首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Branching morphogenesis of mouse submandibular glands is regulated by multiple growth factors. Here, we report that ex vivo branching of intact submandibular glands decreases when either FGFR2 expression is downregulated or soluble recombinant FGFR2b competes out the endogenous growth factors. However, a combination of neutralizing antibodies to FGF1, FGF7 and FGF10 is required to inhibit branching in the intact gland, suggesting that multiple FGF isoforms are required for branching. Exogenous FGFs added to submandibular epithelial rudiments cultured without mesenchyme induce distinct morphologies. FGF7 induces epithelial budding, whereas FGF10 induces duct elongation, and both are inhibited by FGFR or ERK1/2 signaling inhibitors. However, a PI3-kinase inhibitor also decreases FGF7-mediated epithelial budding, suggesting that multiple signaling pathways exist. We immunolocalized FGF receptors and analyzed changes in FGFR, FGF and MMP gene expression to identify the mechanisms of FGF-mediated morphogenesis. FGFR1b and FGFR2b are present throughout the epithelium, although FGFR1b is more highly expressed around the periphery of the buds and the duct tips. FGF7 signaling increases FGFR1b and FGF1 expression, and MMP2 activity, when compared with FGF10, resulting in increased cell proliferation and expansion of the epithelial bud, whereas FGF10 stimulates localized proliferation at the tip of the duct. FGF7- and FGF10-mediated morphogenesis is inhibited by an MMP inhibitor and a neutralizing antibody to FGF1, suggesting that both FGF1 and MMPs are essential downstream mediators of epithelial morphogenesis. Taken together, our data suggests that FGFR2b signaling involves a regulatory network of FGFR1b/FGF1/MMP2 expression that mediates budding and duct elongation during branching morphogenesis.  相似文献   

2.
Experimental evidence is rapidly emerging that the coupling of positive regulatory signals with the induction of negative feedback modulators is a mechanism of fine regulation in development. Studies in Drosophila and chick have shown that members of the SPROUTY family are inducible negative regulators of growth factors that act through tyrosine kinase receptors. We and others have shown that Fibroblast Growth Factor 10 (FGF10) is a key positive regulator of lung branching morphogenesis. Herein, we provide direct evidence that mSprouty2 is dynamically expressed in the peripheral endoderm in embryonic lung and is downregulated in the clefts between new branches at E12.5. We found that mSprouty2 was expressed in a domain restricted in time and space, adjacent to that of Fgf10 in the peripheral mesenchyme. By E14.5, Fgf10 expression was restricted to a narrow domain of mesenchyme along the extreme edges of the individual lung lobes, whereas mSprouty2 was most highly expressed in the subjacent epithelial terminal buds. FGF10 beads upregulated the expression of mSprouty2 in adjacent epithelium in embryonic lung explant culture. Lung cultures treated with exogenous FGF10 showed greater branching and higher levels of mSpry2 mRNA. Conversely, Fgf10 antisense oligonucleotides reduced branching and decreased mSpry2 mRNA levels. However, treatment with exogenous FGF10 or antisense Fgf10 did not change Shh and FgfR2 mRNA levels in the lungs. We investigated Sprouty2 function during lung development by two different but complementary approaches. The targeted overexpression of mSprouty2 in the peripheral lung epithelium in vivo, using the Surfactant Protein C promoter, resulted in a low level of branching, lung lobe edges abnormal in appearance and the inhibition of epithelial proliferation. Transient high-level overexpression of mSpry2 throughout the pulmonary epithelium by intra-tracheal adenovirus microinjection also resulted in a low level of branching. These results indicate for the first time that mSPROUTY2 functions as a negative regulator of embryonic lung morphogenesis and growth.  相似文献   

3.
The fibroblast growth factor (FGF) regulates a broad spectrum of biological activities by activation of transmembrane FGF receptor (FGFR) tyrosine kinases and their coupled intracellular signaling pathways. FGF receptor substrate 2alpha (FRS2alpha) is an FGFR interactive adaptor protein that links multiple signaling pathways to the activated FGFR kinase. We previously showed that FGFR2 in the prostate epithelium is important for branching morphogenesis and for the acquisition of the androgen responsiveness. Here we show in mice that FRS2alpha is uniformly expressed in the epithelial cells of developing prostates, whereas it is expressed only in basal cells of the mature prostate epithelium. However, expression of FRS2alpha was apparent in luminal epithelial cells of regenerating prostates and prostate tumors. To investigate FRS2alpha function in the prostate, the Frs2alpha alleles were ablated specifically in the prostatic epithelial precursor cells during prostate development. Similar to the ablation of Fgfr2, ablation of Frs2alpha disrupted MAP kinase activation, impaired prostatic ductal branching morphogenesis and compromised cell proliferation. Unlike the Fgfr2 ablation, disrupting Frs2alpha had no effect on the response of the prostate to androgens. More importantly, ablation of Frs2alpha inhibited prostatic tumorigenesis induced by oncogenic viral proteins. The results suggest that FRS2alpha-mediated signals in prostate epithelial cells promote branching morphogenesis and proliferation, and that aberrant activation of FRS2-linked pathways might promote tumorigenesis. Thus, the prostate-specific Frs2alpha(cn) mice provide a useful animal model for scrutinizing the molecular mechanisms underlying prostatic development and tumorigenesis.  相似文献   

4.
Branching morphogenesis of many organs, including the embryonic lung, is a dynamic process in which growth factor mediated tyrosine kinase receptor activation is required, but must be tightly regulated to direct ramifications of the terminal branches. However, the specific regulators that modulate growth factor signaling downstream of the tyrosine kinase receptor remain to be determined. Herein, we demonstrate for the first time an important function for the intracellular protein tyrosine phosphatase Shp2 in directing embryonic lung epithelial morphogenesis. We show that Shp2 is specifically expressed in embryonic lung epithelial buds, and that loss of function by the suppression of Shp2 mRNA expression results in a 53% reduction in branching morphogenesis. Furthermore, by intra-tracheal microinjection of a catalytically inactive adenoviral Shp2 construct, we provide direct evidence that the catalytic activity of Shp2 is required for proper embryonic lung branch formation. We demonstrate that Shp2 activity is required for FGF10 induced endodermal budding. Furthermore, a loss of Shp2 catalytic activity in the embryonic lung was associated with a reduction in ERK phosphorylation and epithelial cell proliferation. However, epithelial cell differentiation was not affected. Our results show that the protein tyrosine phosphatase Shp2 plays an essential role in modulating growth factor mediated tyrosine kinase receptor activation in early embryonic lung branching morphogenesis.  相似文献   

5.
FGF receptor 2 isoform IIIb (FGFR2b), originally discovered as a receptor for FGF7, is known to be an important receptor in vertebrate morphogenesis, because FGFR2b null mice exhibit agenesis or dysgenesis of various organs, which undergo budding and branching morphogenesis. Since FGF7 null mice do not exhibit marked defects in organogenesis, it has been considered that other FGF(s) than FGF7 might function as a major ligand for FGFR2b during organogenesis. One of the candidate ligands is FGF10, because FGF10 binds to FGFR2b with high affinity and the formation of the limb and lung is arrested in FGF10 null mice as found in FGFR2b-deficient mice. Previous analyses of FGF10 null mice revealed that FGF10 is required for limb and lung development. To elucidate the role of FGF10 in wide-range organogenesis, we further analyzed the phenotypes of the FGF10 knockout mice. We found diverse phenotypes closely related to those for FGFR2b-deficient mice, which includes the absence of thyroid, pituitary, and salivary glands, while minor defects were observed in the formation of teeth, kidneys, hair follicles, and digestive organs. These results suggest that FGF10 acts as a major ligand for FGFR2b in mouse multi-organ development.  相似文献   

6.
Bone morphogenetic protein-4 (BMP-4) is a key morphogen for embryonic lung development that is expressed at high levels in the peripheral epithelium, but the mechanisms that modulate BMP-4 function in early mouse lung branching morphogenesis are unclear. Here, we studied the BMP-4 antagonist Gremlin, which is a member of the DAN family of BMP antagonists that can bind and block BMP-2/4 activity. The expression level of gremlin in embryonic mouse lungs is highest in the early embryonic pseudoglandular stage [embryonic days (E) 11.5-14.5] and is reduced during fetal lung maturation (E18.5 to postnatal day 1). In situ hybridization indicates that gremlin is diffusely expressed in peripheral lung mesenchyme and epithelium, but relatively high epithelial expression occurs in branching buds at E11.5 and in large airways after E16.5. In E11.5 lung organ culture, we found that exogenous BMP-4 dramatically enhanced peripheral lung epithelial branching morphogenesis, whereas reduction of endogenous gremlin expression with antisense oligonucleotides achieved the same gain-of-function phenotype as exogenous BMP-4, including increased epithelial cell proliferation and surfactant protein C expression. On the other hand, adenoviral overexpression of gremlin blocked the stimulatory effects of exogenous BMP-4. Therefore, our data support the hypothesis that Gremlin is a physiologically negative regulator of BMP-4 in lung branching morphogenesis.  相似文献   

7.
We previously demonstrated that Fibroblast Growth Factor 10 (FGF10) and its receptor FGFR2b play a key role in controlling the very early stages of mammary gland development during embryogenesis [Mailleux, A.A., Spencer-Dene, B., Dillon, C., Ndiaye, D., Savona-Baron, C., Itoh, N., Kato, S., Dickson, C., Thiery, J.P., and Bellusci, S. (2002). Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development 129, 53-60. Veltmaat, J. M., Relaix, F., Le, L.T., Kratochwil, K., Sala, F.G., van Veelen, W., Rice, R., Spencer-Dene, B., Mailleux, A.A., Rice, D.P., Thiery, J.P., and Bellusci, S. (2006). Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 133, 2325-35.]. However, the role of FGFR2b signaling in postnatal mammary gland development is still elusive. We show that FGF10 is expressed at high level throughout the adipose tissue in the mammary gland of young virgin female mice whereas its main receptor FGFR2 is found mostly in the epithelium. Using a rtTA transactivator/tetracycline promoter approach allowing inducible and reversible attenuation of the FGFR2b signaling throughout the adult mouse, we are now reporting that FGFR2b signaling is also critical during postnatal mammary gland development. Ubiquitous attenuation of FGFR2b signaling in the postnatal mouse for 6 weeks starting immediately after birth is not lethal and leads to minor defects in the animal. Upon dissection of the mammary glands, a 40% reduction in size compared to the WT control is observed. Further examination shows a rudimentary mammary epithelial tree with completely absent terminal end buds (TEBs), compared to a well-branched structure observed in wild type. Transplantation of mammary gland explants into cleared fat pad of wild type mouse recipients indicates that the observed abnormal branching results from defective FGFR2b signaling in the epithelium. We also demonstrate that this rudimentary tree reforms TEBs and resumes branching upon removal of doxycycline suggesting that the regenerative capacities of the mammary epithelial progenitor cells were still functional despite long-term inactivation of the FGFR2b pathway. At the cellular level, upon FGFR2b attenuation, we show an increase in apoptosis associated with a decrease in the proliferation of the mammary luminal epithelium. We conclude that during puberty, there is a differential requirement for FGFR2b signaling in ductal vs. TEBs epithelium. FGFR2b signaling is crucial for the survival and proliferation of the mammary luminal epithelial cells, but does not affect the regenerative potential of the mammary epithelial progenitor cells.  相似文献   

8.
Fibroblast growth factors (FGFs) can influence the growth and differentiation of cultured cells derived from neuroectoderm, ectoderm or mesenchyme. The FGFs interact with a family of at least four closely related receptor tyrosine kinases that are products of individual genes. To investigate the role of FGFs in the growth and differentiation of embryonic tissues and to determine whether the individual FGF receptor genes might have specific functions, we compared the localization of mRNA for two FGF receptor genes, FGFR1 (the flg gene product) and FGFR2 (the bek gene product), during limb formation and organogenesis in mouse embryos (E9.5-E16.5). Although the two genes were coexpressed in some tissues, the differential expression of FGFR1 and FGFR2 in most embryonic tissues was striking. FGFR1 was expressed diffusely in mesenchyme of limb buds, somites and organ rudiments. In contrast, FGFR2 was expressed predominantly in the epithelial cells of embryonic skin and of developing organs. The differential expression of FGFR1 and FGFR2 in mesenchyme and epithelium respectively, suggests the receptor genes are independently regulated and that they mediate different functions of FGFs during development.  相似文献   

9.
10.
11.
Heparan sulfate-FGF10 interactions during lung morphogenesis   总被引:3,自引:0,他引:3  
Signaling by fibroblast growth factor 10 (FGF10) through FGFR2b is essential for lung development. Heparan sulfates (HS) are major modulators of growth factor binding and signaling present on cell surfaces and extracellular matrices of all tissues. Although recent studies provide evidence that HS are required for FGF-directed tracheal morphogenesis in Drosophila, little is known about the HS role in FGF10-mediated bud formation in the vertebrate lung. Here, we mapped HS expression in the early lung and we investigated how HS interactions with FGF10-FGFR2b influence lung morphogenesis. Our data show that a specific set of HS low in O-sulfates is dynamically expressed in the lung mesenchyme at the sites of prospective budding near Fgf10-expressing areas. In turn, highly sulfated HS are present in basement membranes of branching epithelial tubules. We show that disrupting endogenous gradients of HS or altering HS sulfation in embryonic lung culture systems prevents FGF10 from inducing local responses and markedly alters lung pattern formation and gene expression. Experiments with selectively sulfated heparins indicate that O-sulfated groups in HS are critical for FGF10 signaling activation in the epithelium during lung bud formation, and that the effect of FGF10 in pattern is in part determined by regional distribution of O-sulfated HS. Moreover, we describe expression of a HS 6-O-sulfotransferase preferentially at the tips of branching tubules. Our data suggest that the ability of FGF10 to induce local budding is critically influenced by developmentally regulated regional patterns of HS sulfation.  相似文献   

12.
Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development.  相似文献   

13.
The mouse develops five pairs of mammary glands that arise during mid-gestation from five pairs of placodes of ectodermal origin. We have investigated the molecular mechanisms of mammary placode development using Lef1 as a marker for the epithelial component of the placode, and mice deficient for Fgf10 or Fgfr2b, both of which fail to develop normal mammary glands. Mammary placode induction involves two different signaling pathways, a FGF10/FGFR2b-dependent pathway for placodes 1, 2, 3 and 5 and a FGF10/FGFR2b-independent pathway for placode 4. Our results also suggest that FGF signaling is involved in the maintenance of mammary bud 4, and that Fgf10 deficient epithelium can undergo branching morphogenesis into the mammary fat pad precursor.  相似文献   

14.
15.
During the early development of the mouse lung a number of genes encoding signaling molecules are differentially expressed in the epithelium and mesenchyme of the distal buds. Evidence suggests they play a role in regulating the stereotypic processes of bud outgrowth and branching as well as proximal-distal patterning of both cell layers. To better understand the mechanisms underlying branching morphogenesis, a subtractive hybridization and differential screen was carried out for genes preferentially expressed in the epithelium at the tips of embryonic day 11.5 lung buds, versus more proximal regions. Twenty genes were identified, assigned to different categories based on sequence analysis, and their distal expression confirmed by whole-mount in situ hybridization.  相似文献   

16.
Recent investigations have suggested an active role for endothelial cells in organ development, including the lung. Herein, we investigated some of the molecular mechanisms underlying normal pulmonary vascular development and their influence on epithelial branching morphogenesis. Because the lung in utero develops in a relative hypoxic environment, we first investigated the influence of low oxygen on epithelial and vascular branching morphogenesis. Two transgenic mouse models, the C101-LacZ (epithelial-LacZ marker) and the Tie2-LacZ (endothelial-LacZ marker), were used. At embryonic day 11.5, primitive lung buds were dissected and cultured at either 20 or 3% oxygen. At 24-h intervals, epithelial and endothelial LacZ gene expression was visualized by X-galactosidase staining. The rate of branching of both tissue elements was increased in explants cultured at 3% oxygen compared with 20% oxygen. Low oxygen increased expression of VEGF, but not that of the VEGF receptor (Flk-1). Expression of two crucial epithelial branching factors, fibroblast growth factor-10 and bone morphogenetic protein-4, were not affected by low oxygen. Epithelial differentiation was maintained at low oxygen as shown by surfactant protein C in situ hybridization. To explore epithelial-vascular interactions, we inhibited vascular development with antisense oligonucleotides targeted against either hypoxia inducible factor-1 alpha or VEGF. Epithelial branching morphogenesis in vitro was dramatically abrogated when pulmonary vascular development was inhibited. Collectively, the in vitro data show that a low-oxygen environment enhances branching of both distal lung epithelium and vascular tissue and that pulmonary vascular development appears to be rate limiting for epithelial branching morphogenesis.  相似文献   

17.
哺乳动物在早期胚胎发育过程中,肺发育经历了气管分支的形态发生、树样结构上皮管道的形成,并伴随着血管的发育而发生的气体通路和肺泡的分化等过程.肺发生涉及到许多复杂的分子机制.肺形态学的变化受到一系列持家基因、激素、核转录因子、生长因子及其他因素的综合调控.目前已经发现决定肺分支形态发生的许多重要因子.本文根据目前最新研究进展,阐述了小鼠胚胎肺在分支形态发生过程中,上皮与间充质之间诱导的信号通路之间的相互作用及其对呼吸树形态建成的调控机制.  相似文献   

18.
In vertebrates, Sonic hedgehog (Shh) and transforming growth factor-beta (TGF-beta) signaling pathways occur in an overlapping manner in many morphogenetic processes. In vitro data indicate that the two pathways may interact. Whether such interactions occur during embryonic development remains unknown. Using embryonic lung morphogenesis as a model, we generated transgenic mice in which exon 2 of the TbetaRII gene, which encodes the type II TGF-beta receptor, was deleted via a mesodermal-specific Cre. Mesodermal-specific deletion of TbetaRII (TbetaRII(Delta/Delta)) resulted in embryonic lethality. The lungs showed abnormalities in both number and shape of cartilage in trachea and bronchi. In the lung parenchyma, where epithelial-mesenchymal interactions are critical for normal development, deletion of mesenchymal TbetaRII caused abnormalities in epithelial morphogenesis. Failure in normal epithelial branching morphogenesis in the TbetaRII(Delta/Delta) lungs caused cystic airway malformations. Interruption of the TbetaRII locus in the lung mesenchyme increased mRNA for Patched and Gli-1, two downstream targets of Shh signaling, without alterations in Shh ligand levels produced in the epithelium. Therefore, we conclude that TbetaRII-mediated signaling in the lung mesenchyme modulates transduction of Shh signaling that originates from the epithelium. To our knowledge, this is the first in vivo evidence for a reciprocal and novel mode of cross-communication between Shh and TGF-beta pathways during embryonic development.  相似文献   

19.
20.
The molecular basis of lung morphogenesis   总被引:35,自引:0,他引:35  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号