首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   13篇
  2021年   1篇
  2019年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   9篇
  2008年   9篇
  2007年   9篇
  2006年   8篇
  2005年   4篇
  2004年   5篇
  2003年   12篇
  2002年   10篇
  2001年   13篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1996年   1篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   3篇
  1985年   1篇
  1983年   2篇
排序方式: 共有143条查询结果,搜索用时 140 毫秒
1.
2.
The Escherichia coli RecA protein catalyzes homologous recombination of DNA molecules, and the active form of the protein is a helical polymer that it forms around DNA. Previous image analysis of electron micrographs has revealed the RecA protein to be organized into two domains or lobes within the RecA-DNA filament. We have now been able to show that a small modification of the RecA protein by proteolysis results in a significant shift in the internal mass in the RecA filament. We have cleaved approximately 18 residues from the C-terminus of the RecA protein, producing a roughly 36K MW RecA core protein that binds DNA and polymerizes normally. A three-dimensional reconstruction of this complex has been computed, and has been compared with a previous reconstruction of the intact protein. The main difference is consistent with a 15 A outward movement of the lobe that was at an inner radius in the wild-type protein. These observations yield additional evidence about the conformational flexibility of the RecA filament, and will aid in understanding the structural mechanics and dynamics of the RecA filament.  相似文献   
3.
We have used electron microscopy to examine the two major conformational states of the helical filament formed by the RecA protein of Escherichia coli. The compressed filament, formed in the absence of a nucleotide cofactor either as a self-polymer or on a single-stranded DNA molecule, is characterized in solution by about 6.1 subunits per turn of a 76 A pitch helix, and appears to be inactive with respect to all RecA activity. The active state of the filament, formed with ATP or an ATP analog on either a single or double-stranded DNA substrate, has about 6.2 subunits per turn of a 94 A pitch helix. Measurements of the contour length of RecA-covered single-stranded DNA circles in ice, formed in the absence of nucleotide cofactor, indicate that each RecA subunit binds five bases, in contrast to the three bases or base-pairs per subunit in the active state. The different stoichiometries of DNA binding suggests that the two polymeric forms are not interconvertible, as has been suggested on biochemical grounds. A three-dimensional reconstruction of the inactive state shows the same general features as the 83 A pitch filament present in the RecA crystal. This structural similarity and the fact that the crystal does not contain ATP or DNA suggests that the crystal structure is more similar to the compressed filament than the active, extended filament.  相似文献   
4.

Background  

Homologous recombination mediated by the λ-Red genes is a common method for making chromosomal modifications in Escherichia coli. Several protocols have been developed that differ in the mechanisms by which DNA, carrying regions homologous to the chromosome, are delivered into the cell. A common technique is to electroporate linear DNA fragments into cells. Alternatively, DNA fragments are generated in vivo by digestion of a donor plasmid with a nuclease that does not cleave the host genome. In both cases the λ-Red gene products recombine homologous regions carried on the linear DNA fragments with the chromosome. We have successfully used both techniques to generate chromosomal mutations in E. coli K-12 strains. However, we have had limited success with these λ-Red based recombination techniques in pathogenic E. coli strains, which has led us to develop an enhanced protocol for recombineering in such strains.  相似文献   
5.
6.
7.
Although negative stain electron microscopy is a wonderfully simple way of directly visualizing protein complexes and other biological macromolecules, the images are not really comparable to those of objects seen in everyday life. The failure to appreciate this has recently led to an incorrect interpretation of RecA‐family filament structures.  相似文献   
8.
9.
Many important biological macromolecules exist as helical polymers. Examples are actin, tubulin, myosin, RecA, Rad51, flagellin, pili, and filamentous bacteriophage. The first application of three-dimensional reconstruction from electron microscopic images was to a helical polymer, and a number of laboratories today are using helical tubes of integral membrane proteins for solving the structure of these proteins in the electron microscope at near atomic resolution. We have developed a method to analyze and reconstruct electron microscopic images of macromolecular helical polymers, the iterative helical real space reconstruction (IHRSR) algorithm. We can show that when there is disorder or heterogeneity, when the specimens diffract weakly, or when Bessel functions overlap, we can do far better with our method than can be done using traditional Fourier-Bessel approaches. In many cases, structures that were not even amenable to analysis can be solved at fairly high resolution using our method. The problems inherent in the traditional approach are discussed, and examples are presented illustrating how the IHRSR approach surmounts these problems.  相似文献   
10.
Helical filaments were the first structures to be reconstructed in three dimensions from electron microscopic images, and continue to be extensively studied due to the large number of such helical polymers found in biology. In principle, a single image of a helical polymer provides all of the different projections needed to reconstruct the three-dimensional structure. Unfortunately, many helical filaments have been refractory to the application of traditional (Fourier-Bessel) methods due to variability, heterogeneity, and weak scattering. Over the past several years, many of these problems have been surmounted using single-particle type approaches that can do substantially better than Fourier-Bessel approaches. Applications of these new methods to viruses, actin filaments, pili and many other polymers show the great advantages of the new methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号