首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
路明  周芳  谢传晓  李明顺  徐云碧  张世煌 《遗传》2007,29(9):1131-1138
为了增加单位面积产量, 玉米育种者已经开始了更密植更紧凑株型的选育。叶夹角和叶向值是评价玉米株型的重要指标。本研究以掖478×丹340的500个F2单株为作图群体, 构建了具有138个位点的SSR标记连锁图谱, 图谱总长度为1 394.9 cM, 平均间距10.1 cM。利用397个F2:3家系对叶夹角和叶向值进行QTL定位分析, 结果表明: 叶夹角和叶向值分别检测到6和8个QTL, 累计解释表型变异41.0%和60.8%, 单个QTL的贡献率在2.9%~13.6%之间。与叶夹角和叶向值有关的基因主要作用方式为加性和部分显性。此外两个性状共检测到9对上位性互作位点, 表明上位性互作在叶夹角和叶向值的遗传中也起较重要的作用。  相似文献   

2.
High-density genetic linkage maps are necessary for precisely mapping quantitative trait loci (QTLs) controlling grain shape and size in wheat. By applying the Infinium iSelect 9K SNP assay, we have constructed a high-density genetic linkage map with 269 F 8 recombinant inbred lines (RILs) developed between a Chinese cornerstone wheat breeding parental line Yanda1817 and a high-yielding line Beinong6. The map contains 2431 SNPs and 128 SSR & EST-SSR markers in a total coverage of 3213.2 cM with an average interval of 1.26 cM per marker. Eighty-eight QTLs for thousand-grain weight (TGW), grain length (GL), grain width (GW) and grain thickness (GT) were detected in nine ecological environments (Beijing, Shijiazhuang and Kaifeng) during five years between 2010–2014 by inclusive composite interval mapping (ICIM) (LOD≥2.5). Among which, 17 QTLs for TGW were mapped on chromosomes 1A, 1B, 2A, 2B, 3A, 3B, 3D, 4A, 4D, 5A, 5B and 6B with phenotypic variations ranging from 2.62% to 12.08%. Four stable QTLs for TGW could be detected in five and seven environments, respectively. Thirty-two QTLs for GL were mapped on chromosomes 1B, 1D, 2A, 2B, 2D, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 6B, 7A and 7B, with phenotypic variations ranging from 2.62% to 44.39%. QGl.cau-2A.2 can be detected in all the environments with the largest phenotypic variations, indicating that it is a major and stable QTL. For GW, 12 QTLs were identified with phenotypic variations range from 3.69% to 12.30%. We found 27 QTLs for GT with phenotypic variations ranged from 2.55% to 36.42%. In particular, QTL QGt.cau-5A.1 with phenotypic variations of 6.82–23.59% was detected in all the nine environments. Moreover, pleiotropic effects were detected for several QTL loci responsible for grain shape and size that could serve as target regions for fine mapping and marker assisted selection in wheat breeding programs.  相似文献   

3.
Grain protein content (GPC) is an important quality factor in both durum and bread wheats. GPC is considered to be a polygenic trait influenced by environmental factors and management practice. The objectives of this study were both to compare the quantitative trait loci (QTL) for GPC in a population of 65 recombinant inbred lines of tetraploid wheats evaluated in three locations for several years (eight data sets), and to investigate the genetic relationship among GPC and grain yield. QTLs were determined based on the Messapia × dicoccoides linkage map which covers 217 linked loci on the 14 chromosomes with 42 additional loci as yet unassigned to linkage groups. The map extends to 1352 cM; the average distance between adjacent markers was 6.3 cM. Seven QTLs for GPC, located on the chromosome arms 4BS, 5AL, 6AS (two loci), 6BS, 7AS and 7BS, were detected that were significant in at least one environment at P<0.001 or in at least two environments at P<0.01. One QTL was significant in all but one environment, two were significant in four or five environments, and four were significant in two out of eight environments. Six out of seven protein content QTLs had pleiotropic effects or were associated to QTLs for grain yield and explained the negative correlation among GPC and yield components. The present results support the concept that studies conducted in a single environment are likely to underestimate the number of QTLs that can influence a trait and that the phenotypic data for a quantitative trait should be collected over a range of locations to identify putative QTLs and determine their phenotypic effects.  相似文献   

4.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum and F. culmorum, can significantly reduce the grain quality of wheat (Triticum aestivum L.) due to mycotoxin contamination. The objective of this study was to identify quantitative trait loci (QTLs) for FHB resistance in a winter wheat population developed by crossing the resistant German cultivar Dream with the susceptible British cultivar Lynx. A total of 145 recombinant inbred lines (RILs) were evaluated following spray inoculation with a F. culmorum suspension in field trials in 2002 in four environments across Germany. Based on amplified fragment length polymorphism and simple sequence repeat marker data, a 1,734 cM linkage map was established assuming that the majority of the polymorphic parts of the genome were covered. The area under disease progress curve (AUDPC) was calculated based on the visually scored FHB symptoms. The population segregated quantitatively for FHB severity. Composite interval mapping analysis for means across the environments identified four FHB resistance QTLs on chromosomes 6AL, 1B, 2BL and 7BS. Individually the QTLs explained 19%, 12%, 11% and 21% of the phenotypic variance, respectively, and together accounted for 41%. The QTL alleles conferring resistance on 6AL, 2BL and 7BS originated from cv. Dream. The resistance QTL on chromosome 6AL partly overlapped with a QTL for plant height. The FHB resistance QTL on 7BS coincided with a QTL for heading date, but the additive effect on heading date was of minor importance. The resistance QTL on chromosome 1B was associated with the T1BL.1RS wheat-rye translocation of Lynx.  相似文献   

5.
Four-way cross (4WC) involving four different inbred lines frequently appears in the cotton breeding programs. However, linkage analysis and quantitative trait loci (QTL) mapping with molecular markers in cotton has largely been applied to populations derived from a cross between two inbred lines, and few results of QTL dissection were conducted in a 4WC population. In this study, an attempt was made to construct a linkage map and identify QTL for yield and fiber quality traits in 4WC derived from four different inbred lines in Gossypium hirsutum L. A linkage map was constructed with 285 SSR loci and one morphological locus, covering 2113.3 cM, approximately 42% of the total recombination length of the cotton genome. A total of 31 QTL with 5.1–25.8% of the total phenotypic variance explained were detected. Twenty-four common QTL across environments showed high stability, and six QTL were environment-specific. Several genomic segments affecting multiple traits were identified. The advantage of QTL mapping using a 4WC were discussed. This study presents the first example of QTL mapping using a 4WC population in upland cotton. The results presented here will enhance the understanding of the genetic basis of yield and fiber quality traits and enable further marker-assisted selection in cultivar populations in upland cotton.  相似文献   

6.
A previous genetic map containing 117 microsatellite loci and 400 F(2) plants was used for quantitative trait loci (QTL) mapping in tropical maize. QTL were characterized in a population of 400 F(2:3) lines, derived from selfing the F(2) plants, and were evaluated with two replications in five environments. QTL determinations were made from the mean of these five environments. Grain yield (GY), plant height (PH), ear height (EH) and grain moisture (GM) were measured. Variance components for genotypes (G), environments (E) and GxE interaction were highly significant for all traits. Heritability was 0.69 for GY, 0.66 for PH, 0.67 for EH and 0.23 for GM. Using composite interval mapping (CIM), a total of 13 distinct QTLs were identified: four for GY, four for PH and five for EH. No QTL was detected for GM. The QTL explained 32.73 % of the phenotypic variance of GY, 24.76 % of PH and 20.91 % of EH. The 13 QTLs displayed mostly partial dominance or overdominance gene action and mapped to chromosomes 1, 2, 7, 8 and 9. Most QTL alleles conferring high values for the traits came from line L-14-4B. Mapping analysis identified genomic regions associated with two or more traits in a manner that was consistent with correlation among traits, supporting either pleiotropy or tight linkage among QTL. The low number of QTLs found, can be due to the great variation that exists among tropical environments.  相似文献   

7.
Tef is a cereal crop of cultural and economic importance in Ethiopia. It is grown primarily for its grain though it is also an important source of fodder. Tef suffers from lodging that reduces both grain yield and quality. As a first step toward executing a marker-assisted breeding program for lodging resistance and grain yield improvement, a linkage map was constructed using 151 F9 recombinant inbred lines obtained by single-seed-descent from a cross between Eragrostis tef and its wild relative Eragrostis pilosa. The map was primarily based on microsatellite (SSR) markers that were developed from SSR-enriched genomic libraries. The map consisted of 30 linkage groups and spanned a total length of 1,277.4 cM (78.7% of the genome) with an average distance of 5.7 cM between markers. This is the most saturated map for tef to date, and for the first time, all of the markers are PCR-based. Using agronomic data from 11 environments and marker data, it was possible to map quantitative trait loci (QTL) controlling lodging, grain yield and 15 other related traits. The positive effects of the QTL identified from the wild parent were mainly for earliness, reduced culm length and lodging resistance. In this population, it is now possible to combine lodging resistance and grain yield using a marker-assisted selection program targeting the QTL identified for both traits. The newly developed SSR markers will play a key role in germplasm organization, fingerprinting and monitoring the success of the hybridization process in intra-specific crosses lacking distinctive morphological markers.  相似文献   

8.
Breeding a model plant that encompasses individual traits thought to enhance yield potential, known as ideotype breeding, has traditionally focused on phenotypic selection of plants with desirable morphological traits. Broadening this breeding method to the molecular level through the use of molecular markers would avoid the environmental interactions associated with phenotypic selection. A population of 110 F5 recombinant inbred lines (RILs), derived from the cross between WO3391 and 'OAC Speedvale', was used to develop a genetic linkage map consisting of 105 random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), and sequence-tagged site (STS) markers. The map has a total length of 641 cM distributed across 8 linkage groups (LGs). Five of them were aligned on the core linkage map of bean. Twenty-one quantitative trait loci (QTLs) were identified over three environments for eight agronomic and architectural traits previously defined for a bean (Phaseolus vulgaris L.) ideotype. The QTLs were mapped to seven LGs with several regions containing QTLs for multiple traits. At least one QTL was located for each trait and a maximum of four were associated with lodging. Total explained phenotypic variance ranged from 10.6% for hypocotyl diameter to 45.4% for maturity. Some of the QTLs identified will be useful for early generation selection of tall, upright, high-yielding lines in a breeding program.  相似文献   

9.
A intervarietal genetic map and QTL analysis for yield traits in wheat   总被引:9,自引:0,他引:9  
A new genetic linkage map was constructed based on recombinant inbred lines (RILs) derived from the cross between the Chinese winter wheat (Triticum aestivum L.) varieties, Chuang 35050 and Shannong 483 (ChSh). The map included 381 loci on all the wheat chromosomes, which were composed of 167 SSR, 94 EST-SSR, 76 ISSR, 26 SRAP, 15 TRAP, and 3 Glu loci. This map covered 3636.7 cM with 1327.7 cM (36.5%), 1485.5 cM (40.9%), and 823.5 cM (22.6%) for A, B, and D genome, respectively, and contained 13 linkage gaps. Using the RILs and the map, we detected 46 putative QTLs on 12 chromosomes for grain yield (GY) per m2, thousand-kernel weight (TKW), spike number (SN) per m2, kernel number per spike (KNS), sterile spikelet number per spike (SSS), fertile spikelet number per spike (FSS), and total spikelet number per spike (TSS) in four environments. Each QTL explained 4.42–70.25% phenotypic variation. Four QTL cluster regions were detected on chromosomes 1D, 2A, 6B, and 7D. The most important QTL cluster was located on chromosome 7D near the markers of Xwmc31, Xgdm67, and Xgwm428, in which 8 QTLs for TKW, SN, SSS and FSS were observed with very high contributions (27.53–67.63%).  相似文献   

10.
A population of 178 recombinant inbred lines (RILs) was developed using a single seed descendant from a cross between G. hirsutum. acc DH962 and G. hirsutum. cv Jimian5, was used to construct a genetic map and to map QTL for fiber and yield traits. A total of 644 polymorphic loci were used to construct a final genetic map, containing 616 loci and spanning 2016.44 cM, with an average of 3.27 cM between adjacent markers. Statistical analysis revealed that segregation distortion in the intraspecific population was more serious than that in the interspecific population. The RIL population and the two parents were phenotyped under 8 environments (two locations, six years), revealing a total of 134 QTL, including 64 for fiber qualities and 70 for yield components, independently detected in seven environments, explaining 4.40–15.28% of phenotypic variation (PV). Among the 134 QTL, 9 common QTL were detected in more than one environment, and 22 QTL and 19 new QTL were detected in combined analysis (E9). A total of 26 QTL hotspot regions were observed on 13 chromosomes and 2 larger linkage groups, and some QTL clusters related to fiber qualities or yield components were also observed. The results obtained in the present study suggested that to map accurate QTL in crops with larger plant types, such as cotton, phenotyping under multiple environments is necessary to effectively apply the obtained results in molecular marker-assisted selection breeding and QTL cloning.  相似文献   

11.

Key message

A novel high-density consensus wheat genetic map was obtained based on three related RIL populations, and the important chromosomal regions affecting yield and related traits were specified.

Abstract

A prerequisite for mapping quantitative trait locus (QTL) is to build a genetic linkage map. In this study, three recombinant inbred line populations (represented by WL, WY, and WJ) sharing one common parental line were used for map construction and subsequently for QTL detection of yield-related traits. PCR-based and diversity arrays technology markers were screened in the three populations. The integrated genetic map contains 1,127 marker loci, which span 2,976.75 cM for the whole genome, 985.93 cM for the A genome, 922.16 cM for the B genome, and 1,068.65 cM for the D genome. Phenotypic values were evaluated in four environments for populations WY and WJ, but three environments for population WL. Individual and combined phenotypic values across environments were used for QTL detection. A total of 165 putative additive QTL were identified, 22 of which showed significant additive-by-environment interaction effects. A total of 65 QTL (51.5 %) were stable across environments, and 23 of these (35.4 %) were common stable QTL that were identified in at least two populations. Notably, QTkw-5B.1, QTkw-6A.2, and QTkw-7B.1 were common major stable QTL in at least two populations, exhibiting 11.28–16.06, 5.64–18.69, and 6.76–21.16 % of the phenotypic variance, respectively. Genetic relationships between kernel dimensions and kernel weight and between yield components and yield were evaluated. Moreover, QTL or regions that commonly interact across genetic backgrounds were discussed by comparing the results of the present study with those of previous similar studies. The present study provides useful information for marker-assisted selection in breeding wheat varieties with high yield.  相似文献   

12.
A linkage map of the Lathyrus sativus genome was constructed using 92 backcross individuals derived from a cross between an accession resistant (ATC 80878) to ascochyta blight caused by Mycosphaerella pinodes and a susceptible accession (ATC 80407). A total of 64 markers were mapped on the backcross population, including 47 RAPD, seven sequence-tagged microsatellite site and 13 STS/CAPS markers. The map comprised nine linkage groups, covered a map distance of 803.1 cM, and the average spacing between markers was 15.8 cM. Quantitative trait loci (QTL) associated with ascochyta blight resistance were detected using single-point analysis and simple and composite interval mapping. The backcross population was evaluated for stem resistance in temperature-controlled growth room trials. One significant QTL, QTL1, was located on linkage group 1 and explained 12% of the phenotypic variation in the backcross population. A second suggestive QTL, QTL2, was detected on linkage group 2 and accounted for 9% of the trait variation. The L. sativus R-QTL regions detected may be targeted for future intergenus transfer of the trait into accessions of the closely related species Pisum sativum.  相似文献   

13.
QTL mapping analysis of plant height and ear height of maize (Zea mays L.)   总被引:3,自引:0,他引:3  
Zhang ZM  Zhao MJ  Ding HP  Rong TZ  Pan GT 《Genetika》2006,42(3):391-396
Genetic map containing 103 microsatellite loci obtained on 200 F2 plants derived from the cross R15 x 478 was used for quantitative trait loci (QTL) mapping in maize. QTL were characterized in a population of 200 F2:4 lines, derived from selfing the F2 plants, and were evaluated with two replications in two environments. QTL determinations were made from the mean of these two environments. Plant height (PH) and ear height (EH) were measured. Using composite interval mapping (CIM) method, a total of 14 distinct QTLs were identified: nine for PH and five for EH. Additive, partial dominance, dominance, and overdominance actions existed among all detected QTL affecting plant height and ear height. The QTL explained 78.27% of the phenotypic variance of PH and 41.50% of EH. The 14 QTLs displayed mostly dominance or partial dominance gene action and mapped to chromosomes 2, 3, 4, 8 and 9.  相似文献   

14.
Pea rust caused by Uromyces fabae (Pers.) de-Bary is a major problem in warm humid regions causing huge economic losses. A mapping population of 136 F6:7 recombinant inbred lines (RILs) derived from the cross between pea genotypes, HUVP 1 (susceptible) and FC 1 (resistant) was evaluated in polyhouse as well as under field conditions during two consecutive years. Infection frequency (IF) and area under disease progress curve (AUDPC) were used for evaluation of rust reaction of the RILs. A linkage map was constructed with 57 polymorphic loci selected from 148 simple sequence repeats (SSRs), 3 sequence tagged sites (STS), and 2 random amplified polymorphic (RAPD) markers covering 634 cM of genetic distance on the seven linkage groups of pea with an average interval length of 11.3 cM. Composite interval mapping (CIM) revealed one major (Qruf) and one minor (Qruf1) QTL for rust resistance on LGVII. The LOD (5.2–15.8) peak for Qruf was flanked by SSR markers, AA505 and AA446 (10.8 cM), explaining 22.2–42.4% and 23.5–58.8% of the total phenotypic variation for IF and AUDPC, respectively. The minor QTL was environment-specific, and it was detected only in the polyhouse (LOD values 4.2 and 4.8). It was flanked by SSR markers, AD146 and AA416 (7.3 cM), and explained 11.2–12.4% of the total phenotypic variation. The major QTL Qruf was consistently identified across all the four environments. Therefore, the SSR markers flanking Qruf would be useful for marker-assisted selection for pea rust (U. fabae) resistance.  相似文献   

15.
A doubled-haploid (DH) population from an intervarietal cross between the Japanese cultivar 'Fukuho-komugi' and the Israeli wheat line 'Oligoculm' was produced by means of wheat x maize crosses. One hundred seven DH lines were genotyped to construct a simple sequence repeat (SSR) based linkage map with RFLP, RAPD, and inter-simple sequence repeat markers. Out of 570 loci genotyped, 330 were chosen based on their positions on the linkage map to create a "framework" map for quantitative trait locus (QTL) analysis. Among the 28 linkage groups identified, 25 were assigned to the 21 chromosomes of wheat. The total map length was 3948 cM, including the three unassigned linkage groups (88 cM), and the mean interval between loci was 12.0 cM. Loci with segregation distortion were clustered on chromosomes 1A, 4B, 4D, 5A, 6A, 6B, and 6D. After vernalization, the DH lines were evaluated for spike number per plant (SN) and spike length (SL) in a greenhouse under 24-h daylength to assess the "gigas" features (extremely large spikes and leaves) of 'Oligoculm'. The DH lines were also autumn-sown in the field in two seasons (1990-1991 and 1997-1998) for SN and SL evaluation. QTL analysis was performed by composite interval mapping (CIM) with the framework map to detect QTLs for SN and SL. A major QTL on 1AS, which was stable in both greenhouse and field conditions, was found to control SN. This QTL was close to the glume pubescence locus (Hg) and explained up to 62.9% of the total phenotypic variation. The 'Oligoculm' allele restricted spike number. The SSR locus Xpsp2999 was the closest locus to this QTL and is considered to be a possible marker for restricted tillering derived from 'Oligoculm'. Eight QTLs were detected for SL. The largest QTL detected on 2DS was common to the greenhouse and field environments. It explained up to 33.3% of the total phenotypic variation. The second largest QTL on 1AS was common to the greenhouse and the 1997-1998 season. The position of this QTL was close to that for the SN detected on 1AS. The association between SN and SL is discussed.  相似文献   

16.
Sex ratio and shell-thickness type are among the main components determining yield in oil palm. An integrated linkage map of oil palm was constructed based on 208 offspring derived from a cross between two tenera palms differing in inherited sex ratio. The map consisted of 210 genomic simple sequence repeats (SSRs), 28 expressed sequence tag SSRs, 185 amplified fragment length polymorphism markers, and the Sh locus, which controls shell-thickness phenotype, distributed across 16 linkage groups covering 1,931 cM, with an average marker distance of 4.6 cM. Quantitative trait locus (QTL) analysis identified eight QTLs across six linkage groups associated with sex ratio and related traits. These QTLs explained 8.1–13.1 % of the total phenotypic variance. The QTL for sex ratio on linkage group 8 overlapped with a QTL for number of male inflorescences. In most cases a specific QTL allele combination was responsible for genotype class mean differences, suggesting that most QTLs in heterozygous oil palm are likely to be segregating for multiple alleles with different degrees of dominance. In addition, two new SSRs were shown to flank the major Sh locus controlling the fruit variety type in oil palm.  相似文献   

17.
Hybrids with low grain moisture (GM) at harvest are specially required in mid- to short-season environments. One of the most important factors determining this trait is field grain drying rate (FDR). To produce hybrids with low GM at harvest, inbred lines can be obtained through selection for either GM or FDR. Thus, a single-cross population (181 F 2:3-generation plants) of two divergent inbred lines was evaluated to locate QTL affecting GM at harvest and FDR as a starting point for marker assisted selection (MAS). Moisture measurements were made with a hand-held moisture meter. Detection of QTL was facilitated with interval mapping in one and two dimensions including an interaction term, and a genetic linkage map of 122 SSR loci covering 1,557.8 cM. The markers were arranged in ten linkage groups. QTL mapping was made for the mean trait performance of the F 2:3 population across years. Ten QTL and an interaction were associated with GM. These QTL accounted for 54.8 and 65.2% of the phenotypic and genotypic variation, respectively. Eight QTL and two interactions were associated with FDR accounting for 35.7 and 45.2% of the phenotypic and genotypic variation, respectively. Two regions were in common between traits. The interaction between QTL for GM at harvest had practical implications for MAS. We conclude that MAS per se will not be an efficient method for reducing GM at harvest and/or increasing FDR. A selection index including both molecular marker information and phenotypic values, each appropriately weighted, would be the best selection strategy.  相似文献   

18.
The pearl oyster, Pinctada fucata (P. fucata), is one of the marine bivalves that is predominantly cultured for pearl production. To obtain more genetic information for breeding purposes, we constructed a high-density linkage map of P. fucata and identified quantitative trait loci (QTL) for growth-related traits. One F1 family, which included the two parents, 48 largest progeny and 50 smallest progeny, was sampled to construct a linkage map using restriction site-associated DNA sequencing (RAD-Seq). With low coverage data, 1956.53 million clean reads and 86,342 candidate RAD loci were generated. A total of 1373 segregating SNPs were used to construct a sex-average linkage map. This spanned 1091.81 centimorgans (cM), with 14 linkage groups and an average marker interval of 1.41 cM. The genetic linkage map coverage, Coa, was 97.24%. Thirty-nine QTL-peak loci, for seven growth-related traits, were identified using the single-marker analysis, nonparametric mapping Kruskal-Wallis (KW) test. Parameters included three for shell height, six for shell length, five for shell width, four for hinge length, 11 for total weight, eight for soft tissue weight and two for shell weight. The QTL peak loci for shell height, shell length and shell weight were all located in linkage group 6. The genotype frequencies of most QTL peak loci showed significant differences between the large subpopulation and the small subpopulation (P<0.05). These results highlight the effectiveness of RAD-Seq as a tool for generation of QTL-targeted and genome-wide marker data in the non-model animal, P. fucata, and its possible utility in marker-assisted selection (MAS).  相似文献   

19.
四倍体栽培棉种产量和纤维品质性状的QTL定位   总被引:29,自引:1,他引:28  
陆地棉和海岛棉是两个不同的四倍体栽培种 ,但在生产上各有其特点 ,陆地棉丰产性强 ,海岛棉纤维品质优良 ,利用其种间杂交群体定位产量和品质性状的QTL ,对于分子标记辅助的海岛棉优质纤维向陆地棉转移很有意义。以SSR和RAPD为分子标记 ,陆地棉与海岛棉杂种 (邯郸 2 0 8×Pima90 )F2 群体为作图群体 ,构建了一张含 12 6个标记的遗传图谱 ,包括 6 8个SSR标记和 5 8个RAPD标记 ,可分为 2 9个连锁群 ,标记间平均距离为 13 7cM ,总长1717 0cM ,覆盖棉花总基因组约 34 34% ;以遗传图 12 6个标记为基础 ,对F2 :3 家系符合正态分布的 10个农艺性状及纤维品质性状进行全基因组QTL扫描 ,结果发现 2 9个QTL分别与产量和品质性状有关。其中与衣指、籽指、皮棉产量、子棉产量、衣分等产量性状相关的QTL分别有 1、3、5、6和 1个 ,与纤维长度、整齐度、强度、伸长率和马克隆值等品质性状相关的QTL分别有 2、4、2、4和 1个。各QTL解释的变异量在 12 4 2 %~ 47 0 1%之间。其中比强度有关的 2个QTL能够解释的表型变异率分别为 34 15 %和 13 86 %。  相似文献   

20.
Common bean architecture is in part determined by the determinacy gene fin which can affect yield potential and adaptation to various environments and has many known effects in temperate regions. Tropical adaptation, meanwhile, requires adaptation to rainy and dry seasons where heat and drought stress are major problems. The goal of this research was to determine the effect of the fin gene on plants grown under heat, drought and non-stress conditions in the tropics and to identify quantitative trait loci (QTL) for architectural, phenological and yield traits related to fin in an inter-genepool population derived from a cross between an indeterminate Mesoamerican genotype with erect architecture (A55) and a determinate Andean genotype with heat tolerance (G122). The population was evaluated in four experiments conducted in a tropical location across two rainy seasons and across dry season drought stress and dry season irrigated treatments. A total of 71 SSR loci and 245 AFLP, RAPD, seed protein or phenotypic markers were integrated together into a genetic map with a total distance of 982.8 cM. A total of 36 QTL were identified based on the evaluation of six phenotypic variables differentiating the parents. The A55 parent was high yielding under all conditions; while G122 was confirmed to be resistant to high temperatures, but not to drought. Some QTL for yield were associated with erect growth alleles inherited from the indeterminate parent and were located on linkage group b01 near the fin locus while other QTL for seed weight were found across the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号