首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
对海岛棉产量和早熟性状进行QTL初步定位,为分子标记辅助育种提供依据。利用5200多对SSR引物筛选海岛棉品种新海3号和Giza82间的多态性引物,获得107对。以多态性引物检测新海3号×Giza82的190个F2:3家系,获得120个多态性位点。利用JoinMap3.0分析软件构建了一个包含22个连锁群,74个标记,标记间平均距离12.06 cM,全长893 cM,覆盖海岛棉基因组20.12%的分子标记遗传连锁图谱。采用复合区间作图法检测到21个与海岛棉产量性状和早熟性状有关的QTL,其中早熟性状检测到12个QTL,分别位于1、3、5、6、11、17、22共7个连锁群上;产量性状检测到9个QTL,分别位于1、4、5、6、7、16、22共7个连锁群上。研究结果为海岛棉产量性状和早熟性状的分子设计育种提供了有用的信息。  相似文献   

2.
对海岛棉产量和早熟性状进行QTL初步定位,为分子标记辅助育种提供依据.利用5200多对SSR引物筛选海岛棉品种新海3号和Giza82间的多态性引物,获得107对.以多态性引物检测新海3号×Giza82的190个F2∶3家系,获得120个多态性位点.利用JoinMap3.0分析软件构建了一个包含22个连锁群,74个标记,标记间平均距离12.06cM,全长893cM,覆盖海岛棉基因组20.12%的分子标记遗传连锁图谱.采用复合区间作图法检测到21个与海岛棉产量性状和早熟性状有关的QTL,其中早熟性状检测到12个QTL,分别位于1、3、5、6、11、17、22共7个连锁群上;产量性状检测到9个QTL,分别位于1、4、5、6、7、16、22共7个连锁群上.研究结果为海岛棉产量性状和早熟性状的分子设计育种提供了有用的信息.  相似文献   

3.
陆地棉(Gossypium hirsutum L.)和海岛棉(Gossypium barbadense L.)是两个栽培四倍体棉种.前者产量高、适应性广,后者纤维品质优良.置换了海岛棉一对染色体的陆地棉置换系是研究海陆杂种此对染色体上基因互作的优异材料.在对第16染色体的置换系(简称Sub 16)进行遗传评价的基础上,利用(TM-1×Sub 16)F2∶3家系对位于第16染色体上的重要农艺性状进行遗传分析,发现第16染色体上有铃重、衣分、衣指、纤维长度、第一果枝节位的QTLs 各2个,纤维伸长率、开花天数的QTL各 1个,没有检测到子指、纤维强度、麦克隆值的QTL.在构建第16染色体的RAPD、SSR分子标记连锁图基础上,利用分子标记对相应重要农艺性状进行区间作图,检测到铃重、开花天数、纤维长度、纤维伸长率的QTL各1个,在F2∶3株系群体中能解释的表型变异分别为15.2%、12.1%、19.7%和11.7%;检测到2个衣指QTLs,在F2∶3株系群体中能解释的表型变异分别为11.6%和41.9%;检测到3个衣分QTLs,在F2∶3株系群体中能解释的表型变异分别为8.7%、9.6%和29.2%.单标记检测到铃重、开花天数的QTL各1个,在F2∶3株系群体中能解释的表型变异分别为1.60%和4.63%.证明了第16染色体与铃重、衣分、衣指、纤维长度、纤维伸长率、开花天数等性状的关系.  相似文献   

4.
以陆地棉(Gossypium hirsutum L.)品种Bar19/1和Acala1517-77杂交的108个F2单株为材料,应用85个标记(70个SSR标记和15个AFLP标记)构建了总长为814cM的遗传图谱,覆盖棉花基因组的18.3%。该图谱包含25个连锁群,分别对应到17条染色体和4个未知连锁群。应用复合区间作图法分析了该组合的108个F2单株和F3家系纤维品质性状,从遗传图谱上检测到19个纤维品质数量性状基因座(QTL),包括5个纤维长度、6个纤维比强度、4个伸长率及4个马克隆值QTL,分别解释各性状表型变异的15.11%~28.45%、8.46%~24.51%、11.08%~27.55%和9.23%~42.21%。纤维长度和伸长率的QTL以部分显性为主,少数具有超显性,比强度QTL以加性和部分显性为主,4个马克隆值QTL中有3个表现为超显性。研究结果表明,陆地棉Bar19/1和Acala1517-77间多态性位点丰富,有利于构建高密度遗传图谱,纤维品质性状的QTL分析从分子水平上揭示了纤维品质的遗传基础。  相似文献   

5.
棉花高品质纤维性状QTLs的分子标记筛选及其定位   总被引:26,自引:1,他引:25  
利用7235、TM-1亲本(P1、P2),以及(7235×TM-1)F1、F2(南京和美国2个环境)与F23(南京和海南2个环境)家系群体,根据F2与F23的纤维品质性状表现,构建了纤维强度、细度与长度的极值DNA混合池,通过221对SSR引物、1840个RAPD引物对亲本和极值DNA混合池筛选,共得到了13个多态性标记,其中8个标记可能与高强有关,1个标记与低强有关;3个标记与麦克隆值有关;1个与绒长有关.进一步通过F2分离群体检测,连锁分析表明与高强有关的8个标记(2个SSR标记和6个RAPD标记)紧密连锁,覆盖15.5cM.这一高强纤维的QTL,4个环境中均以FSR1933为最近,相距不超过0.6cM,能解释35%的F2变异,53.8%的F23的表型变异,是目前纤维强度单个QTL效应最大的,多个环境下稳定,可以直接用于标记辅助育种.单体测验表明,该在棉花的第10染色体上.麦克隆值的一个主效QTL标记FMR1603,在F2中能解释7.8%的变异,在F23中能解释25.4%的变异,同样表现环境稳定.纤维长度的一个标记FLR11550,在3个环境中预测到,最大能解释9.5%  相似文献   

6.
陆地棉优质纤维渐渗系中外源遗传组分的鉴定与分析   总被引:2,自引:0,他引:2  
鲁原343是一个渐渗了海岛棉优质纤维基因的陆地棉种质,对其渐渗的优质纤维片段进行鉴定,对利用优质纤维渐渗系改良陆地棉品种的纤维品质具有重要意义。本研究以综合性状优良的转基因抗虫棉鲁棉研22号与鲁原343杂交构建作图群体,利用317对SSR引物对鲁原343和鲁棉研22号进行多态性分析,有24对引物表现多态。利用这些引物进一步和TM-1、优质纤维渐渗片段的供体Ash imoun i作比较,初步鉴定出10个SSR位点与海岛棉渐渗有关。利用这些标记分析(鲁棉研22×鲁原343)F2群体的标记基因型和纤维品质性状的关系,6个标记与纤维品质显著相关,涉及到4条染色体。其中与伸长率相关的标记BNL2986(R2=5.87%)和与长度、细度相关的标记NAU751(R2=6.62%,6.01%)同位于16号染色体的连锁群LG1上,标记间距离为17.7 cM;与纤维成熟度相关的标记BNL3590(R2=8.62%)和与成熟度、伸长率相关的标记BNL3971(R2=15.0%,9.79%)位于2号染色体的连锁群LG3上,标记间距离为4.5 cM;与纤维强度相关的标记BNL3279(R2=8.12%)和与细度相关的标记BNL827(R2=13.94%)分别位于LGD02和25号染色体上。  相似文献   

7.
以高产陆地棉栽培品种中棉所12和8891的杂交组合湘杂棉2号为材料,采用单粒传法构建了含有180个家系的重组自交系(RILs)群体。本研究的目的是分析产量及其构成因子的相互关系并进行相应的QTL定位。重组自交系群体、两亲本和F1于2002年、2003年分别种植于南京农业大学江浦实验农场和江苏省灌云棉花基地。收获每行中间五株的籽棉并考察产量及产量构成因子性状。调查的产量及产量构成因子性状包括单株籽棉产量、单株皮棉产量、单株铃数、铃重、衣分、衣指和籽指。筛选了4,106对SSR引物和384个AFLP引物组合,分别得到127和18个多态位点;此外,2个RAPD引物、1个SRAP引物组合以及来自亲本8891的显性黄花药基因P1也被用来作为标记检测群体基因型。最终共获得149个多态位点,其中132个位点分布于26个染色体/连锁群,覆盖865.20cM,约占棉花基因组的18.57%,标记间平均距离6.55cM。利用此遗传图谱结合重组自交系群体3个环境下的产量及产量构成因子性状,应用QTLCartographer2.0的复合区间作图法进行单位点QTL定位。对各环境资料的分离分析共定位出34个QTL,而利用三环境平均值的联合分析定位出15个QTL。本研究定位的QTL可为棉花产量育种提供信息,其中衣分QTLqLP-A10-1在联合分析及分离分析下的两个环境都能检测到,可能对标记辅助选择有实际应用价值。通径分析结果表明,各产量构成因子中,铃数对皮棉产量贡献最大,这与产量构成因素性状在F1的杂种优势表现一致;因此,在棉花育种上,可优先考虑单株铃数并结合其它产量构成因素进行品种选育和杂交组合选配。  相似文献   

8.
纤维品质和衣分是棉花育种改良的主要目标性状。为充分挖掘与纤维品质和衣分相关的优异基因资源,利用海岛棉优异纤维渐渗系Sealand(Se)和高产抗逆的陆地棉品种鲁棉研37号(L37)为亲本,构建了包含372个单株的F2群体,进行遗传图谱的构建和QTL定位的研究。从9628对引物中筛选到320对在亲本中具有多态的标记,多态率约为3.32%;连锁分析表明(LOD=6.5),有248个标记位点进入连锁群,分布在26条染色体上,覆盖区间为2347.63 cM,约占棉花基因组的52.76%,平均每条染色体9.54个标记,标记间平均间距为9.50 cM;利用F2群体的棉花纤维品质和衣分数据,共定位到20个与纤维品质性状和衣分相关的QTLs,其中纤维上半部平均长度和整齐度指数各2个,断裂比强度5个,马克隆值和伸长率各4个,衣分3个,贡献率为3.50%~16.82%;与纤维上半部平均长度、断裂比强度和伸长率相关的11个QTLs,增效基因均来自亲本Se,与马克隆值、整齐度指数和衣分相关的9个QTLs,增效基因均来自亲本L37。在D6染色体上鉴定到一个含有纤维上半部平均长度、断裂比强度和马克隆值的QTL簇,该区间包含有148个基因,通过GO富集分析和KEGG富集分析,并结合TM-1的转录组数据,获得了3个可能与纤维发育相关的基因:Gh_D06G0039、Gh_D06G0142和Gh_D06G0145。本研究为棉花纤维品质和衣分性状QTL的精细定位及相关候选基因的筛选奠定了基础。  相似文献   

9.
陆地棉产量性状QTLs的分子标记及定位   总被引:34,自引:0,他引:34  
用我国的高产栽培品种泗棉3号和美国栽培品种TM-1为材料,构建F2和F2∶3作图群体,应用301对SSR引物和1040个RAPD引物,对产量性状QTLs进行了分子标记筛选,结果共筛选出了37对SSR多态性引物和10个RAPD多态性引物的49个位点,鉴定出了控制产量性状变异的主效QTLs。定位于第9染色体的连锁群,分别具有控制铃重、衣分和籽指的主效QTLs,铃重的2个QTLs分别解释F2∶3群体表型变异的18.2%和21.0%;在F2群体检测到的1个衣分QTL解释表型变异的25%,另一个衣分QTL在F2群体和F2∶3群体都检测到,解释F2群体衣分的24.9%的表型变异,解释F2∶3群体衣分的5.9%的表型变异;在F2∶3群体铃重的一个QTL的同一位置同时检测到一个籽指QTL,它解释15.6%的表型变异,是一因多效或是紧密连锁的两个QTLs,有待进一步研究。本研究标记的产量性状主效QTLs可用于棉花产量性状的标记辅助选择。  相似文献   

10.
甘蓝型黄籽油菜种皮色泽QTL作图   总被引:8,自引:0,他引:8  
甘蓝型黄籽油菜具有低纤维、高蛋白及高含油量的优点,因而己成为广大油菜育种工作者研究的重点之一。利用甘蓝型黑籽品系油研2号作父本,计蓝型黄籽品系GH06为母本,获得132个单株的F2群体;以AFLP和SSR为主要分析方法,构建了包括164个标记的甘蓝型油菜遗传连锁图谱,其中包括125个AFLP标记、37个SSR标记及一个RAPD和一个SCAR标记,分布在19个连锁群上,覆盖油菜基因组2549.8cM,标记间平均距离15.55cM。利用多区间作图法,对种皮色泽QTL进行分析,在第5及第19连锁群上各检测到一个QTL位点,分别解释表型变异46%及30.9%。  相似文献   

11.
Asiatic cotton(Gossypium arboreum L.) is an Old World cultivated cotton species.The sinense race was planted extensively in China.Due to the advances in spinning technology during the last century,the species was replaced by the New World allotetraploid cotton G.hirsutum L.Gossypium arboreum is still grown in India and Pakistan and also used as an elite in current cotton breeding programs.In addition,G.arboreum serves as a model for genomic research in Gossypium.In the present study,we generated an A-genome diploid cotton intraspecific genetic map including 264 SSR loci with three morphological markers mapped to 1 3 linkage groups.The map spans 2,508.71 cM with an average distance of 9.4 cM between adjacent loci.A population containing 1 76 F2:3 families was used to perform quantitative trait loci(QTL)mapping for 17 phenotypes using Multiple QTL Model(MQM)of MapQTL ver 5.0.Overall,108 QTLs were detected on 13 chromosomes.Thirty-one QTLs for yield and its components were detected in the F2 population.Forty-one QTLs for yield and its components were detected in the F2:3 families with a total of 43 QTLs for fiber qualities.Two QTLs for seed cotton weight/plant and lint index and three QTLs for seed index were consistently detected both in F2 and F2:3.Most QTLs for fiber qualities and yields were located at the same interval or neighboring intervals.These results indicated that the negative correlation between fiber qualities and yield traits may result from either pleiotropic effect of one gene or linkage effects of multiple closely linked genes.  相似文献   

12.
Identification of stable quantitative trait loci (QTLs) across different environments and mapping populations is a prerequisite for marker-assisted selection (MAS) for cotton yield and fiber quality. To construct a genetic linkage map and to identify QTLs for fiber quality and yield traits, a backcross inbred line (BIL) population of 146 lines was developed from a cross between Upland cotton (Gossypium hirsutum) and Egyptian cotton (Gossypium barbadense) through two generations of backcrossing using Upland cotton as the recurrent parent followed by four generations of self pollination. The BIL population together with its two parents was tested in five environments representing three major cotton production regions in China. The genetic map spanned a total genetic distance of 2,895 cM and contained 392 polymorphic SSR loci with an average genetic distance of 7.4 cM per marker. A total of 67 QTLs including 28 for fiber quality and 39 for yield and its components were detected on 23 chromosomes, each of which explained 6.65–25.27 % of the phenotypic variation. Twenty-nine QTLs were located on the At subgenome originated from a cultivated diploid cotton, while 38 were on the Dt subgenome from an ancestor that does not produce spinnable fibers. Of the eight common QTLs (12 %) detected in more than two environments, two were for fiber quality traits including one for fiber strength and one for uniformity, and six for yield and its components including three for lint yield, one for seedcotton yield, one for lint percentage and one for boll weight. QTL clusters for the same traits or different traits were also identified. This research represents one of the first reports using a permanent advanced backcross inbred population of an interspecific hybrid population to identify QTLs for fiber quality and yield traits in cotton across diverse environments. It provides useful information for transferring desirable genes from G. barbadense to G. hirsutum using MAS.  相似文献   

13.
Four-way cross (4WC) involving four different inbred lines frequently appears in the cotton breeding programs. However, linkage analysis and quantitative trait loci (QTL) mapping with molecular markers in cotton has largely been applied to populations derived from a cross between two inbred lines, and few results of QTL dissection were conducted in a 4WC population. In this study, an attempt was made to construct a linkage map and identify QTL for yield and fiber quality traits in 4WC derived from four different inbred lines in Gossypium hirsutum L. A linkage map was constructed with 285 SSR loci and one morphological locus, covering 2113.3 cM, approximately 42% of the total recombination length of the cotton genome. A total of 31 QTL with 5.1–25.8% of the total phenotypic variance explained were detected. Twenty-four common QTL across environments showed high stability, and six QTL were environment-specific. Several genomic segments affecting multiple traits were identified. The advantage of QTL mapping using a 4WC were discussed. This study presents the first example of QTL mapping using a 4WC population in upland cotton. The results presented here will enhance the understanding of the genetic basis of yield and fiber quality traits and enable further marker-assisted selection in cultivar populations in upland cotton.  相似文献   

14.
Chromosome identities were assigned to 15 linkage groups of the RFLP joinmap developed from four intraspecific cotton (Gossypium hirsutum L.) populations with different genetic backgrounds (Acala, Delta, and Texas Plains). The linkage groups were assigned to chromosomes by deficiency analysis of probes in the previously published joinmap, based on genomic DNA from hypoaneuploid chromosome substitution lines. These findings were integrated with QTL identification for multiple fiber and yield traits. Overall results revealed the presence of 63 QTLs on five different chromosomes of the A subgenome (chromosomes-03, -07, -09, -10, and -12) and 29 QTLs on the three different D subgenome (chromosomes-14 Lo, -20, and the long arm of -26). Linkage group-1 (chromosome-03) harbored 26 QTLs, covering 117 cM with 54 RFLP loci. Linkage group-2, (the long arm of chromosome-26) harbored 19 QTLs, covering 77.6 cM with 27 RFLP loci. Approximately 49% of the putative 92 QTLs for agronomic and fiber quality traits were placed on the above two major joinmap linkage groups, which correspond to just two different chromosomes, indicating that cotton chromosomes may have islands of high and low meiotic recombination like some other eukaryotic organisms. In addition, it reveals highly recombined and putative gene abundant regions in the cotton genome. QTLs for fiber quality traits in certain regions are located between two RFLP markers with an average of less than one cM (approximately 0.4-0.6 Mb) and possibly represent targets for map-based cloning. Identification of chromosomal location of RFLP markers common to different intra- and interspecific-populations will facilitate development of portable framework markers, as well as genetic and physical mapping of the cotton genome.  相似文献   

15.
Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends   总被引:15,自引:3,他引:12  
Fine mapping and positional cloning will eventually improve with the anchoring of additional markers derived from genomic clones such as BACs. From 2,603 new BAC-end genomic sequences from Gossypium hirsutum Acala ‘Maxxa’, 1,316 PCR primer pairs (designated as MUSB) were designed to flank microsatellite or simple sequence repeat motif sequences. Most (1164 or 88%) MUSB primer pairs successfully amplified DNA from three species of cotton with an average of three amplicons per marker and 365 markers (21%) were polymorphic between G. hirsutum and G. barbadense. An interspecific RIL population developed from the above two entries was used to map 433 marker loci and 46 linkage groups with a genetic distance of 2,126.3 cM covering approximately 45% of the cotton genome and an average distance between two loci of 4.9 cM. Based on genome-specific chromosomes identified in G. hirsutum tetraploid (A and D), 56.9% of the coverage was located on the A subgenome while 39.7% was assigned to the D subgenome in the genetic map, suggesting that the A subgenome may be more polymorphic and recombinationally active than originally thought. The linkage groups were assigned to 23 of the 26 chromosomes. This is the first genetic map in which the linkage groups A01 and A02/D03 have been assigned to specific chromosomes. In addition the MUSB-derived markers from BAC-end sequences markers allows fine genetic and QTL mapping of important traits and for the first time provides reconciliation of the genetic and physical maps. Limited QTL analyses suggested that loci on chromosomes 2, 3, 12, 15 and 18 may affect variation in fiber quality traits. The original BAC clones containing the newly mapped MUSB that tag the QTLs provide critical DNA regions for the discovery of gene sequences involved in biological processes such as fiber development and pest resistance in cotton. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

16.
To facilitate marker assisted selection, there is an urgent need to construct a saturated genetic map of upland cotton (Gossypium hirsutum L.). Four types of markers including SSR, SRAP, morphological marker, and intron targeted intron–exon splice junction (IT-ISJ) marker were used to construct a linkage map with 270 F2:7 recombinant inbred lines derived from an upland cotton cross (T586 × Yumian 1). A total of 7,508 SSR, 740 IT-ISJ and 384 SRAP primer pairs/combinations were used to screen for polymorphism between the two mapping parents, and the average polymorphisms of three types of molecular markers represented 6.8, 6.6 and 7.0%, respectively. The polymorphic primer pairs/combinations and morphological markers were used to genotype 270 recombinant inbred lines, and a map including 604 loci (509 SSR, 58 IT-ISJ, 29 SRAP and 8 morphological loci) and 60 linkage groups was constructed. The map spanned 3,140.9 cM with an average interval of 5.2 cM between two markers, approximately accounting for 70.6% of the cotton genome. Fifty-four of 60 linkage groups were ordered into 26 chromosomes. Multiple QTL mapping was used to identify QTL for fiber quality traits in five environments, and thirteen QTL were detected. These QTL included four for fiber length (FL), two for fiber strength (FS), two for fiber fineness (FF), three for fiber length uniformity (FU), and two for fiber elongation (FE), respectively. Each QTL explained between 7.4 and 43.1% of phenotypic variance. Five out of thirteen QTL (FL1 and FU1 on chromosome 6, FL2, FU2 and FF1 on chromosome7) were detected in five environments, and they explained more than 20% of the phenotypic variance. Eleven QTL were distributed on A genome, while the other two on D genome.  相似文献   

17.
An RFLP genetic linkage joinmap was constructed from four different mapping populations of cotton (Gossypium hirsutum L.). Genetic maps from two of the four populations have been previously reported. The third genetic map was constructed from 199 bulk-sampled plots of an F2.3 (HQ95–6×’MD51ne’) population. The map comprises 83 loci mapped to 24 linkage groups with an average distance between markers of 10.0 centiMorgan (cM), covering 830.1 cM or approximately 18% of the genome. The fourth genetic map was developed from 155 bulk-sampled plots of an F2.3 (119– 5 sub-okra×’MD51ne’) population. This map comprises 56 loci mapped to 16 linkage groups with an average distance between markers of 9.3 cM, covering 520.4 cM or approximately 11% of the cotton genome. A core of 104 cDNA probes was shared between populations, yielding 111 RFLP loci. The constructed genetic linkage joinmap from the above four populations comprises 284 loci mapped to 47 linkage groups with the average distance between markers of 5.3 cM, covering 1,502.6 cM or approximately 31% of the total recombinational length of the cotton genome. The linkage groups contained from 2 to 54 loci each and ranged in distance from 1.0 to 142.6 cM. The joinmap provided further knowledge of competitive chromosome arrangement, parental relationships, gene order, and increased the potential to map genes for the improvement of the cotton crop. This is the first genetic linkage joinmap assembled in G. hirsutum with a core of RFLP markers assayed on different genetic backgrounds of cotton populations (Acala, Delta, and Texas plain). Research is ongoing for the identification of quantitative trait loci for agronomic, physiological and fiber quality traits on these maps, and the identification of RFLP loci lineage for G. hirsutum from its diploid progenitors (the A and D genomes). Received: 23 February 2001 / Accepted: 8 June 2001  相似文献   

18.
Verticillium wilt is one of the most serious constraints to cotton production in almost all of the cotton-growing countries. In this study, "XinLuZaol" (XLZl), a susceptible cultivar Gossypium hirsutum L. and "Hai7124" (H7124), a resistant line G. barbadense, and their F2:3 families were used to map and study the disease index induced by verticillium wilt. A total of 430 SSR loci were mapped into 41 linkage groups; the map spanned 3 745.9 cM and the average distance between adjacent loci was 8.71 cM. Four and five quantitative trait loci (QTLs) were detected based on the disease index investigated on July 22 and August 24 in 2004, respectively. These nine QTLs explained 10.63-28.83% of the phenotypic variance, six of them were located on the D sub-genome. Two QTLs located in the same marker intervals may partly explain the significant correlation of the two traits. QTLs explaining large phenotypic variation were identified in this study, which may be quite useful in cotton anti-disease breeding.  相似文献   

19.
Cotton, the leading natural fiber crop, is largely produced by two primary cultivated allotetraploid species known as Upland or American cotton (Gossypium hirsutum L.) and Pima or Egyptian cotton (G. barbadense L.). The allotetraploid species diverged from each other and from their diploid progenitors (A or D genome) through selection and domestication after polyploidization. To analyze cotton AD genomes and dissect agronomic traits, we have developed a genetic map in an F2 population derived from interspecific hybrids between G. hirsutum L. cv. Acala-44 and G. barbadense L. cv. Pima S-7. A total of 392 genetic loci, including 333 amplified fragment length polymorphisms (AFLPs), 47 simple sequence repeats (SSRs), and 12 restriction fragment length polymorphisms (RFLPs), were mapped in 42 linkage groups, which span 3,287 cM and cover approximately 70% of the genome. Using chromosomal aneuploid interspecific hybrids and a set of 29 RFLP and SSR framework markers, we assigned 19 linkage groups involving 223 loci to 12 chromosomes. Comparing four pairs of homoeologous chromosomes, we found that with one exception linkage distances in the A-subgenome chromosomes were larger than those in their D-subgenome homoeologues, reflecting higher recombination frequencies and/or larger chromosomes in the A subgenome. Segregation distortion was observed in 30 out of 392 loci mapped in cotton. Moreover, approximately 29% of the RFLPs behaved as dominant loci, which may result from rapid genomic changes. The cotton genetic map was used for quantitative trait loci (QTL) analysis using composite interval mapping and permutation tests. We detected seven QTLs for six fiber-related traits; five of these were distributed among A-subgenome chromosomes, the genome donor of fiber traits. The detection of QTLs in both the A subgenome in this study and the D subgenome in a previous study suggests that fiber-related traits are controlled by the genes in homoeologous genomes, which are subjected to selection and domestication. Some chromosomes contain clusters of QTLs and presumably contribute to the large amount of phenotypic variation that is present for fiber-related traits.Communicated by J. Dvorak  相似文献   

20.
Detecting QTLs (quantitative trait loci) that enhance cotton yield and fiber quality traits and accelerate breeding has been the focus of many cotton breeders. In the present study, 359 SSR (simple sequence repeat) markers were used for the association mapping of 241 Upland cotton collections. A total of 333 markers, representing 733 polymorphic loci, were detected. The average linkage disequilibrium (LD) decay distances were 8.58 cM (r2 > 0.1) and 5.76 cM (r2 > 0.2). 241 collections were arranged into two subgroups using STRUCTURE software. Mixed linear modeling (MLM) methods (with population structure (Q) and relative kinship matrix (K)) were applied to analyze four phenotypic datasets obtained from four environments (two different locations and two years). Forty-six markers associated with the number of bolls per plant (NB), boll weight (BW), lint percentage (LP), fiber length (FL), fiber strength (FS) and fiber micornaire value (FM) were repeatedly detected in at least two environments. Of 46 associated markers, 32 were identified as new association markers, and 14 had been previously reported in the literature. Nine association markers were near QTLs (at a distance of less than 1–2 LD decay on the reference map) that had been previously described. These results provide new useful markers for marker-assisted selection in breeding programs and new insights for understanding the genetic basis of Upland cotton yields and fiber quality traits at the whole-genome level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号