended incoming strand, which drives strand exchange forward.  相似文献   

7.
In Saccharomyces cerevisiae, the Rad54 protein participates in the recombinational repair of double-strand DNA breaks together with the Rad51, Rad52, Rad55 and Rad57 proteins. In vitro, Rad54 interacts with Rad51 and stimulates DNA strand exchange promoted by Rad51 protein. Rad54 is a SWI2/SNF2-related protein that possesses double-stranded DNA-dependent ATPase activity and changes DNA topology in an ATP hydrolysis-dependent manner. Here we show that Rad54 catalyzes bidirectional nucleosome redistribution by sliding nucleosomes along DNA. Nucleosome redistribution is greatly stimulated by the Rad51 nucleoprotein filament but does not require the presence of homologous single-stranded DNA within the filament. On the basis of these data, we propose that Rad54 facilitates chromatin remodeling and, perhaps more generally, protein clearing at the homology search step of genetic recombination.  相似文献   

8.
Kwon Y  Chi P  Roh DH  Klein H  Sung P 《DNA Repair》2007,6(10):1496-1506
Rad54, a member of the Swi2/Snf2 protein family, works in concert with the RecA-like recombinase Rad51 during the early and late stages of homologous recombination. Rad51 markedly enhances the activities of Rad54, including the induction of topological changes in DNA and the remodeling of chromatin structure. Reciprocally, Rad54 promotes Rad51-mediated DNA strand invasion with either naked or chromatinized DNA. Here, using various Saccharomyces cerevisiae rad51 and rad54 mutant proteins, mechanistic aspects of Rad54/Rad51-mediated chromatin remodeling are defined. Disruption of the Rad51-Rad54 complex leads to a marked attenuation of chromatin remodeling activity. Moreover, we present evidence that assembly of the Rad51 presynaptic filament represents an obligatory step in the enhancement of the chromatin remodeling reaction. Interestingly, we find a specific interaction of the N-terminal tail of histone H3 with Rad54 and show that the H3 tail interaction domain resides within the amino terminus of Rad54. These results suggest that Rad54-mediated chromatin remodeling coincides with DNA homology search by the Rad51 presynaptic filament and that this process is facilitated by an interaction of Rad54 with histone H3.  相似文献   

9.
Yeast Rad51 promotes homologous pairing and strand exchange in vitro, but this activity is inefficient in the absence of the accessory proteins, RPA, Rad52, Rad54 and the Rad55-Rad57 heterodimer. A class of rad51 alleles was isolated that suppresses the requirement for RAD55 and RAD57 in DNA repair, but not the other accessory factors. Five of the six mutations isolated map to the region of Rad51 that by modeling with RecA corresponds to one of the DNA-binding sites. The other mutation is in the N-terminus of Rad51 in a domain implicated in protein-protein interactions and DNA binding. The Rad51-I345T mutant protein shows increased binding to single- and double-stranded DNA, and is proficient in displacement of replication protein A (RPA) from single-stranded DNA, suggesting that the normal function of Rad55-Rad57 is promotion and stabilization of Rad51-ssDNA complexes.  相似文献   

10.
The repair of potentially lethal DNA double-stranded breaks (DSBs) by homologous recombination requires processing of the broken DNA into a resected DNA duplex with a protruding 3'-single-stranded DNA (ssDNA) tail. Accordingly, the canonical models for DSB repair require invasion of an intact homologous DNA template by the 3'-end of the ssDNA, a characteristic that the bacterial pairing protein RecA possesses. Unexpectedly, we find that for the eukaryotic homolog, Rad51 protein, the 5'-end of ssDNA is more invasive than the 3'-end. This pairing bias is unaffected by Rad52, Rad54 or Rad55-57 proteins. However, further investigation reveals that, in contrast to RecA protein, the preferred DNA substrate for Rad51 protein is not ssDNA but rather dsDNA with ssDNA tails. This important distinction permits the Rad51 proteins to promote DNA strand invasion using either 3'- or 5'-ends with similar efficiency.  相似文献   

11.
Homologous recombination (HR) represents a major error-free pathway to eliminate pre-carcinogenic chromosomal lesions. The DNA strand invasion reaction in HR is mediated by a helical filament of the Rad51 recombinase assembled on single-stranded DNA that is derived from the nucleolytic processing of the primary lesion. Recent studies have found that the human and mouse Swi5 and Sfr1 proteins form a complex that influences Rad51-mediated HR in cells. Here, we provide biophysical evidence that the mouse Swi5-Sfr1 complex has a 1:1 stoichiometry. Importantly, the Swi5-Sfr1 complex, but neither Swi5 nor Sfr1 alone, physically interacts with Rad51 and stimulates Rad51-mediated homologous DNA pairing. This stimulatory effect stems from the stabilization of the Rad51-ssDNA presynaptic filament. Moreover, we provide evidence that the RSfp (rodent Sfr1 proline rich) motif in Sfr1 serves as a negative regulatory element. These results thus reveal an evolutionarily conserved function in the Swi5-Sfr1 complex and furnish valuable information as to the regulatory role of the RSfp motif that is specific to the mammalian Sfr1 orthologs.  相似文献   

12.
Rad51 is a key protein in homologous recombination performing homology search and DNA strand invasion. After DNA strand exchange Rad51 protein is stuck on the double-stranded heteroduplex DNA product of DNA strand invasion. This is a problem, because DNA polymerase requires access to the invading 3′-OH end to initiate DNA synthesis. Here we show that, the Saccharomyces cerevisiae dsDNA motor protein Rad54 solves this problem by dissociating yeast Rad51 protein bound to the heteroduplex DNA after DNA strand invasion. The reaction required species-specific interaction between both proteins and the ATPase activity of Rad54 protein. This mechanism rationalizes the in vivo requirement of Rad54 protein for the turnover of Rad51 foci and explains the observed dependence of the transition from homologous pairing to DNA synthesis on Rad54 protein in vegetative and meiotic yeast cells.  相似文献   

13.
In eukaryotes, Rad51 and Rad54 functionally cooperate to mediate homologous recombination and the repair of damaged chromosomes by recombination. Rad51, the eukaryotic counterpart of the bacterial RecA recombinase, forms filaments on single-stranded DNA that are capable of pairing the bound DNA with a homologous double-stranded donor to yield joint molecules. Rad54 enhances the homologous DNA pairing reaction, and this stimulatory effect involves a physical interaction with Rad51. Correspondingly, the ability of Rad54 to hydrolyze ATP and introduce superhelical tension into covalently closed circular plasmid DNA is stimulated by Rad51. By controlled proteolysis, we show that the amino-terminal region of yeast Rad54 is rather unstructured. Truncation mutations that delete the N-terminal 113 or 129 amino acid residues of Rad54 attenuate or ablate physical and functional interactions with Rad51 under physiological ionic strength, respectively. Surprisingly, under less stringent conditions, the Rad54 Delta129 protein can interact with Rad51 in affinity pull-down and functional assays. These results highlight the functional importance of the N-terminal Rad51 interaction domain of Rad54 and reveal that Rad54 contacts Rad51 through separable epitopes.  相似文献   

14.
Repairing a double-strand break by homologous recombination requires binding of the strand exchange protein Rad51p to ssDNA, followed by synapsis with a homologous donor. Here we used chromatin immunoprecipitation to monitor the in vivo association of Saccharomyces cerevisiae Rad51p with both the cleaved MATa locus and the HML alpha donor. Localization of Rad51p to MAT precedes its association with HML, providing evidence of the time needed for the Rad51 filament to search the genome for a homologous sequence. Rad51p binding to ssDNA requires Rad52p. The absence of Rad55p delays Rad51p binding to ssDNA and prevents strand invasion and localization of Rad51p to HML alpha. Lack of Rad54p does not significantly impair Rad51p recruitment to MAT or its initial association with HML alpha; however, Rad54p is required at or before the initiation of DNA synthesis after synapsis has occurred at the 3' end of the invading strand.  相似文献   

15.
The efficient and accurate repair of DNA double strand breaks (DSBs) is critical to cell survival, and defects in this process can lead to genome instability and cancers. In eukaryotes, the Rad52 group of proteins dictates the repair of DSBs by the error-free process of homologous recombination (HR). A critical step in eukaryotic HR is the formation of the initial Rad51-single-stranded DNA presynaptic nucleoprotein filament. This presynaptic filament participates in a homology search process that leads to the formation of a DNA joint molecule and recombinational repair of the DSB. Recently, we showed that the Rad54 protein functions as a mediator of Rad51 binding to single-stranded DNA, and here, we find that this activity does not require ATP hydrolysis. We also identify a novel Rad54-dependent chromatin remodeling event that occurs in vivo during the DNA strand invasion step of HR. This ATP-dependent remodeling activity of Rad54 appears to control subsequent steps in the HR process.  相似文献   

16.
Rad51 protein stimulates the branch migration activity of Rad54 protein   总被引:1,自引:0,他引:1  
The Rad51 and Rad54 proteins play important roles during homologous recombination in eukaryotes. Rad51 forms a nucleoprotein filament on single-stranded DNA and performs the initial steps of double strand break repair. Rad54 belongs to the Swi2/Snf2 family of ATP-dependent DNA translocases. We previously showed that Rad54 promotes branch migration of Holliday junctions. Here we find that human Rad51 (hRad51) significantly stimulates the branch migration activity of hRad54. The stimulation appears to be evolutionarily conserved, as yeast Rad51 also stimulates the branch migration activity of yeast Rad54. We further investigated the mechanism of this stimulation. Our results demonstrate that the stimulation of hRad54-promoted branch migration by hRad51 is driven by specific protein-protein interactions, and the active form of the hRad51 filament is more stimulatory than the inactive one. The current results support the hypothesis that the hRad51 conformation state has a strong effect on interaction with hRad54 and ultimately on the function of hRad54 in homologous recombination.  相似文献   

17.
The Rad51 protein, a homologue of the bacterial RecA protein, is an essential factor for both meiotic and mitotic recombination. The N-terminal domain of the human Rad51 protein (HsRad51) directly interacts with DNA. Based on a yeast two-hybrid analysis, it has been reported that the N-terminal region of the Saccharomyces cerevisiae Rad51 protein binds Rad52;S. cerevisiae Rad51 and Rad52 both activate the homologous pairing and strand exchange reactions. Here, we show that the HsRad51 N-terminal region, which corresponds to the Rad52-binding region of ScRad51, does not exhibit strong binding to the human Rad52 protein (HsRad52). To investigate its function, the C-terminal region of HsRad51 was randomly mutagenized. Although this region includes the two segments corresponding to the putative DNA-binding sites of RecA, all seven of the mutants did not decrease, but instead slightly increased, the DNA binding. In contrast, we found that some of these HsRad51 mutations significantly decreased the HsRad52 binding. Therefore, we conclude that these amino acid residues are required for the HsRad51.HsRad52 binding. HsRad52, as well as S. cerevisiae Rad52, promoted homologous pairing between ssDNA and dsDNA, and higher homologous pairing activity was observed in the presence of both HsRad51 and HsRad52 than with either HsRad51 or HsRad52 alone. The HsRad51 F259V mutation, which strongly impaired the HsRad52 binding, decreased the homologous pairing in the presence of both HsRad51 and HsRad52, without affecting the homologous pairing by HsRad51 alone. This result suggests the importance of the HsRad51.HsRad52 interaction in homologous pairing.  相似文献   

18.
Rad51 protein forms nucleoprotein filaments on single-stranded DNA (ssDNA) and then pairs that DNA with the complementary strand of incoming duplex DNA. In apparent contrast with published results, we demonstrate that Rad51 protein promotes an extensive pairing of long homologous DNAs in the absence of replication protein A. This pairing exists only within the Rad51 filament; it was previously undetected because it is lost upon deproteinization. We further demonstrate that RPA has a critical postsynaptic role in DNA strand exchange, stabilizing the DNA pairing initiated by Rad51 protein. Stabilization of the Rad51-generated DNA pairing intermediates can be can occur either by binding the displaced strand with RPA or by degrading the same DNA strand using exonuclease VII. The optimal conditions for Rad51-mediated DNA strand exchange used here minimize the secondary structure in single-stranded DNA, minimizing the established presynaptic role of RPA in facilitating Rad51 filament formation. We verify that RPA has little effect on Rad51 filament formation under these conditions, assigning the dramatic stimulation of strand exchange nevertheless afforded by RPA to its postsynaptic function of removing the displaced DNA strand from Rad51 filaments.  相似文献   

19.
Homologous recombination is a central pathway to maintain genomic stability and is involved in the repair of DNA damage and replication fork support, as well as accurate chromosome segregation during meiosis. Rad54 is a dsDNA-dependent ATPase of the Snf2/Swi2 family of SF2 helicases, although Rad54 lacks classical helicase activity and cannot carry out the strand displacement reactions typical for DNA helicases. Rad54 is a potent and processive motor protein that translocates on dsDNA, potentially executing several functions in recombinational DNA repair. Rad54 acts in concert with Rad51, the central protein of recombination that performs the key reactions of homology search and DNA strand invasion. Here, we will review the role of the Rad54 protein in homologous recombination with an emphasis on mechanistic studies with the yeast and human enzymes. We will discuss how these results relate to in vivo functions of Rad54 during homologous recombination in somatic cells and during meiosis. This article is part of a Special Issue entitled: Snf2/Swi2 ATPase structure and function.  相似文献   

20.
The tumor suppressor BRCA2 protein plays a major role in the regulation of Rad51-catalyzed homologous recombination. BRCA2 interacts with monomeric Rad51 primarily via conserved BRC domains and coordinates the formation of Rad51 filaments at double-stranded DNA (dsDNA) breaks. A number of cancer-associated mutations in BRC4 and BRC2 domains have been reported. To elucidate their effects on homologous recombination, we studied Rad51 filament formation on single-stranded DNA and dsDNA substrates and Rad51-catalyzed strand exchange, in the presence of wild-type and mutated peptides of either BRC4 or BRC2. While the wild-type BRC2 and BRC4 peptides inhibited filament formation and, thus, strand exchange, the mutated forms decreased significantly these inhibitory effects. These results are consistent with a three-dimensional model for the interface between individual BRC repeats and Rad51. We suggest that mutations at sites crucial for the association between Rad51 and BRC domains impair the ability of BRCA2 to recruit Rad51 to dsDNA breaks, hampering recombinational repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号