首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
里杜霉素产生菌的鉴定   总被引:1,自引:0,他引:1  
从广东省崖县的土壤中,分离出一株产生里杜霉素(Lividomycin)的放线菌,编号为3897-5。该菌株孢子丝直至波曲,孢子链含10—15个孢子,孢子卵圆至柠檬形,表面光滑或略糙;在合成培养基上气生菌丝体灰色至蓝灰色;基内菌丝体白、灰、蓝灰或黄棕色;在多种培养基内不产生类黑色素;在苹果酸钙等培养基上可形成菌核。细胞壁化学组分为I型。根据形态、培养特征及生理生化特性,该菌株属于钦氏菌属,与该属中的已知种均不相同,认为是一新种,命名为崖县钦氏菌(Chainia yaxianensis n. sp. Yan et al)。  相似文献   

2.
从我国土壤中分离到链霉菌.1-67,具有产生L-4-氧代籁氨酸的能力。1一677菌株孢子丝直形、无螺旋,孢子柱形或长圆形,孢子外壁光滑。在合成培养基上,气生菌丝体虾壳粉红;基内菌丝体开始绿色以后转褐色;有机培养基上形成浅褐色素。根据链霉菌-_677的形态培养特征和生理生化特性与国内外资料上发表的已知种均有不同,因此确定为新种,命名为玫瑰绿褐链霉菌(Streptomyces roseoviridofuscus n. sp.)。  相似文献   

3.
从原始热带雨林土壤中,分离到一株产蓝色色素菌株18-A-5,对其进行了系统分类学研究。形态学特征观察表明,在高氏合成一号培养基上初产蓝绿色色素,日久为深蓝色,基内菌丝蓝色,气生菌丝灰白色,产灰色孢子,孢子丝直或柔曲,形成长孢子链,孢子圆柱形。其DNA的G+C摩尔分数为62.4%,16S rDNA序列分析结果(GenBank登陆号为EU054353),18-A-5与生靛链霉菌Streptomyces indigoferus ATCC23924T 、草绿色链霉菌Streptomyces herbaricolor ATCC23924T具有极高的同源性,达100%,聚类分析表明,18-A-5与生靛链霉菌Streptomyces indigoferus、草绿色链霉菌Streptomyces herbaricolor两株菌聚类在一起,分支置信度为74%。结合生理生化特性、细胞壁化学组成分析、脂肪酸分析等将菌株18-A-5定名为草绿色链霉菌Streptomyces herbaricolor。并对该蓝绿色可溶性色素性质进行了耐酸碱性、热稳定性、抗菌谱等初步分析。  相似文献   

4.
从生姜田土中分离到一株对姜瘟青枯假单胞杆菌(PseudomonassolanacarumSmith)有强拮抗作用的链霉菌菌株SR 11,研究拮抗性表明,对革兰氏阳性细菌、革兰氏阴性细菌以及多种病原真菌均有很强的抑制作用。对该菌株进行形态特征、培养特征、生理生化、细胞壁组分分析及16SrDNA序列分析。基内菌丝无横隔、不断裂,气生菌丝多分枝;孢子丝波曲至螺旋形,孢子椭圆形,表面光滑。细胞壁化学组分Ⅰ型,糖型C。在培养成熟后,气丝变为灰色,可闻到浓烈的土味。以16SrDNA序列为基础构建了包括13株相关种属细菌在内的系统发育树,其中,与12个模式链霉菌株的16SrDNA序列的同源性为96 5 %~98 3%。  相似文献   

5.
具抗菌活性放线菌菌株JSM 20.1的分离和鉴定   总被引:1,自引:1,他引:0  
从药用植物银杏(Ginkgo biloba)根际土壤中分离到1株放线菌菌株JSM20.1,其发酵产物具有广谱抗菌活性。该菌株在多数培养基上生长良好,具有链霉菌属的典型形态特征。菌丝多分枝,不断裂;基内菌丝黄白色至棕褐色,气生菌丝黄白色至棕红色;孢子链直且长,偶有波曲,孢子柱状、光滑、不运动。在察氏、马铃薯浸汁、葡萄糖-天门冬酰胺、酵母膏-麦芽膏(ISP2)、燕麦(ISP3)、无机盐淀粉(ISP4)和甘油-天门冬酰胺(ISP5)琼脂上均产生可溶性色素,而在营养琼脂上不产生可溶性色素。生长温度范围为7~40℃,最适生长温度28℃;生长pH范围为5.0~10.0,最适pH7.0;能在含0~3%(质量与体积比)NaCl的培养基上生长,而在无NaCl的ISP2培养基生长最佳。根据其形态学特征、生理生化特征、细胞化学分类特征和基于16SrRNA基因序列的系统发育分析结果,菌株JSM20.1被鉴定为链霉菌属的有效发表种Streptomyces cyaneofuscatus的1个菌株。  相似文献   

6.
玉米大斑病生防放线菌的筛选鉴定及发酵条件优化   总被引:6,自引:0,他引:6  
【目的】从土壤中筛选对玉米大斑病菌具有较强拮抗作用的放线菌菌株。【方法】采用稀释涂布法分离;采用平板对峙法、牛津杯法、抑制菌丝生长速率法、抑制孢子萌发法进行拮抗菌的筛选;根据菌株BZ45的形态与培养特征、生理生化特性、16SrDNA序列分析对其进行鉴定。通过单因素试验和正交设计试验优化培养基组分及发酵条件。【结果】通过分离筛选得到一株具有强抑制作用的放线菌菌株BZ45,它对常见的8种病原真菌均有拮抗作用,菌株BZ45的发酵滤液对玉米大斑病菌(Setosphaeria turcica)CC9的菌丝生长和孢子萌发均有较强的抑制作用。菌株BZ45与链霉菌中的壮观链霉菌(Streptomyces spectabilis)的亲缘关系较近,且形态与培养特征、生理生化特性与壮观链霉菌的基本相符。研究表明其最佳发酵配方和培养条件为:果糖1.5%、蛋白胨3.0%、KH2PO40.1%、NaCl 0.04%、CaCO30.1%,起始pH为7.2,装瓶量50 mL/250mL,28℃,200 r/min,种子液接种量为10%,摇瓶培养4 d。【结论】菌株BZ45鉴定为壮观链霉菌(Streptomyces spectabilis),菌株BZ45对玉米大斑病菌(Setosphaeria turcica)CC9显示出较强的拮抗作用。  相似文献   

7.
【背景】金针菇菌种在继代培养的过程中会出现菌种退化的现象,影响着金针菇的产量与质量。【目的】为研究金针菇退化菌种菌丝的生理生化特征,筛选金针菇退化菌株。【方法】以金针菇原始菌株(H)和退化菌株(T)为研究对象,测定不同碳源培养基上菌丝的生理生化特征及超氧化物歧化酶(SuperoxideDismutase,SOD)、过氧化物酶(Peroxidase,POD)和过氧化氢酶(Catalase,CAT)的活性,并测定菌丝在栽培瓶中的漆酶(Laccase,Lac)和锰过氧化物酶(ManganesePeroxidase,MnP)的活性,记录菌丝在搔菌后的恢复情况。【结果】T在各个碳源的菌丝生长速度低于H,粉孢子等级在3-4级之间,SOD、CAT活性低于H,在栽培料中的Lac活性和MnP活性在第5天时与H相同,在第10、15、20天低于H。T在搔菌后菌丝恢复时间比H恢复时间长,恢复后的菌丝长势没有H长势浓密。【结论】通过探究金针菇原始菌株与退化菌株的菌丝生理生化特征,为判断金针菇菌株是否为退化菌株提供理论依据。  相似文献   

8.
利用稀释涂布法从番茄根际土壤中分离放线菌,并以番茄灰霉菌为靶标,利用对峙培养法和牛津杯法筛选拮抗放线菌,得到一株具有较强抑菌活性的放线菌LA-5.通过培养特征、生理生化特性及基于16S rDNA 序列系统进化分析,将菌株LA-5初步鉴定为链霉菌.复筛结果显示,LA-5发酵滤液对番茄灰霉菌孢子萌发及菌丝生长均有明显的抑制作用,其中100倍发酵滤液对孢子萌发抑制率和菌丝生长抑制率均在50%以上;受抑制菌落呈白色,气生菌丝萎缩稀疏,菌丝纤细、分支明显减少.离体防效试验显示,菌株LA-5发酵原液对番茄灰霉病防效可达83.4%.该菌株有望开发为防治番茄灰霉病的生防菌株.  相似文献   

9.
对从土壤微生物中筛选到的放线菌菌株1356进行分类学和抗菌活性的研究。采用多相分类法,对菌株的形态特征、培养特征、生理生化特性及16 SrRNA基因序列进行了研究。结果表明:该菌株的形态特征、培养特征、生理生化特性为链霉菌属的特征;16S rDNA序列分析及系统进化树分析表明其序列与灰色产色链霉菌的同源性最高;该菌株的发酵产物对番茄叶霉、白色念珠菌、小麦根腐菌等17种真菌均有不同程度的抑制作用。放线菌1356菌株具有广谱抗真菌活性而对细菌无作用;初步确定其为链霉菌属灰色产色链霉菌的一个亚种。  相似文献   

10.
通过16S r RNA基因序列分析一株拮抗放线菌JXNU03的系统发育关系,通过生理生化试验分析其生理生化特征,利用菌丝生长率法和杯碟法测定其拮抗活性。结果发现,放线菌JXNU03在高氏一号培养基上培养时,基内菌丝发达,分支多且不断裂,气生菌丝发育良好,孢子丝直形或螺旋状,孢子表面带刺,细胞水解液中检测到葡萄糖,未检测出特征性糖,糖类型属于C型,细胞壁氨基酸中含有L,L-DAP,属于细胞壁Ⅰ型,16S r RNA基因序列与灭癌素链霉菌的同源性高达98%,其发酵液对革兰氏阳性细菌、革兰氏阴性细菌、酵母菌和霉菌等都具有较强的拮抗作用。因此放线菌JXNU03被鉴定为灭癌素链霉菌,记为灭癌素链霉菌JXNU03(Streptomyes gancidicus JXNU03),是一株对细菌、酵母菌和霉菌均有较强拮抗活性的链霉菌,具有潜在开发价值。  相似文献   

11.
The gene for xylanase A of alkalophilic Bacillus sp. strain C-125 was cloned in Escherichia coli with pBR322. The plasmid pCX311 contained 2.6- and 2.0-kilobase-pair HindIII fragments. The characteristics of the purified pCX311-encoded xylanase were the same as those of purified xylanase A from alkalophilic Bacillus sp. strain C-125.  相似文献   

12.
Proteins that are synthesized on cytoplasmic ribosomes but function within plastids must be imported and then targeted to one of six plastid locations. Although multiple systems that target proteins to the thylakoid membranes or thylakoid lumen have been identified, a system that can direct the integration of inner envelope membrane proteins from the stroma has not been previously described. Genetics and localization studies were used to show that plastids contain two different Sec systems with distinct functions. Loss-of-function mutations in components of the previously described thylakoid-localized Sec system, designated as SCY1 (At2g18710), SECA1 (At4g01800), and SECE1 (At4g14870) in Arabidopsis (Arabidopsis thaliana), result in albino seedlings and sucrose-dependent heterotrophic growth. Loss-of-function mutations in components of the second Sec system, designated as SCY2 (At2g31530) and SECA2 (At1g21650) in Arabidopsis, result in arrest at the globular stage and embryo lethality. Promoter-swap experiments provided evidence that SCY1 and SCY2 are functionally nonredundant and perform different roles in the cell. Finally, chloroplast import and fractionation assays and immunogold localization of SCY2-green fluorescent protein fusion proteins in root tissues indicated that SCY2 is part of an envelope-localized Sec system. Our data suggest that SCY2 and SECA2 function in Sec-mediated integration and translocation processes at the inner envelope membrane.  相似文献   

13.
The disruption of the MDM2‐p53 interaction has been regarded as an attractive strategy for anticancer drug discovery. Here, the natural small‐molecule SCY45 was identified as a potent MDM2‐p53 interaction inhibitor based on fluorescence polarization and molecular modeling. SCY45 inhibited the MDM2‐p53 interaction with an IC50 value of 4.93±0.08 μm . The structural modeling results showed that SCY45 not only had high structural similarity with nutlin‐3a, a well‐reported MDM2‐P53 interaction inhibitor, but also bound to the p53 binding pocket of MDM2 with a binding mode similar to that of nutlin‐3a. Moreover, SCY45 reduced the cell viability in cancer cells with MDM2 gene amplification. SCY45 showed the highest inhibition for SJSA‐1 cells, which exhibit excessive MDM2 gene amplification, with an IC50 value of 7.54±0.29 μm , whereas SCY45 showed a weaker inhibition for 22Rv1 cells and A549 cells, which have a single copy of the MDM2 gene, with IC50 values of 18.47±0.75 μm and 31.62±1.96 μm , respectively.  相似文献   

14.
Nicotianamine (NA), a metal chelator, is ubiquitous in higher plants. In humans, NA inhibits angiotensin I-converting enzyme (ACE), and consequently reduces high blood pressure. Nicotianamine is synthesized from the trimerization of S-adenosylmethionine (SAM) by NA synthase (NAS). Here, we aimed to produce large amounts of NA fermentatively by introducing the Arabidopsis AtNAS2 gene into Saccharomyces cerevisiae strain SCY4. This strain can accumulate up to 100 times the usual amount of SAM, and this is considered desirable for overproduction of NA. Nicotianamine was produced in the engineered yeast, and the NA level increased with incubation time until the stationary phase. The maximum concentration of intracellular NA obtained was 766+/-33 microg/g wet weight. Successful production of NA in S. cerevisiae should pave the way for industrial production of this novel antihypertensive substrate.  相似文献   

15.
Strain UCD 311 is a transposon-induced mutant of Nostoc sp. strain ATC C 29133 that is unable to fix nitrogen in air but does so under anoxic conditions and is able to establish a functional symbiotic association with the hornwort Anthoceros punctatus. These properties of strain UCD 311 are consistent with previous observations that protection against oxygen inactivation of nitrogenase is physiologically provided within A. punctatus tissue. Upon deprivation of combined nitrogen, strain UCD 311 clearly differentiates heterocysts and contains typical heterocyst-specific glycolipids; it also makes apparently normal akinetes upon phosphate starvation. Sequence analysis adjacent to the point of the transposon insertion revealed an open reading frame designated devR. Southern analysis established that similar sequences are present in other heterocyst-forming cyanobacteria. devR putatively encodes a protein of 135 amino acids with high similarity to the receiver domains of response regulator proteins characteristics of two-component regulatory systems. On the basis of its size and the absence of other functional domains, DevR is most similar to CheY and Spo0F. Reconstruction of the mutation with an interposon vector confirmed that the transposition event was responsible for the mutant phenotype. The presence of wild-type devR on a plasmid in strain UCD 311 restored the ability to fix nitrogen in air. While devR was not essential for differentiation of akinetes, its presence in trans in Nostoc sp. strain ATCC 29133 stimulated their formation to above normal levels in aging medium. On the basis of RNA analysis, devR is constitutively expressed with respect to the nitrogen source for growth. The devR gene product is essential to the development of mature heterocysts and may be involved in a sensory pathway that is not directly responsive to cellular nitrogen status.  相似文献   

16.
Authors identified four strains of Escherichia coli from Collaborative Centre for reference and research on Escherichia coli-Klebsiella (WHO) in Denmark. Our results were different from original record and reference. It was shown that strain H311b and H5 were motile strains, and its H antigen respectively is H11 and H27. The strain W27 is nonmotile. H antigen of the strain H511 is H40, not H8. Antigen formula of four strains respectively is 26:60:11 (strain H311b), 81:97:27 (strain H5), 115:-:- (strain W27), 102:-:40 (strain H511).  相似文献   

17.
Nicotianamine (NA), a metal chelator, is ubiquitous in higher plants. In humans, NA inhibits angiotensin I-converting enzyme (ACE), and consequently reduces high blood pressure. Nicotianamine is synthesized from the trimerization of S-adenosylmethionine (SAM) by NA synthase (NAS). Here, we aimed to produce large amounts of NA fermentatively by introducing the Arabidopsis AtNAS2 gene into Saccharomyces cerevisiae strain SCY4. This strain can accumulate up to 100 times the usual amount of SAM, and this is considered desirable for overproduction of NA. Nicotianamine was produced in the engineered yeast, and the NA level increased with incubation time until the stationary phase. The maximum concentration of intracellular NA obtained was 766±33 μg/g wet weight. Successful production of NA in S. cerevisiae should pave the way for industrial production of this novel antihypertensive substrate.  相似文献   

18.
Regulation of S-adenosylmethionine levels in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, used to methylate homocysteine in methionine biosynthesis. Methionine can be activated by ATP to give rise to the universal methyl donor, S-adenosylmethionine (AdoMet). Previously, a chimeric MTHFR (Chimera-1) comprised of the yeast Met13p N-terminal catalytic domain and the Arabidopsis thaliana MTHFR (AtMTHFR-1) C-terminal regulatory domain was constructed (Roje, S., Chan, S. Y., Kaplan, F., Raymond, R. K., Horne, D. W., Appling, D. R., and Hanson, A. D. (2002) J. Biol. Chem. 277, 4056-4061). Engineered yeast (SCY4) expressing Chimera-1 accumulated more than 100-fold more AdoMet and 7-fold more methionine than the wild type. Surprisingly, SCY4 showed no appreciable growth defect. The ability of yeast to hyperaccumulate AdoMet was investigated by studying the intracellular compartmentation of AdoMet as well as the mode of hyperaccumulation. Previous studies have established that AdoMet is distributed between the cytosol and the vacuole. A strain expressing Chimera-1 and lacking either vacuoles (vps33 mutant) or vacuolar polyphosphate (vtc1 mutant) was not viable when grown under conditions that favored AdoMet hyperaccumulation. The hyperaccumulation of AdoMet was a robust phenomenon when these cells were grown in medium containing glycine and formate but did not occur when these supplements were replaced by serine. The basis of the nutrient-dependent AdoMet hyperaccumulation effect is discussed in relation to homocysteine biosynthesis and sulfur metabolism.  相似文献   

19.
Although water-limited environments are detrimental to cotton growth and productivity worldwide, identification of cotton (Gossypium hirsutum L.) genotypes that are less sensitive to drought may improve productivity in drought prone areas. The objective of the study was to assess genotypic variation for drought tolerance in cotton varieties using physiological attributes as selection criteria, and to determine the relationship of physiological attributes with productivity traits. The association of target physiological traits for drought tolerance (photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (E)) with productivity traits under well-watered (W1) and water-limited (W2) regimes was analyzed using 32 public cotton cultivars/bred lines in two field experiments conducted during the normal cotton growing seasons 2003 and 2004. Seed cotton yield (SCY) and biological yield (BY) were markedly affected under W2 regime in all cultivars except the outstanding performance of CIM-1100 and RH-510 proving their superiority to other cultivars in drought tolerance. Conversely, FH-901, FH-634, and FH-2000 were high yielding under W1 regime; however, exhibited a sharp decline in yield under W2 regime. A positive correlation between SCY and BY under water stress (r=0.44 in 2003; r=0.69 in 2004) indicates that BY is also a primary determinant of SCY under water stress and genetic improvement of BY under water-limited environment may also improve SCY. Pn, gs, and E were significantly reduced by water stress. Substantial genotypic variation for gas exchange attributes existed among the cotton cultivars. A positive association (P<0.01) was observed between gs and E under both regimes in both years indicating the prevalence of stomatal control of transpiration. The positive association (P<0.01) between Pn and gs in both years in W2 regime indicates also a major role of stomatal effects in regulating leaf photosynthesis under water-limited conditions. Pn was significantly correlated with SCY (P<0.01) and BY (P<0.05 in 2003; P<0.01 in 2004) in W2 regime; however, the level of these associations was not significant in W1 regime. These findings demonstrate that association of Pn with productivity is effective under water-limited environment and may be useful as a selection criterion in breeding programs with the objective of improving drought tolerance and SCY under water-limited environments. Moreover, association between SCY and BY under water stress suggests that genetic improvement of BY under water stress may also improve SCY.  相似文献   

20.
Symbiotic interactions between peas and Rhizobium leguminosarum were investigated by inoculating four pea lines, three of which are strain-specific resistant to the European strain 311d, with various combinations of two strains of Rhizobium, 311d and Tom++. The strains were almost equally good to infect the susceptible European cultivar Hero when added singly inoculated. After mixed inoculation (1:1 proportion) strain analysis by ELISA revealed that the nodules were preferentially formed by 311d, although some Tom++ nodules were also found mainly on the upper part of the root. Our conclusion is that Tom++ is less compatible in comparison with 311d. In addition, we found that as the Hero plants emerged, they were becoming more resistant towards infection with not adapted bacteria. The strain-specific resistant lines from Afghanistan belong to two different systems: Afgh. I, completely resistant to 311d and highly nodulating with Tom++, and Afgh. III, incompletely resistant to 311d and poorly nodulating with Tom++. Mixed inoculations resulted in nodule depressions, as compared to single inoculations with Tom++ ranging from 87% to 14%. The ability of 311d to block infection sites on the roots were found to depend on the degree of symbiotic adaptation between Afgh. I and Tom++, respectively Afgh. III and Tom++. Strain analysis after double strain inoculation of Afgh. I plants revealed that some nodules were induced by strain 311d. Thus, the presence of Tom++ in this case influences the degree of host resistance. However, in Afgh. III plants the resistance towards nodulation were unaffected by the presence of Tom++. We suggest that the degree of symbiotic adaptation may change the barrier of resistance towards infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号