首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic in situ hybridization (GISH) and multicolor GISH (mcGISH) methodology were used to establish the cytogenetic constitution of five partial amphiploid lines obtained from wheat × Thinopyrum intermedium hybridizations. Line Zhong 1, 2n=52, contained 14 chromosomes from each of the wheat genomes plus ten Th. intermedium chromosomes, with one pair of A-genome chromosomes having a Th. intermedium chromosomal segment translocated to the short arm. Line Zhong 2, 2n=54, had intact ABD wheat genome chromosomes plus 12 Th. intermedium chromosomes. The multicolor GISH results, using different fluorochrome labeled Th. intermedium and the various diploid wheat genomic DNAs as probes, indicated that both Zhong 1 and Zhong 2 contained one pair of Th. intermedium chromosomes with a significant homology to the wheat D genome. High-molecular-weight (HMW) glutenin and gliadin analysis revealed that Zhong 1 and Zhong 2 had identical banding patterns that contained all of the wheat bands and a specific HMW band from Th. intermedium. Zhong 1 and Zhong 2 had good HMW subunits for wheat breeding. Zhong 3 and Zhong 5, both 2n=56, possessed no gross chromosomal aberrations or translocations that were detectable at the GISH level. Zhong 4 also had a chromosome number of 2n=56 and contained the complete wheat ABD-genome chromosomes plus 14 Th. intermedium chromosomes, with one pair of Th. intermedium chromosomes being markedly smaller. Multicolor GISH results indicated that Zhong 4 also contained two pairs of reciprocally translocated chromosomes involving the A and D genomes. Zhong 3, Zhong 4 and Zhong 5 contained a specific gliadin band from Th. intermedium. Based on the above data, it was concluded that inter-genomic transfer of chromosomal segments and/or sequence introgression had occurred in these newly synthesized partial amphiploids despite their diploid-like meiotic behavior and disomic inheritance.  相似文献   

2.
Homology-based gene/gene-analog cloning method has been extensively applied in isolation of RGAs (resistance gene analogs) in various plant species. However, serious interference of sequences on homoeologous chromosomes in polyploidy species usually occurred when cloning RGAs in a specific chromosome. In this research, the techniques of chromosome microdissection combined with homology-based cloning were used to clone RGAs from a specific chromosome of Wheat-Thinopyrum alien addition line TAi-27, which was derived from common wheat and Thinopyrum intermedium with a pair of chromosomes from Th. intermedium. The alien chromosomes carry genes for resistance to BYDV. The alien chromosome in TAi-27 was isolated by a glass needle and digested with proteinase K. The DNA of the alien chromosome was amplified by two rounds of Sau3A linker adaptor-mediated PCR. RGAs were amplified by PCR with the degenerated primers designed based on conserved domains of published resistance genes (R genes) by using the alien chromosome DNA, genomic DNA and cDNA of Th. intermedium, TAi-27 and 3B-2 (a parent of TAi-27) as templates. A total of seven RGAs were obtained and sequenced. Of which, a constitutively expressed single-copy NBS-LRR type RGA ACR3 was amplified from the dissected alien chromosome of TAi-27, TcDR2 and TcDR3 were from cDNA of Th. intermedium, AcDR3 was from cDNA of TAi-27, FcDR2 was from cDNA of 3B-2, AR2 was from genomic DNA of TAi-27 and TR2 was from genomic DNA of Th. intermedium. Sequence homology analyses showed that the above RGAs were highly homologous with known resistance genes or resistance gene analogs and belonged to NBS-LRR type of R genes. ACR3 was recovered by PCR from genomic DNA and cDNA of Th. intermedium and TAi-27, but not from 3B-2. Southern hybridization using the digested genomic DNA of Th. intermedium, TAi-27 and 3B-2 as the template and ACR3 as the probe showed that there is only one copy of ACR3 in the genome of Th. intermedium and TAi-27, but it is absent in 3B-2. The ACR3 could be used as a specific probe of the R gene on the alien chromosome of TAi-27. Results of Northern hybridization suggested that ACR3 was constitutively expressed in Th. intermedium and TAi-27, but not 3B-2, and expressed higher in leaves than in roots. This research demonstrated a new way to clone RGAs located on a specific chromosome. The information reported here should be useful to understand the resistance mechanism of, and to clone resistant genes from, the alien chromosome in TAi-27.  相似文献   

3.
Seedlings of a series of addition or substitution lines of wheat containing different Thinopyrum intermedium chromosomes were inoculated with the PAV and RPV serotypes of barley yellow dwarf virus (BYDV). Reduced virus titres in infected plants were ascribed to a single pair of homoeologous group 7 chromosomes from Th. intermedium in the disomic addition lines L1 and TAF 2. The group 7 chromosome is associated with red pigmentation of coleoptiles, which was also observed in two lines ditelosomic for the α arm of the chromosome. However, when infected with the PAV serotype of BYDV, the ditelosomic lines had normal virus titres and it is concluded that potential determinants of BYDV resistance are located on the β arm of the Group 7 chromosome.  相似文献   

4.
Genomic in situhybridization (GISH) to root-tip cells at mitotic metaphase, using genomic DNA probes from Thinopyrum intermedium and Pseudoroegneria strigosa, was used to examine the genomic constitution of Th. intermedium, the 56-chromosome partial amphiploid to wheat called Zhong 5 and disease-resistant derivatives of Zhong 5, in a wheat background. Evidence from GISH indicated that Th. intermedium contained seven pairs of St, seven JS and 21 J chromosomes; three pairs of Th. intermedium chromosomes with satellites in their short arms belonging to the St, J, J genomes and homoeologous groups 1, 1, and 5 respectively. GISH results using different materials and different probes showed that seven pairs of added Th. intermedium chromosomes in Zhong 5 included three pairs of St chromosomes, two pairs of JS chromosomes and two pairs of St-JS reciprocal tanslocation chromosomes. A pair of chromosomes, which substituted a pair of wheat chromosomes in Yi 4212 and in HG 295 and was added to 21 pairs of wheat chromosomes in the disomic additions Z1, Z2 and Z6, conferred BYDV-resistance and was identical to a pair of St-JS tanslocation chromosomes (StJS) in Zhong 5. The StJS chromosome had a special GISH signal pattern and could be easily distinguished from other added chromosomes in Zhong 5; it has not yet been possible to locate the BYDV-resistant gene(s) of this translocated chromosome either in the St chromosome portion belonging to homoeologous group 2 or in the JS chromosome portion whose homoeologous group relationship is still uncertain. Among 22 chromosome pairs in disomic addition line Z3, the added chromosome pair had satellites and belonged to the St genome and homoeologous group 1. Disomic addition line Z4 carried a pair of added chromosomes which was composed of a group-7 JS chromosome translocated with a wheat chromosome; this chromosome was different to 7 Ai-1, but was identical to 7 Ai-2. The leaf rust and stem rust resistance genes were located in the distal region of the long arm, whereas the stripe rust resistance gene(s) was located in the short arm or in the proximal region of the long arm of 7 Ai-2. A pair of JS-wheat translocation chromosomes, which originated from the WJS chromosomes in Z4, was added to the disomic addition line Z5; the added chromosomes of Z5 carried leaf and stem rust resistance but not stripe rust resistance; Z5 is a potentially useful source for rust resistance genes in wheat breeding and for cloning these novel rust-resistant genes. GISH analysis using the St genome as a probe has proved advantageous in identifying alien Th. intermedium in wheat. Received: 17 May 1999 / Accepted: 22 June 1999  相似文献   

5.
The wheat line H960642 is a homozygous wheat-Thinopyrum intermedium translocation line with resistance to BYDV by genomicin situ hybridization (GISH) and RFLP analysis. The genomic DNA ofTh. intermedium was used as a probe, and common wheat genomic DNA as a blocking in GISH experiment. The results showed that the chromosome segments ofTh. intermedium were transferred to the distal end of a pair of wheat chromosomes. RFLP analysis indicated that the translocation line H960642 is a T7DS-7DL-7XL translocation by using 8 probes mapped on the homoeologous group 7 in wheat. The translocation breakpoint is located between Xpsr680 and Xpsr965 about 90–99 cM from the centromere. The RFLP markers psr680 and psr687 were closely linked with the BYDV resistance gene. The gene is located on the distal end of 7XL around Xpsr680 and Xpsr687. Project supported by the 863 program and the National Natural Science Foundation of China (Grant No. 39680027).  相似文献   

6.
Fluorescence and genomic in situ hybridization (FISH and GISH) were used to establish the cytogenetic constitution of two wheat × Thinopyrum intermedium partial amphiploids H95 and 55(1-57). Both partial amphiploids are high-protein lines having resistance to leaf rust, yellow rust and powdery mildew and have in total 56 chromosomes per cell. Repetitive DNA probes (pTa71, Afa family and pSc119.2) were used to identify the individual wheat chromosomes and to reveal the distribution of these probes within the alien chromosomes. FISH detected 6B tetrasomy in H95 and a null (1D)-tetrasomy (1B) in 55(1-57). GISH was carried out using biotin labeled Th. intermedium DNA and digoxigenin labeled Pseudoroegneria spicata DNA as probes, subsequently. GISH results revealed 44 wheat chromosomes and four Thinopyrum chromosome pairs, including three S and one J chromosome pairs in line H95. Line 55(1-57), contained 42 wheat chromosomes and six Th. intermedium pairs, including two S and one JS pairs. Additionally, two identical translocated chromosome pairs with diminished affinity to the alien chromatin were detected in both amphiploids. Another two translocations were found in 55(1-57), with satellite sections from the Thinopyrum J genome.  相似文献   

7.
Zusammenfassung 1. Aus Additionsbastarden vonTriticum aestivum mit einem Resistenzchromosom ausAgropyrum intermedium konnten durch Bestrahlung mit Röntgen-und Kobalt-60-Strahlen Translokationschromosomen hergestellt werden. Unter den Pflanzen mit Resistenzfaktor ausAgropyrum lag der Prozentsatz an Pflanzen mit Translokationen bei 5%.2. Die Translokation betrifft in unserem Material einen Austausch der Chromosomenenden; an dasAgropyrum-Chromosom wird ein Teil eines Weizen-chromosoms angeheftet. In etwa 30% wird ein Weizenchromosom Träger derAgropyrum-Resistenz. Je mehr Weizenchromosomensubstanz erhalten bleibt, desto günstiger ist im allgemeinen die Übertragung durch den Pollen und die normale Verteilung des dominanten Resistenzgens auf die Nachkommenschaft.3. Aus insgesamt 44 Pflanzen mit Translokationen konnten 8 homozygote 42chromosomige Linien ausgelesen werden. Diese sind in Fertilität und Leistung vergleichbar den Additionslinien. Ihr Vorteil besteht in der besseren Stabilität. Für die Einkreuzung desAgropyrum-Merkmals in andere Weizen bestehen keine Schwierigkeiten.4. Bei Translokationen eines sehr kleinen Weizenchromosomenstückes an dasAgropyrum-Telochromosom besteht die Tendenz zur Addition des neuen Translokationschromosoms. Die Leistung im Feldanbau ist anscheinend gegenüber den alten 44chromosomigen Additionslinien mit normalemAgropyrum-Telochromosom verbessert. Die Vermutung liegt nahe, daß bei der Verkürzung desAgropyrum-Telochromosoms durch den Bruchvorgang weitere negativ wirkende Chromosomenstücke eliminiert worden sind.5. Aus 47 Pflanzen mit Verlust eines ganzen Chromosoms konnten 4 konstante 42chromosomige Linien entwickelt werden mit vollständiger Substitution eines Weizenchromosomenpaares durch das vonAgropyrum. Der Verlust eines Paares wirkt sich je Linie unterschiedlich aus. Eine Linie konnte durch Kreuzung mit Sorten in der Leistung deutlich verbessert werden.
The transfer of rust resistance by translocation fromAgropyrum intermedium to wheat
Summary 1. Radiation of hybrids ofTriticum aestivum, with a resistance carryingAgroppyrum intermedium chromosome resulted in translocations between the alien and various wheat chromosomes. Nearly 5% of plants with the resistance factor had these translocations.2. In our material the translocations are reciprocal: in most cases part of a wheat chromosome is transfered to theAgropyrum chromosome and in nearly 30% theAgropyrum resistance is transfered to a wheat chromosome. Transmission through pollen and normal distribution of the dominant factor to the offspring depend on how much of the wheat chromosome is retained.3. Eight homozygous lines with 42 chromosomes could be selected from a total of 44 plants with translocation chromosomes. These are comparable to the addition lines in their fertility and yield, but have better chromosomal stability. There is no difficulty in transfering theAgropyrum factor from these lines to other wheat varieties by crossing.4. When a small piece of a wheat chromosome is translocated to theAgropyrum telochromosome a tendency exists for this new translocation chromosome to be added to the whole wheat chromosome complement. The yield capacity in the field of these new 44 chromosome lines seems to be somewhat better than that of the former ones. Very likely this is due to the decrease ofAgropyrum chromosome elength produced by radiation.5. Four constant lines with substitution of one pair of wheat chromosomes by one ofAgropyrum were selected from the offspring of 47 plants which had lost one whole wheat chromosome after radiation. The lack of one pair of chromosomes has different effects. After backcrosses to normal wheat and subsequent selection of plants with the substituted chromosome one of these lines gave better yield than the original one.
  相似文献   

8.
Li  Jianbo  Lang  Tao  Li  Bin  Yu  Zhihui  Wang  Hongjin  Li  Guangrong  Yang  Ennian  Yang  Zujun 《Planta》2017,245(6):1121-1135
Main conclusion

Fluorescence in situ hybridization and molecular markers have confirmed that several chromosomes from Thinopyrum intermedium ssp. trichophorum have been added to a wheat background, which originated from a cross between a wheat– Thinopyrum partial amphiploid and triticale. The lines displayed blue grains and resistance to wheat stripe rust.

Thinopyrum intermedium has been used as a valuable resource for improving the disease resistance and yield potential of wheat. With the aim to transfer novel genetic variation from Th. intermedium species for sustainable wheat breeding, a new trigeneric hybrid was produced by crossing an octoploid wheat–Th. intermedium ssp. trichophorum partial amphiploid with hexaploid triticale. Fluorescence in situ hybridization (FISH) revealed that Thinopyrum chromosomes were transmitted preferably and the number of rye chromosomes tended to decrease gradually in the selfed derivatives of the trigeneric hybrids. Four stable wheat–Th. intermedium chromosome substitution, addition and translocation lines were selected, and a 2JS addition line, two substitution lines of 4JS(4B) and 4J(4B), and a small 4J.4B translocation line were identified by FISH and molecular markers. It was revealed that the gene(s) responsible for blue grains may located on the FL0.60–1.00 of long arm of Th. intermedium-derived 4J chromosome. Disease resistance screenings indicated that chromosomes 4JS and 2JS appear to enhance the resistance to stripe rust in the adult plant stage. The new germplasm with Th. intermedium introgression shows promise for utilization of Thinopyrum chromosome segments in future wheat improvement.

  相似文献   

9.
 Genomic in situ hybridization (GISH) was used to distinguish autosyndetic from allosyndetic pairing in the hybrids of Thinopyrum intermedium and Th. ponticum with Triticum aestivum cv ‘Chinese Spring’ (CS). All hybrids showed high autosyndetic pairing frequencies among wheat chromosomes and among Thinopyrum chromosomes. The high autosyndetic pairing frequencies among wheat chromosomes in both hybrids suggested that Th. intermedium and Th. ponticum carry promoters for homoeologous chromosome pairing. The higher frequencies of autosyndetic pairing among Thinopyrum chromosomes than among wheat chromosomes in both hybrids indicated that the relationships among the three genomes of Th. intermedium and among the five genomes of Th. ponticum are closer than those among the three genomes of T. aestivum. Received: 19 September 1996 / Accepted: 18 April 1997  相似文献   

10.
Thinopyrum intermedium was identified previously as resistant to Tapesia yallundae, cause of eyespot of wheat. Using GUS-transformed isolates of T. yallundae as inoculum, we determined that wheat lines carrying Th. intermedium chromosome 4Ai#2 or the short arm of chromosome 4Ai#2 were as resistant to the pathogen as the eyespot-resistant wheat- Th. ponticum chromosome substitution line SS767 (PI 611939) and winter wheat cultivar Madsen, which carries gene Pch1 for eyespot resistance. Chromosome 4E from Th. elongatum and chromosome 4J from Th. bessarabicum did not confer resistance to T. yallundae. Genome-specific PCR primers confirmed the presence of Thinopyrum chromatin in these wheat- Thinopyrum lines. Genomic in situ hybridization using an St genomic probe from Pseudoroegneria strigosa demonstrated that chromosome 4Ai#2 belongs to the Js genome of Thinopyrum. The eyespot resistance in the wheat- Th. intermedium lines is thus controlled by the short arm of this Js chromosome. This is the first report of resistance to T. yallundae controlled by a Js genome chromosome of Th. intermedium.  相似文献   

11.
Summary Anther culture of secondary octoploid triticale (AABBDDRR) and F1 hybrids (AABBDDR) of octoploid triticale x common wheat crosses was carried out, and 96 pollen-derived plants were developed and studied cytologically. In addition to the 8 types of pollen-derived plants with the theoretically predicted chromosome number, plants with the chromosome constitutions of 2n = 38, 43, 45, 47, 74, and mixoploids were obtained. The haploids and the diploids had different distributions. The frequencies of plants with one and two (pairs of) rye chromosomes were extremely high, and anther culture may be an expeditious route for creating alien addition lines of distant hybrid F1s. Chromosome aberrations, including deletions, inversions, translocations, as well as isochromosomes and ring chromosomes, were observed in some plants. Abnormal meioses, such as chromosome non-disjunction, were also found. The reasons for the chromosome aberrations are discussed.  相似文献   

12.
Chang ZJ  Zhang XJ  Yang ZJ  Zhan HX  Li X  Liu C  Zhang CZ 《Hereditas》2010,147(6):304-312
Partial amphiploids between wheat (Triticum aestivum L.) and Thinopyrum species play an important role in the transfer and use of traits from alien species. A wheat-Thinopyrum intermedium partial amphiploid, TAI8335, and its alien parent were characterized by a combination of genomic in situ hybridization (GISH) and cytological observations. Evidence from GISH indicated that the donor parent Th. intermedium possessed seven pairs of S, seven J(s) and 21 J chromosomes. Mitotic observation showed that the majority of TAI8335 plants had 56 chromosomes, but a few had 54 to 55, in some cases with two to three additional telochromosomes. The chromosomes in most pollen mother cells of plants with 2n = 56 formed 28 bivalents, averaging 27.12 in 223 cells, suggesting a basic cytological stability. Sequential GISH patterns using genomic Pseudoroegneria spicata and genomic Th. intermedium DNA as probes revealed that TAI8335 had fourteen chromosomes derived from Th. intermedium and its alien genome consisted of one pair of S-, three pairs of J(s) - and one pair of J-genome chromosomes as well as two translocated chromosome pairs, one being a Robertsonian translocation and another an intercalary translocation, both of which involved J and S genome. Two of the telochromosomes in the aneuploid plants originated from the J genome and one from wheat. Disease screening demonstrated this line was highly resistant to leaf rust, stem rust, stripe rust and powdery mildew. This study showed that the partial amphiploid TAI8335 appears to serve as a novel source for the transfer of resistance genes for multiple fungal pathogens to wheat.  相似文献   

13.
In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat - Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th . intermedium . Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th . intermedium , 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th . intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome) and pDbH12 (a Js genome specific probe) as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (Js, J and St) in Th . intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th . bessarabicum . Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the Js genome, within a single chromosome, and among different genomes in Th . intermedium . Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of different genomes in polyploid plants.  相似文献   

14.
Transferofaliengenestowheatthroughchromosomeengineeringisoneoftheimportantwaystoimprovewheatgeneticbackground.Thebasicstepsofthisprocedurearefirsttotransferalienchromosomesintowheat,andthentointegratetheusefulgenesofalienchromosomesintowheatchromosome…  相似文献   

15.
The wheat line H960642 is a homozygous wheat-Thinopyrum intermedium translocation line with resistance to BYDV by genomicin situ hybridization (GISH) and RFLP analysis. The genomic DNA ofTh. intermedium was used as a probe, and common wheat genomic DNA as a blocking in GISH experiment. The results showed that the chromosome segments ofTh. intermedium were transferred to the distal end of a pair of wheat chromosomes. RFLP analysis indicated that the translocation line H960642 is a T7DS-7DL-7XL translocation by using 8 probes mapped on the homoeologous group 7 in wheat. The translocation breakpoint is located between Xpsr680 and Xpsr965 about 90–99 cM from the centromere. The RFLP markers psr680 and psr687 were closely linked with the BYDV resistance gene. The gene is located on the distal end of 7XL around Xpsr680 and Xpsr687.  相似文献   

16.
Summary Ninety-three pollen plants derived from the hybrid F1 of 6x Triticale x common wheat were observed cytologically. The rye chromosomes presented in these plants were identified by Giemsa-banding. Pollen plants having chromosome constitution 2n = 24 in haploids and 2n=46 in diploids were found to be predominant. The chromosome distributions of the R and D genome are different. R chromosomes distributed randomly and tended to full combination in offspring, but D chromosomes distributed non-randomly and tended to maintain intact.  相似文献   

17.
Summary C-banded karyotypes of Agropyron intermedium (2n=6x=42, E1E2X), a partial amphiploid Triticum aestivumAg. intermedium (2n=8x=56, TAF46), and six derived chromosome addition lines, were analyzed. In Ag. intermedium, diagnostic C-bands were present on 14 pairs of chromosomes, designated from A to N, while the remaining seven pairs, designated O to U, either lacked, or had only faint, C-bands and were not always identified unambiguously. All seven Ag. intermedium chromosome pairs of the partial amphiploid TAF46, and the added Ag. intermedium chromosomes present in the six derived addition lines, were identified by their characteristic C-banding patterns. Chromosome morphology and banding patterns were similar to those of the corresponding chromosomes present in the parent Ag. intermedium accession, suggesting that these chromosomes were not structurally rearranged. In-situ hybridization, using a 18s.265s rDNA probe, showed that the Ag. intermedium chromosomes 1Ai-1 and 5Ai-l present in the addition lines L3 and L5 were carrying actively transcribed nucleolus organizer regions. The results are discussed with respect to the genomic relationships of these chromosomes.Contribution no. 91-561-J from the Wheat Genetics Resource Center and Kansas Agricultural Experiment Station, Kansas State University, Manhatten, USA  相似文献   

18.
Thinopyrum intermedium is a useful source of resistance genes for Barley Yellow Dwarf Virus (BYDV), one of the most damaging wheat diseases. In this study, wheat/Th. intermedium translocation lines with a BYDV resistance gene were developed using the Th. intermedium 7Ai-1 chromosome. Genomic in situ hybridization (GISH), using a Th. intermedium total genomic DNA probe, enabled detection of 7Ai-1-derived small chro-matins containing a BYDV resistance gene, which were translocated onto the end of wheat chromosomes in the lines Y95011 and Y960843. Random amplified polymorphic DNA (RAPD) analyses using 120 random 10-mer primers were conducted to compare the BYDV-resistant translocation lines with susceptible lines. Two primers amplified the DNA fragments specific to the resistant line that would be useful as molecular markers to identify 7Ai-1-derived BYDV resistance chromatin in the wheat genome. Additionally, the isolated Th. intermedium-specific retrotransposon-like sequence pTi28 can be used to identify Th. intermedium chromatin transferred to the wheat genome.  相似文献   

19.
 Wheat streak mosaic virus (WSMV), vectored by the wheat curl mite (WCM), is one of the most important viral diseases of wheat (Triticum aestivum) in the world. Genetic resistance to WSMV and the WCM does not exist in wheat. Resistance to WSMV and the WCM was evaluated in five different partial amphiploids namely Agrotana, OK7211542, ORRPX, Zhong 5 and TAF 46, which were derived from hybrids of wheat with decaploid Thinopyrum ponticum or with hexaploid Th. intermedium. Agrotana was shown to be immune to WSMV and the WCM; the other four partial amphiploids were susceptible to the WCM. Genomic in situ hybridization (GISH) using genomic DNA probes from Th. elongatum (EE, 2n=14), Th. bessarabicum (JJ, 2n=14), Pseudoroegneria strigosa (SS, 2n=14) and T. aestivum (AABBDD, 2n=42) demonstrated that three of the partial amphiploids, Agrotana, OK7211542 and ORRPX, have almost identical alien genome constitutions: all have 16 alien chromosomes, with 8 chromosomes being closely related to the Js genome and 8 chromosomes belonging to the E or J genomes and no evidence of any S-genome chromosomes. GISH confirmed that the alien genomes of Agrotana and OK7211542, like ORRPX, were all derived from Th. ponticum, and not from Th. intermedium. However, in contrast to Agrotana, ORRPX and OK7211542 were susceptible to the WCM and WSMV. The partial amphiploid Zhong 5 had a reconstituted alien genome composed of 4 S-and 4 Js-genome chromosomes of Th. intermedium with 6 translocated chromosomes between the S and Js genomes. This line was highly resistant to WSMV, but was susceptible to the WCM. TAF 46, which contained a synthetic genome consisting of 3 pairs of S-genome chromosomes and 4 pairs of E- or J-genome chromosomes in addition to the 21 pairs of wheat chromosomes, was susceptible to the WCM, but moderately resistant to WSMV. Agrotana offers great potential for transferring WSMV and WCM resistance into wheat. Received: 27 January 1998 / Accepted: 10 February 1998  相似文献   

20.

Key message

Fertile hybrids were produced with genetic material transferred from Th. intermedium into a wheat background and supply a source of genetic variation to wheat improvement.

Abstract

Both symmetric and asymmetric somatic hybrids have been obtained from the combination of wheatgrass (Thinopyrum intermedium) and bread wheat (Triticum aestivum). Two wheat protoplast populations, one derived from embryogenic calli and the other from a non-regenerable, rapidly dividing cell line, were fused with Th. intermedium protoplasts which had been (or not been) pre-irradiated with UV. Among the 124 regenerated calli, 64 could be categorized as being of hybrid origin on the basis of plant morphology, peroxidase isozyme, RAPD DNA profiling and karyological analysis. Numerous green plantlets were regenerated from 13 calli recovered from either the symmetric hybrid (no UV pre-treatment) or the asymmetric one (30 s UV irradiation). One of these hybrid plants proved to be vigorous and self-fertile. The regenerants were all closer in phenotype to wheat than to Th. intermedium. Genomic in situ hybridization analysis showed that the chromosomes in the hybrids were largely intact wheat ones, although a few Th. intermedium chromosome fragments had been incorporated within them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号