首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 145 毫秒
1.
自噬是真核细胞维持内环境稳态的一种内在平衡机制。现已发现,多种自噬相关蛋白质(autophagy related protein or Atg protein)参与自噬形成。其中,自噬相关蛋白1/Unc-51样激酶1(autophagy related 1/Unc-51-like kinase 1,Atg1/ULK1)蛋白酶复合物主要在自噬形成起始阶段发挥作用;自噬相关蛋白9·自噬相关蛋白2-自噬相关蛋白18(autophagy related 9·autophagy related 2-autophagy18,Atg9·Atg2-Atg18)复合物主要为自噬形成递送膜结构;自噬相关蛋白12(autophagy related 12,Atg12)和自噬相关蛋白5/微管相关蛋白1轻链3(autophagy-related 5/microtubule-associated protein 1light chain 3,Atg5/LC3)结合系统主要参与隔离膜的延伸和自噬体的成熟;而泡膜蛋白34-自噬相关蛋白6/Beclin1磷脂酰肌醇-3激酶复合物[vacuolar proteins sorting 34-autophagy related 6/Beclin 1phosphatidylinositol-3 kinase,Vps34-Atg6/Beclin1 PI(3)P]则可与不同物质结合,在自噬的起始和自噬体成熟过程中发挥重要作用。随着研究的深入,细胞自噬被认为可特异性识别底物进行降解,如线粒体自噬、噬脂、异体吞噬等。因此,自噬与多种疾病的发生发展密切相关,如神经系统疾病、肿瘤、心血管疾病、感染、代谢性疾病、特发性肺纤维化、肺动脉高压等疾病并参与衰老等生理过程。目前,一批以自噬为靶点的自噬调节剂正在临床试验阶段。  相似文献   

2.
自噬是一种保守的细胞内降解过程,在多种生物体内证实自噬有重要的生物学意义。但是自噬在牦牛这一高原特色物种体内的研究未见报道。因此为探索正常生理条件下自噬相关基因在牦牛生殖过程中的表达,本研究分别采集牦牛不同繁殖周期(卵泡期、黄体期及妊娠期)的主要生殖器官(输卵管、卵巢、子宫),克隆牦牛自噬相关基因5(Autophagy related 5,Atg5)基因并进行生物信息学分析;利用qRT-PCR检测Atg5 基因在组织中的相对表达量;并采用蛋白质免疫印迹(Western-blot, WB)检测Atg5和Atg5-Atg12(Autophagy related 12,自噬相关基因12)复合体在不同组织中的表达水平;免疫组织化学方法分析Atg5在各生殖器官中的分布特征。结果显示,成功克隆牦牛Atg5基因在进化过程中高度保守,编码的蛋白质为可溶性的非跨膜蛋白;qRT-PCR和WB检测结果显示Atg5和Atg5-Atg12复合体在牦牛输卵管、卵巢和子宫中均有表达。其中卵泡期卵巢Atg5-Atg12表达显著高于黄体期和妊娠期,卵泡期Atg5的表达却显著低于黄体期和妊娠期;黄体期输卵管Atg5-Atg12表达量显著高于卵泡期和妊娠期,妊娠期输卵管中Atg5的表达量显著高于卵泡期和黄体期;卵泡期和妊娠期子宫中Atg5-Atg12的表达量显著高于黄体期,而黄体期子宫中的Atg5的表达量又显著高于妊娠期和卵泡期,在蛋白水平上Atg5和Atg5-Atg12的表达呈负相关。免疫组织化学结果显示Atg5在输卵管黏膜上皮,卵巢卵泡膜、颗粒层、生殖上皮、黄体细胞,子宫内膜和子宫腺体均有表达。研究结果表明自噬在牦牛体内与其他物种相似具有保守性,通过检测Atg5-Atg12复合体在牦牛生殖器官中的表达,推测自噬可能参与牦牛生殖生理过程的调控。该研究结果对自噬在其他大型哺乳动物以及高寒低氧环境中动物的研究具有借鉴意义,有助于自噬参与其他动物生殖生理作用机制的研究。    相似文献   

3.
昆虫变态发育过程中的细胞自噬和凋亡   总被引:1,自引:0,他引:1  
在昆虫变态期,幼虫组织发生退化或消亡,原因在于蜕皮甾醇激素(ecdysteroid),即通常所说的蜕皮激素,诱导这些组织的细胞发生了自噬(autophagy)和凋亡(apoptosis)的程序性细胞死亡(programmed cell death,PCD)。一般情况下,自噬途径构成一种饥饿应激适应性以避免细胞的死亡,表现为低水平Cvt泡(Cvt vesicle)和自噬体(autophagosome)对部分胞质溶胶、蛋白聚集体和细胞器的吞噬和降解。昆虫进入变态发育时,由于蜕皮激素的激活,由遗传级联系统调控的PCD机制被启动,低水平的常态自噬转入高水平的自噬并同时诱发凋亡,细胞进入不可逆的死亡,导致幼虫组织在变态期退化或消亡。对果蝇Drosophila变态期PCD机制中最重要的发现是:(1)在自噬发生的PI3KⅠ- Tor 和 PI3KⅢ的分子通路中,由自噬相关蛋白Atg1引发的高水平自噬能够诱导凋亡;(2)蜕皮激素诱导表达的βFTZ-F1,E93,BR-C,E74A等转录因子不但激活凋亡的Caspases通路,还能诱导自噬的发生。  相似文献   

4.
Atg11利用自身众多螺旋结构域作为支架蛋白,主要介导选择性自噬过程中自噬体的形成.选择性自噬可特异性清除损坏的生物大分子和细胞器,在真核生物的胞内物质周转及细胞器质量控制中起重要作用.本文首先介绍了Atg11的结构特点,其次重点介绍了Atg11在3种选择性自噬(细胞质到液泡靶向(Cvt)途径、过氧化物酶体自噬和线粒体自噬)中的作用,最后概括了Atg11的其他功能.本文系统总结了近几年关于Atg11的研究进展,以期为自噬体形成机制研究及Atg11在自噬体形成过程中的功能研究提供参考.  相似文献   

5.
为探究绞股蓝总皂苷调节自噬小体对动脉粥样硬化的防治作用。本研究分体内、体外实验。体内实验:30只健康Apo E-/-小鼠随机分为3组,模型组、绞股蓝总皂苷组和辛伐他汀组,每组10只。10只C57BL/6J小鼠为正常组。模型制备及给药干预完成后,全自动生化分析仪检测各组小鼠血脂水平,Western blot技术检测各组小鼠主动脉Atg3、Atg4c、Atg5、Atg12蛋白表达情况。体外实验:培养EA.hy926细胞,随机分为正常组、模型组、绞股蓝总皂苷组、人参皂苷GRb3组和绞股蓝皂苷XILX组。Western blot技术检测各组细胞自噬小体形成信号通路相关蛋白Atg3、Atg4c、Atg5、Atg12的表达情况。结果发现,绞股蓝总皂苷能够降低Apo E-/-小鼠血清中的TG、TC、LDL-C水平(P0.01),提高血清HDL-C水平(P0.01)。且绞股蓝总皂苷能够提高Apo E-/-小鼠主动脉Atg3、Atg4c、Atg5、Atg12蛋白表达水平(P0.05或P0.01)。绞股蓝总皂苷、人参皂苷GRb3和绞股蓝皂苷XILX能够提高ox-LDL诱导的EA.hy926细胞自噬小体相关蛋白Atg3、Atg4c、Atg5、Atg12的表达水平(P0.01)。且绞股蓝总皂苷效果最好。以上结果说明,股蓝总皂苷可能通过促进自噬小体形成,降低Apo E-/-小鼠血清血脂水平,保护EA.hy926细胞抗内皮损伤,进而发挥其防治AS的生物学作用,且在该过程中人参皂苷GRb3和绞股蓝皂苷XILX可能是绞股蓝总皂苷中发挥关键作用的有效成分。  相似文献   

6.
Su M  Sun X  Liu CF 《生理科学进展》2010,41(2):112-116
组蛋白去乙酰化酶6(HDAC6)是位于胞浆中的一种去乙酰化酶,参与调控细胞内多种重要的生物活性,可使α-微管蛋白(α-tubulin)、热休克蛋白90(Hsp90)和皮肌动蛋白(cortactin)去乙酰化,并与多种蛋白质缔结形成复合物。在细胞培养中,当产生的错误折叠蛋白超过了分子伴侣再折叠及泛素蛋白酶体系统(UPS)处理能力时,HDAC6可将其特异转运到细胞核周结构——异常蛋白包涵体(aggresome)中,从而使之被自噬有效降解,因此认为HDAC6在异常蛋白降解中发挥了关键的调控功能,是"蛋白构象病"的潜在治疗靶点。  相似文献   

7.
细胞自噬是一种在真核生物中十分保守的溶酶体依赖性胞内降解途径,通过形成双层膜结构包裹细胞质内的生物大分子或者细胞器运送到溶酶体进行降解。在实验中发现,Ctk1蛋白对自噬过程有重要调节作用。Ctk1的缺失或者失活都会导致自噬过程不能正常发生,同时也会影响酵母CVT途径。自噬相关蛋白Atg3与Atg8的结合受到Ctk1的调控影响。因此,Ctk1在自噬过程中自噬体的形成中发挥了重要作用,揭示了Ctk1的新的功能作用。  相似文献   

8.
目的:探讨骨髓间充质干细胞(BMSCs)向神经细胞分化前后自噬水平的变化,进一步研究BMSCs神经分化机制。方法:原代培养大鼠BMSCs,三代后用L-DMEM(2%DMSO+200μmol/L BHA)诱导其向神经细胞分化,采用免疫细胞化学方法检测神经元特异标记物NSE表达,采用RT-PCR方法检测自噬相关基因LC3B、Beclin1、Atg5、Atg7、Atg10的表达,用Western blot及流式细胞术检测了自噬标志蛋白LC3B的表达。结果:大鼠BMSCs传3代后,贴壁的BMSCs可达90%以上,类成纤维细胞样梭形生长,经诱导剂作用5 h后,细胞呈现神经细胞样改变,NSE阳性率为(83±5)%。RT-PCR结果表明BMSCs向神经细胞分化后LC3B,Beclin1,Atg5,Atg7,Atg10的表达升高,流式细胞术检测LC3B的平均荧光强度升高,Western blot结果表明神经分化后LC3B-Ⅱ表达增加。结论:大鼠BMSCs向神经细胞分化后自噬水平增加。  相似文献   

9.
PTIP (Pax transactivation domain-interacting protein,PAXIP1)蛋白参与MLL3 (lysine methyltransferase 2C,KMT2C)/MLL4(lysine methyltransferase 2B,KMT2B)组蛋白H3K4甲基转移酶复合体,促进基因的转录激活。但关于PTIP蛋白的乙酰化修饰及人宫颈癌细胞中PTIP转录激活靶基因的研究尚无报道。本研究以稳定表达SFB-PTIP蛋白的293T细胞株为对象,通过免疫沉淀和Western印迹法发现,PTIP蛋白能够发生乙酰化修饰,乙酰转移酶CBP/P300介导PTIP蛋白的乙酰化过程,CBP是主要乙酰转移酶。去乙酰化酶HDAC1/2/3介导PTIP蛋白的去乙酰化过程。选择性HDAC1-3抑制剂MS-275促进PTIP蛋白乙酰化水平上升,且呈剂量和时间依赖性。以人宫颈癌HeLa细胞为研究对象,RNA-seq和RT-qPCR证明,CCDC121 (coiled-coil domain containing121)和G蛋白偶联受体75 (G protein-coupled receptor 75,GPR75)是PTIP的转录激活靶基因(P<0. 01)。和对照相比,MS-275介导的蛋白质乙酰化水平上升,促进基因CCDC121和GPR75的mRNA转录呈现不同程度的剂量依赖性上升(P<0. 01,P<0. 05)。由此推测,MS-275有可能是通过促进PTIP蛋白的乙酰化水平,促进CCDC121和GPR75的转录。但其详细机制有待进一步研究。本研究对今后深入探讨PTIP乙酰化修饰对下游肿瘤相关基因转录的调节和功能,如肿瘤发生、进展等方面的调控机制提供了基础。  相似文献   

10.
目的:探讨高糖背景下白蛋白造成肾小管间质损伤的作用及其机制。方法:体外培养大鼠近端肾小管上皮细胞系NRK-52E细胞,观察高糖培养环境下细胞自噬表达的改变;同时观察低浓度牛血清白蛋白(BSA)单独刺激,对肾小管上皮细胞自噬蛋白表达的影响以及细胞凋亡蛋白的表达改变;接着在高糖培养环境下加入低浓度的白蛋白刺激,观察肾小管上皮细胞的损伤效应及自噬表达情况。结果:高糖培养条件下肾小管上皮细胞自噬蛋白Beclin-1表达增加(P0.05),低浓度白蛋白也诱导肾小管上皮细胞自噬蛋白Beclin-1、Atg12表达增加(P0.05),以及细胞凋亡蛋白cleaved caspase3的轻度增加,乳酸脱氢酶活性增加(P0.05);但高糖培养下,少量白蛋白却抑制了肾小管上皮细胞自噬蛋白Beclin-1、Atg12的表达,并且显著增加了肾小管上皮细胞的凋亡蛋白cleaved caspase3的表达(P0.05)。结论:自噬是细胞自身的一种保护机制。在高糖背景下,白蛋白通过影响自噬的自身调节机制,促进了肾小管间质的损害作用。  相似文献   

11.
Host resistance to viral infection requires type I (α/β) and II (γ) interferon (IFN) production. Another important defense mechanism is the degradative activity of macroautophagy (herein autophagy), mediated by the coordinated action of evolutionarily conserved autophagy proteins (Atg). We show that the Atg5-Atg12/Atg16L1 protein complex, whose prior known function is in autophagosome formation, is required for IFNγ-mediated host defense against murine norovirus (MNV) infection. Importantly, the direct antiviral activity of IFNγ against MNV in macrophages required Atg5-Atg12, Atg7, and Atg16L1, but not induction of autophagy, the degradative activity of lysosomal proteases, fusion of autophagosomes and lysosomes, or the Atg8-processing protein Atg4B. IFNγ, via Atg5-Atg12/Atg16L1, inhibited formation of the membranous cytoplasmic MNV replication complex, where Atg16L1 localized. Thus, the Atg5-Atg12/Atg16L1 complex performs a pivotal, nondegradative role in IFNγ-mediated antiviral defense, establishing that multicellular organisms have evolved to use portions of the autophagy pathway machinery in a cassette-like fashion for host defense.  相似文献   

12.
Autophagy is an evolutionarily conserved cellular process which degrades intracellular contents. The Atg17- Atg31-Atg29 complex plays a key role in autophagy induction by various stimuli. In yeast, autophagy occurs with autophagosome formation at a special site near the vacuole named the pre-autophagosomal structure (PAS). The Atg17-Atg31-Atg29 complex forms a scaffold for PAS organization, and recruits other autophagy-related (Atg) proteins to the PAS. Here, we show that Atg31 is a phosphorylated protein. The phosphorylation sites on Atg31 were identified by mass spectrometry. Analysis of mutants in which the phosphorylated amino acids were replaced by alanine, either individually or in various combinations, identified S174 as the functional phosphorylation site. An S174A mutant showed a similar degree of autophagy impairment as an Atg31 deletion mutant. S174 phosphorylation is required for autophagy induced by various autophagy stimuli such as nitrogen starvation and rapamycin treatment. Mass spectrometry analysis showed that S174 is phosphorylated constitutively, and expression of a phosphorylation-mimic mutant (S174D) in the Atg31 deletion strain restores autophagy. In the S174A mutant, Atg9-positive vesicles accumulate at the PAS. Thus, S174 phosphorylation is required for formation of autophagosomes, possibly by facilitating the recycling of Atg9 from the PAS. Our data demonstrate the role of phosphorylation of Atg31 in autophagy.  相似文献   

13.
《Autophagy》2013,9(1):185-186
The Atg1 complex, comprising Atg1, Atg13, Atg17, Atg29, and Atg31, is a key initiator of autophagy. The Atg17-Atg31-Atg29 subcomplex is constitutively present at the phagophore assembly site (PAS), while Atg1 and Atg13 join the complex when autophagy is triggered by starvation or other signals. We sought to understand the energetics and dynamics of assembly using isothermal titration calorimetry (ITC), sedimentation velocity analytical ultracentrifugation, and hydrogen-deuterium exchange (HDX). We showed that the membrane and Atg13-binding domain of Atg1, Atg1EAT, is dynamic on its own, but is rigidified in its high-affinity (~100 nM) complex with Atg13. Atg1EAT and Atg13 form a 2:2 dimeric assembly and together associate with lower affinity (~10 μM) with the 2:2:2 Atg17-Atg31-Atg29 complex. These results lead to an overall model for the assembly pathway of the Atg1 complex. The model highlights the Atg13-Atg17 binding event as the weakest link in the assembly process and thus as a natural regulatory checkpoint.  相似文献   

14.
The Atg1 complex, comprising Atg1, Atg13, Atg17, Atg29, and Atg31, is a key initiator of autophagy. The Atg17-Atg31-Atg29 subcomplex is constitutively present at the phagophore assembly site (PAS), while Atg1 and Atg13 join the complex when autophagy is triggered by starvation or other signals. We sought to understand the energetics and dynamics of assembly using isothermal titration calorimetry (ITC), sedimentation velocity analytical ultracentrifugation, and hydrogen-deuterium exchange (HDX). We showed that the membrane and Atg13-binding domain of Atg1, Atg1EAT, is dynamic on its own, but is rigidified in its high-affinity (∼100 nM) complex with Atg13. Atg1EAT and Atg13 form a 2:2 dimeric assembly and together associate with lower affinity (∼10 μM) with the 2:2:2 Atg17-Atg31-Atg29 complex. These results lead to an overall model for the assembly pathway of the Atg1 complex. The model highlights the Atg13-Atg17 binding event as the weakest link in the assembly process and thus as a natural regulatory checkpoint.  相似文献   

15.
Ogawa M  Sasakawa C 《Autophagy》2011,7(11):1389-1391
Bacterial intrusion of host cells can be recognized by the innate immune system, including autophagy, via multiple cellular pathways. We have identified Tecpr1 as an Atg5-binding partner, and found that Tecpr1 interacts with the Atg12-Atg5-Atg16L1 complex via binding to Atg5. In Shigella infected cells, Tecpr1 colocalizes with Atg5 and LC3 at Shigella-containing phagophores. Tecpr1 activity is required for efficient autophagy to target bacteria, but a deficiency of Tecpr1 in host cells does not have a marked effect on canonical autophagy. Tecpr1 plays an important role in promoting selective autophagy via the WIPI-2-Tecpr1-Atg5 pathway in targeting bacteria, protein aggregates and damaged mitochondria.  相似文献   

16.
《Autophagy》2013,9(11):1389-1391
Bacterial intrusion of host cells can be recognized by the innate immune system, including autophagy, via multiple cellular pathways. We have identified Tecpr1 as an Atg5-binding partner, and found that Tecpr1 interacts with the Atg12-Atg5-Atg16L1 complex via binding to Atg5. In Shigella infected cells, Tecpr1 colocalizes with Atg5 and LC3 at Shigella-containing phagophores. Tecpr1 activity is required for efficient autophagy to target bacteria, but a deficiency of Tecpr1 in host cells does not have a marked effect on canonical autophagy. Tecpr1 plays an important role in promoting selective autophagy via the WIPI-2-Tecpr1-Atg5 pathway in targeting bacteria, protein aggregates and damaged mitochondria.  相似文献   

17.
ULK1 and ATG13 assemble with RB1CC1/FIP200 and ATG101 to form a macroautophagy (hereafter autophagy) induction (ULK1) complex in higher eukaryotes. The yeast counterpart, the Atg1 complex, is comprised of Atg1 and Atg13 (ULK1 and ATG13 homologs), Atg17 (a proposed functional homolog of RB1CC1), and either the Atg101 subunit (in Schizosaccharomyces pombe) or the Atg29-Atg31 heterodimer (in Saccharomyces cerevisiae). With mutual exclusivity of, and no detectable homology between, the Atg29-Atg31 dimer and Atg101, knowledge about the roles of these proteins in autophagy induction is an important piece in the puzzle of understanding the molecular mechanism of autophagy initiation. A recent study reporting the structure of the S. pombe homolog Atg101 bound to the Atg13HORMA domain is a notable contribution to this knowledge (see the punctum in this issue of the journal).  相似文献   

18.
Atg18 is essential for both autophagy and the regulation of vacuolar morphology. The latter process is mediated by phosphatidylinositol 3,5-bisphosphate binding, which is dispensable for autophagy. Atg18 also binds to phosphatidylinositol 3-phosphate (PtdIns(3)P) in vitro. Here, we investigate the relationship between PtdIns(3)P-binding of Atg18 and autophagy. Using an Atg18 variant, Atg18(FTTG), which is unable to bind phosphoinositides, we found that PtdIns(3)P binding of Atg18 is essential for full activity in both selective and nonselective autophagy. Atg18(FTTG) formed a complex with Atg2 in a normal manner, and Atg18-Atg2 complex formation occurred in cells in the absence of PtdIns(3)P, indicating that Atg18-Atg2 complex formation is independent of PtdIns(3)P-binding of Atg18. Atg18 localized to endosomes, the vacuolar membrane, and autophagic membranes, whereas Atg18(FTTG) did not localize to these structures. The localization of Atg2 to autophagic membranes was also lost in Atg18(FTTG) cells. These data indicate that PtdIns(3)P-binding of Atg18 is involved in directing the Atg18-Atg2 complex to autophagic membranes. Connection of a 2xFYVE domain, a specific PtdIns(3)P-binding domain, to the C terminus of Atg18(FTTG) restored the localization of Atg18-Atg2 to autophagic membranes and full autophagic activity, indicating that PtdIns(3)P-binding by Atg18 is dispensable for the function of the Atg18-Atg2 complex but is required for its localization. This also suggests that PtdIns(3)P does not act allosterically on Atg18. Taken together, Atg18 forms a complex with Atg2 irrespective of PtdIns(3)P binding, associates tightly to autophagic membranes by interacting with PtdIns(3)P, and plays an essential role.  相似文献   

19.
Macroautophagy (hereafter autophagy) initiates at the phagophore assembly site (PAS), where most of the AuTophaGy-related (Atg) proteins are at least transiently localized. As the first protein complex targeted to the PAS, the Atg17-Atg31-Atg29 complex serves as the scaffold for other Atg proteins and plays a critical role for the organization of the PAS, and in autophagy initiation. We recently showed that this complex is constitutively formed and activated by the phosphorylation of Atg29 when autophagy is induced. Phosphorylation of Atg29 is required for its interaction with Atg11, another scaffold protein, and its function for promoting the proper assembly of the PAS. Single-particle electron microscopy analysis of the Atg17-Atg31-Atg29 complex reveals an elongated structure with Atg29 located at the opposing ends. This structural arrangement allows Atg29 to interact with Atg11, and is critical in the organization of the intact Atg1 complex.  相似文献   

20.
Chen D  Fan W  Lu Y  Ding X  Chen S  Zhong Q 《Molecular cell》2012,45(5):629-641
Autophagy is a major catabolic pathway in eukaryotes associated with a broad spectrum of human diseases. In autophagy, autophagosomes carrying cellular cargoes fuse with lysosomes for degradation. However, the molecular mechanism underlying autophagosome maturation is largely unknown. Here we report that TECPR1 binds to the Atg12-Atg5 conjugate and phosphatidylinositol 3-phosphate (PtdIns[3]P) to promote autophagosome-lysosome fusion. TECPR1 and Atg16 form mutually exclusive complexes with the Atg12-Atg5 conjugate, and TECPR1 binds PtdIns(3)P upon association with the Atg12-Atg5 conjugate. Strikingly, TECPR1 localizes to and recruits Atg5 to autolysosome membrane. Consequently, elimination of TECPR1 leads to accumulation of autophagosomes and blocks autophagic degradation of LC3-II and p62. Finally, autophagosome maturation marked by GFP-mRFP-LC3 is defective in TECPR1-deficient cells. Thus, we propose that the concerted interactions among TECPR1, Atg12-Atg5, and PtdIns(3)P provide the fusion specificity between autophagosomes and lysosomes and that the assembly of this complex initiates the autophagosome maturation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号