首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu F  Liang Z  Shi J  Yin D  El-Akkad E  Grundke-Iqbal I  Iqbal K  Gong CX 《FEBS letters》2006,580(26):6269-6274
Phosphorylation of tau protein is regulated by several kinases, especially glycogen synthase kinase 3beta (GSK-3beta), cyclin-dependent protein kinase 5 (cdk5) and cAMP-dependent protein kinase (PKA). Phosphorylation of tau by PKA primes it for phosphorylation by GSK-3beta, but the site-specific modulation of GSK-3beta-catalyzed tau phosphorylation by the prephosphorylation has not been well investigated. Here, we found that prephosphorylation by PKA promotes GSK-3beta-catalyzed tau phosphorylation at Thr181, Ser199, Ser202, Thr205, Thr217, Thr231, Ser396 and Ser422, but inhibits its phosphorylation at Thr212 and Ser404. In contrast, the prephosphorylation had no significant effect on its subsequent phosphorylation by cdk5 at Thr181, Ser199, Thr205, Thr231 and Ser422; inhibited it at Ser202, Thr212, Thr217 and Ser404; and slightly promoted it at Ser396. These studies reveal the nature of the inter-regulation of tau phosphorylation by the three major tau kinases.  相似文献   

2.
Microtubule-associated protein tau contains a consensus motif for protein kinase B/Akt (Akt), which plays an essential role in anti-apoptotic signaling. The motif encompasses the AT100 double phospho-epitope (Thr212/Ser214), a specific marker for Alzheimer's disease (AD) and other neurodegenerations, raising the possibility that it could be generated by Akt. We studied Akt-dependent phosphorylation of tau protein in vitro. We found that Akt phosphorylated both Thr212 and Ser214 in the longest and shortest tau isoforms as determined using phospho site-specific antibodies against tau. Akt did not phosphorylate other tau epitopes, including Tau-1, AT8, AT180, 12E8 and PHF-1. The Akt-phosphorylated tau retained its initial electrophoretic mobility. Immunoprecipitation studies with phospho-specific Thr212 and Ser214 antibodies revealed that only one of the two sites is phosphorylated per single tau molecule, resulting in tau immunonegative for AT100. Mixed kinase studies showed that prior Ser214 phosphorylation by Akt blocked protein kinase A but not GSK3beta activity. On the other hand, GSK3beta selectively blocked Ser214 phosphorylation, which was prevented by lithium. The results suggest that Akt may be involved in AD-specific phosphorylation of tau at the AT100 epitope in conjunction with other kinases. Our data suggest that phosphorylation of tau by Akt may play specific role(s) in Akt-mediated anti-apoptotic signaling, particularly relevant to AD and other neurodegenerations.  相似文献   

3.
Liu Y  Su Y  Sun S  Wang T  Qiao X  Li H  Run X  Liang Z 《Neurochemical research》2012,37(5):935-947
Phosphorylation of the cAMP response element binding protein (CREB) by cAMP-dependent kinase (PKA) is critical to memory formation. However, activation of PKA can also increase tau phosphorylation, which may contribute to memory impairment. Therefore, the regulation of PKA may be part of the mechanism by which glucocorticoids (GCs) influence memory. Additionally, the cellular response to GCs may be affected by the presence of human tau. The goal of this paper was to study GCs-mediated regulation of PKA as well as CREB and tau phosphorylation in wild-type HEK293 cells and HEK293 cells stably expressing human tau441 (HEK293/tau441 cells). By using dexamethasone (DEX) as GCs, we found that DEX induced a tau-dependent selective decrease in the level of PKA RIIβ subunit protein. The observed decrease in RIIβ expression was not due to alterations of mRNA levels and was reversed by inhibiting the proteasome with lactacystin. Moreover, the decrease in RIIβ did not diminish the co-localization of the catalytic subunit of PKA with tau and might contribute to the DEX-induced increase in tau phosphorylation at Ser-214. DEX also induced a tau-dependent decrease in CREB phosphorylation that could not be reversed by activating PKA with forskolin. Taken together, these results show that human tau protein may alter the GCs-mediated regulation of PKA activity and CREB phosphorylation.  相似文献   

4.
Accumulation of amyloid‐β (Aβ) and fibrillary tangles, as well as neuroinflammation and memory loss, are hallmarks of Alzheimer’s disease (AD). After almost 15 years from their generation, 3xTg‐AD mice are still one of the most used transgenic models of AD. Converging evidence indicates that the phenotype of 3xTg‐AD mice has shifted over the years and contradicting reports about onset of pathology or cognitive deficits are apparent in the literature. Here, we assessed Aβ and tau load, neuroinflammation, and cognitive changes in 2‐, 6‐, 12‐, and 20‐month‐old female 3xTg‐AD and nontransgenic (NonTg) mice. We found that ~80% of the mice analyzed had Aβ plaques in the caudal hippocampus at 6 months of age, while 100% of them had Aβ plaques in the hippocampus at 12 months of age. Cortical Aβ plaques were first detected at 12 months of age, including in the entorhinal cortex. Phosphorylated Tau at Ser202/Thr205 and Ser422 was apparent in the hippocampus of 100% of 6‐month‐old mice, while only 50% of mice showed tau phosphorylation at Thr212/Ser214 at this age. Neuroinflammation was first evident in 6‐month‐old mice and increased as a function of age. These neuropathological changes were clearly associated with progressive cognitive decline, which was first apparent at 6 months of age and became significantly worse as the mice aged. These data indicate a consistent and predictable progression of the AD‐like pathology in female 3xTg‐AD mice, and will facilitate the design of future studies using these mice.  相似文献   

5.
FTDP-17 missense tau mutations: G272V, P301L, V337M and R406W promote tau phosphorylation in human and transgenic mice brains by interfering with the tau phosphorylation/dephosphorylation balance. The effect of FTDP-17 mutations on tau phosphorylation by different kinases has been studied previously. However, it is not known how various FTDP-17 mutations affect tau dephosphorylation by phosphoprotein phosphatases. In this study we have observed that when transfected into HEK-293 cells, tau is phosphorylated on various sites that are also phosphorylated in diseased human brains. When transfected cells are lysed and incubated, endogenously phosphorylated tau is dephosphorylated by cellular protein phosphatase 1 (PP1), phosphatase 2A (PP2A) and phosphatase 2B (PP2B), which are also present in the lysate. By using this assay and specific inhibitors of PP1, PP2A and PP2B, we have observed that the G272V mutation promotes tau dephosphorylation by PP2A at Ser(396/404), Ser(235), Thr(231), Ser(202/205) and Ser(214) and by PP2B at Ser(214) but inhibits dephosphorylation by PP2B at Ser(396/404). The P301L mutation promotes tau dephosphorylation at Thr(231) by PP1 and at Ser(396/404), Thr(231), Ser(235) and Ser(202/205) by PP2A but inhibits dephosphorylation at Ser(214) by PP2B. The V337M mutation promotes tau dephosphorylation at Ser(235), Thr(231) and Ser(202/205) by PP2A and at Ser(202/205) by PP2B whereas the R406W mutation promotes tau dephosphorylation at Ser(396/404) by PP1, PP2A and PP2B but inhibits dephosphorylation at Ser(202/205) and Ser(235) by PP1 and PP2A, respectively. Our results indicate that each FTDP-17 tau mutation not only site-specifically inhibits tau dephosphorylation on some sites but also promotes dephosphorylation by phosphatases on other sites.  相似文献   

6.
Intraneuronal accumulation of wild‐type tau plays a key role in Alzheimer's disease, while the mechanisms underlying tauopathy and memory impairment remain unclear. Here, we report that overexpressing full‐length wild‐type human tau (hTau) in mouse hippocampus induces learning and memory deficits with remarkably reduced levels of multiple synapse‐ and memory‐associated proteins. Overexpressing hTau inhibits the activity of protein kinase A (PKA) and decreases the phosphorylation level of cAMP‐response element binding protein (CREB), GluA1, and TrkB with reduced BDNF mRNA and protein levels both in vitro and in vivo. Simultaneously, overexpressing hTau increased PKAR2α (an inhibitory subunit of PKA) in nuclear fraction and inactivated proteasome activity. With an increased association of PKAR2α with PA28γ (a nuclear proteasome activator), the formation of PA28γ‐20S proteasome complex remarkably decreased in the nuclear fraction, followed by a reduced interaction of PKAR2α with 20S proteasome. Both downregulating PKAR2α by shRNA and upregulating proteasome by expressing PA28γ rescued hTau‐induced PKA inhibition and CREB dephosphorylation, and upregulating PKA improved hTau‐induced cognitive deficits in mice. Together, these data reveal that intracellular tau accumulation induces synapse and memory impairments by inhibiting PKA/CREB/BDNF/TrkB and PKA/GluA1 signaling, and deficit of PA28γ‐20S proteasome complex formation contributes to PKAR2α elevation and PKA inhibition.  相似文献   

7.
tau蛋白是神经细胞中主要的微管相关蛋白, 它的异常过度磷酸化被认为是阿尔茨海默病 (AD) 致病过程中的关键因素. 由于法律、社会、家庭等诸多因素使得获取的人脑组织标本常常在死亡后2~3 h以上,因此了解死亡不同时间后tau蛋白磷酸化的改变,对研究tau蛋白的功能及在AD致病过程中作用显得十分重要. 用位点特异的、磷酸化依赖的抗tau蛋白抗体检测正常大鼠脑中tau蛋白磷酸化程度及死亡后其磷酸化的变化情况,再用非同位素的点印迹技术测定鼠脑中tau蛋白激酶、磷酸酶在不同温度下的活性. 结果发现,正常鼠脑中tau蛋白除了Ser262,Ser409,Ser422外,在Thr181,Ser199,Ser202,Thr205,Thr212,Ser214,Thr217,Ser396和Ser404存在不同程度的磷酸化,并且在死亡后3 h,出现tau的多位点的去磷酸化及tau蛋白迁移加快,6 h后更为明显,但tau蛋白水平即使在大鼠死亡后6 h,仍未见有明显的改变. 用点印迹测定蛋白激酶和磷酸酶活性结果显示,tau蛋白激酶、磷酸酶活性均有温度依赖性降低,在25℃时激酶活性降低远大于磷酸酶活性的降低,tau蛋白在死亡后的快速去磷酸化与相对高的磷酸酶作用有关.  相似文献   

8.
Preventing or reducing tau hyperphosphorylation is considered to be a therapeutic strategy in the treatment of Alzheimer’s disease (AD). Rapamycin may be a potential therapeutic agent for AD, because the rapamycin-induced autophagy may enhance the clearance of the hyperphosphorylated tau. However, recent rodent studies show that the protective effect of rapamycin may not be limited in the autophagic clearance of the hyperphosphorylated tau. Because some tau-related kinases are targets of the mammalian target of rapamycin (mTOR), we assume that rapamycin may regulate tau phosphorylation by regulating these kinases. Our results showed that in human neuroblastoma SH-SY5Y cells, treatment with rapamycin induced phosphorylation of the type IIα regulatory (RIIα) subunit of cAMP-dependent kinase (PKA). Rapamycin also induced nuclear translocation of the catalytic subunits (Cat) of PKA and decreases in tau phosphorylation at Ser214 (pS214). The above effects of rapamycin were prevented by pretreatment with the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor U0126. In addition, these effects of rapamycin might not depend on the level of tau expression, because similar results were obtained in both the non-tau-expressing wild type human embryonic kidney 293 (HEK293) cells and HEK293 cells stably transfected with the longest isoform of recombinant human tau (tau441; HEK293/tau441). These findings suggest that rapamycin decreases pS214 via regulation of PKA. Because tau phosphorylation at Ser214 may prime tau for further phosphorylation by other kinases, our findings provide a novel possible mechanism by which rapamycin reduces or prevents tau hyperphosphorylation.  相似文献   

9.
Tau蛋白过度磷酸化是Alzheimer病(Alzheimer disease, AD)的一个重要病理特征.采用 I 型糖尿病大鼠模型,研究胰岛素信号传导途径及葡萄糖代谢失调对tau蛋白过度磷酸化的形成机制进行探讨.以同龄Wistar大鼠做对照(CTL),胰腺大部分切除造低胰岛素组(PX),STZ较大剂量一次性注射造1型糖尿病模型即低胰岛素高血糖组(T1DM).葡萄糖氧化酶法检测血浆血糖,放免法检测血浆胰岛素,蛋白质印迹分析海马内总tau蛋白及tau蛋白上部分位点(Ser199、Thr212、Ser214、Ser396及Ser422)的磷酸化及神经细胞膜上葡萄糖转运子3(Glucose transport 3,GLUT3)水平.γ-32P-ATP和特异性底物肽检测海马内胰岛素信号传导系统中的关键酶糖原合成酶激酶-3β(Glycogen synthase kinase-3β, GSK-3β)活性.发现3组大鼠海马回总tau蛋白水平无显著差异,但以高血糖、低胰岛素血症为特征的T1DM组在tau蛋白Ser199、Thr212、Ser214、Ser396及Ser422位点上,呈现过度磷酸化状态,以低胰岛素血症为特征而血糖正常的PX组在位点Ser199、Thr212及Ser396上磷酸化程度比CTL组显著上升, 在位点Ser214及 Ser422上的磷酸化程度的改变不显著;T1DM及PX组大鼠海马 GSK-3β活性显著高于CTL组, 而GLUT3水平在T1DM和PX组均降低, 尤以T1DM组降低更显著.研究结果显示,胰岛素水平低下可能通过激活GSK-3β和下调细胞内葡萄糖代谢的双重作用引起脑内tau蛋白过度磷酸化.  相似文献   

10.
O‐linked β‐N‐acetylglucosaminylation (O‐GlcNAcylation) regulates many cellular processes including the cell cycle, cell signaling, and protein trafficking. Dysregulation of O‐GlcNAcylation may be involved in the development of insulin resistance and type 2 diabetes. Therefore, it is necessary to identify cellular proteins that are induced by elevated O‐GlcNAcylation. Here, using adenosine 5′‐triphosphate affinity chromatography, we employed a proteomic approach in order to identify differentially expressed proteins in response to treatment with the O‐GlcNAcase inhibitor, O‐(2‐acetamido‐2‐deoxy‐d ‐glucopyranosylidene)amino‐N‐phenylcarbamate (PUGNAc), in mouse C2C12 myotube cells. Among 205 selected genes, we identified 68 nucleotide‐binding proteins, 14 proteins that have adenosinetriphosphatase activity, and 10 proteins with ligase activity. Upregulation of proteins, including ubiquitin‐activating enzyme E1, proteasome subunit 20S, cullin‐associated NEDD8‐dissociated protein 1, ezrin, and downregulation of the protein nucleoside diphosphate kinase B, were confirmed by western blot analysis. In particular, we found that the protein ubiquitination level in C2C12 cells was increased by PUGNAc treatment. This is the first report of quantitative proteomic profiles of myotube cells after treatment with PUGNAc, and our results demonstrate the potential to enhance understanding of the relationship between insulin resistance, O‐GlcNAc, and PUGNAc in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Stress-induced hyperphosphorylation of tau in the mouse brain   总被引:6,自引:0,他引:6  
Okawa Y  Ishiguro K  Fujita SC 《FEBS letters》2003,535(1-3):183-189
We previously showed that starvation causes reversible hyperphosphorylation of tau in the mouse brain. To explore possible involvement of stress in tau hyperphosphorylation quantitative analysis of phosphorylated tau in four brain regions of mice subjected to cold water stress (CWS) was made by immunoblot analyses using phosphorylation-dependent antibodies directed to eight sites on tau known to be hyperphosphorylated in the brain of Alzheimer's disease (AD) patients. Ser199, Ser202/Thr205, Thr231/Ser235 were hyperphosphorylated 20 and 40 min after CWS. The response was pronounced in the hippocampus and cerebral hemisphere, but weak in the cerebellum in parallel with the regional vulnerability in AD. Among the regulatory phosphorylation of protein kinases studied, a transient phosphorylation of tau protein kinase I/glycogen synthase kinase 3beta at Ser9 was most conspicuous.  相似文献   

12.
Microtubule-associated protein tau is abnormally hyperphosphorylated in Alzheimer's disease (AD) and other tauopathies and is believed to lead to neurodegeneration in this family of diseases. Here we show that infusion of forskolin, a specific cAMP-dependent protein kinase A (PKA) activator, into the lateral ventricle of brain in adult rats induced activation of PKA by severalfold and concurrently enhanced the phosphorylation of tau at Ser-214, Ser-198, Ser-199, and or Ser-202 (Tau-1 site) and Ser-396 and or Ser-404 (PHF-1 site), which are among the major abnormally hyperphosphorylated sites seen in AD. PKA activation positively correlated to the extent of tau phosphorylation at these sites. Infusion of forskolin together with PKA inhibitor or glycogen synthase kinase-3 (GSK-3) inhibitor revealed that the phosphorylation of tau at Ser-214 was catalyzed by PKA and that the phosphorylation at both the Tau-1 and the PHF-1 sites is induced by basal level of GSK-3, because forskolin activated PKA and not GSK-3 and inhibition of the latter inhibited the phosphorylation at Tau-1 and PHF-1 sites. Inhibition of cdc2, cdk5, or MAPK had no significant effect on the forskolin-induced hyperphosphorylation of tau. Forskolin inhibited spatial memory in a dose-dependent manner in the absence but not in the presence of R(p)-adenosine 3',5'-cyclic monophosphorothioate triethyl ammonium salt, a PKA inhibitor. These results demonstrate for the first time that phosphorylation of tau by PKA primes it for phosphorylation by GSK-3 at the Tau-1 and the PHF-1 sites and that an associated loss in spatial memory is inhibited by inhibition of the hyperphosphorylation of tau. These data provide a novel mechanism of the hyperphosphorylation of tau and identify both PKA and GSK-3 as promising therapeutic targets for AD and other tauopathies.  相似文献   

13.
Phosphorylation and O‐GlcNAcylation are two widespread post‐translational modifications (PTMs), often affecting the same eukaryotic target protein. Plum pox virus (PPV) is a member of the genus Potyvirus which infects a wide range of plant species. O‐GlcNAcylation of the capsid protein (CP) of PPV has been studied extensively, and some evidence of CP phosphorylation has also been reported. Here, we use proteomics analyses to demonstrate that PPV CP is phosphorylated in vivo at the N‐terminus and the beginning of the core region. In contrast with the ‘yin–yang’ mechanism that applies to some mammalian proteins, PPV CP phosphorylation affects residues different from those that are O‐GlcNAcylated (serines Ser‐25, Ser‐81, Ser‐101 and Ser‐118). Our findings show that PPV CP can be concurrently phosphorylated and O‐GlcNAcylated at nearby residues. However, an analysis using a differential proteomics strategy based on iTRAQ (isobaric tags for relative and absolute quantitation) showed a significant enhancement of phosphorylation at Ser‐25 in virions recovered from O‐GlcNAcylation‐deficient plants, suggesting that crosstalk between O‐GlcNAcylation and phosphorylation in PPV CP takes place. Although the preclusion of phosphorylation at the four identified phosphotarget sites only had a limited impact on viral infection, the mimicking of phosphorylation prevents PPV infection in Prunus persica and weakens infection in Nicotiana benthamiana and other herbaceous hosts, prompting the emergence of potentially compensatory second mutations. We postulate that the joint action of phosphorylation and O‐GlcNAcylation in the N‐proximal segment of CP allows a fine‐tuning of protein stability, providing the amount of CP required in each step of viral infection.  相似文献   

14.
Neurofibrillary tangles, which represent a major pathological hallmark in Alzheimer's disease (AD), are deposits of the hyperphosphorylated microtubule-associated tau protein (PHF-tau). However, a link between the phosphorylation pattern and the cause or the progress of AD is still missing. The work reported here focused on PHF-tau specific local phosphorylation patterns at Thr212/Ser214 and Thr231/Ser235 using monoclonal antibodies (mAb) generated against correspondingly modified peptides. The binding motifs of the obtained six mAbs were characterized with non-, mono-, and double-phosphorylated peptides as well as terminally shortened sequences. Five mAbs stained neurofibrillary tangles, neuritic plaques, and neuropil threads from autoptic brains of AD cases. Four mAbs recognized PHF-tau without significant cross-reactivity towards normal human tau, bovine tau, and dephosphorylated PHF-tau in ELISA and Western blot analysis. Thus, double phosphorylation is sufficient to distinguish PHF-tau from all other tau versions and there is no need to postulate any PHF-tau specific conformation for this region.  相似文献   

15.
Protein phosphatase (PP) 5 is highly expressed in the mammalian brain, but few physiological substrates have yet been identified. Here, we investigated the kinetics of dephosphoryation of phospho-tau by PP5 and found that PP5 had a K(m) of 8-13 microm toward tau, which is similar to that of PP2A, the major known tau phosphatase. This K(m) value is within the range of intraneuronal tau concentration in human brain, suggesting that tau could be a physiological substrate of both PP5 and PP2A. PP5 dephosphorylated tau at all 12 Alzheimer's disease (AD)-associated abnormal phosphorylation sites studied, with different efficiency toward each site. Thr(205), Thr(212), and Ser(409) of tau were the most favorable sites; Ser(199), Ser(202), Ser(214), Ser(396), and Ser(404) were less favorable sites; and Ser(262) was the poorest site for PP5. Overexpression of PP5 in PC12 cells resulted in dephosphorylation of tau at multiple phosphorylation sites. The activity but not the protein level of PP5 was found to be decreased by approximately 20% in AD neocortex. These results suggest that tau is probably a physiological substrate of PP5 and that the abnormal hyperphosphorylation of tau in AD might result in part from the decreased PP5 activity in the diseased brains.  相似文献   

16.
Differential effects of an O-GlcNAcase inhibitor on tau phosphorylation   总被引:1,自引:0,他引:1  
Yu Y  Zhang L  Li X  Run X  Liang Z  Li Y  Liu Y  Lee MH  Grundke-Iqbal I  Iqbal K  Vocadlo DJ  Liu F  Gong CX 《PloS one》2012,7(4):e35277
Abnormal hyperphosphorylation of microtubule-associated protein tau plays a crucial role in neurodegeneration in Alzheimer's disease (AD). The aggregation of hyperphosphorylated tau into neurofibrillary tangles is also a hallmark brain lesion of AD. Tau phosphorylation is regulated by tau kinases, tau phosphatases, and O-GlcNAcylation, a posttranslational modification of proteins on the serine or threonine residues with β-N-acetylglucosamine (GlcNAc). O-GlcNAcylation is dynamically regulated by O-GlcNAc transferase, the enzyme catalyzing the transfer of GlcNAc to proteins, and N-acetylglucosaminidase (OGA), the enzyme catalyzing the removal of GlcNAc from proteins. Thiamet-G is a recently synthesized potent OGA inhibitor, and initial studies suggest it can influence O-GlcNAc levels in the brain, allowing OGA inhibition to be a potential route to altering disease progression in AD. In this study, we injected thiamet-G into the lateral ventricle of mice to increase O-GlcNAcylation of proteins and investigated the resulting effects on site-specific tau phosphorylation. We found that acute thiamet-G treatment led to a decrease in tau phosphorylation at Thr181, Thr212, Ser214, Ser262/Ser356, Ser404 and Ser409, and an increase in tau phosphorylation at Ser199, Ser202, Ser396 and Ser422 in the mouse brain. Investigation of the major tau kinases showed that acute delivery of a high dose of thiamet-G into the brain also led to a marked activation of glycogen synthase kinase-3β (GSK-3β), possibly as a consequence of down-regulation of its upstream regulating kinase, AKT. However, the elevation of tau phosphorylation at the sites above was not observed and GSK-3β was not activated in cultured adult hippocampal progenitor cells or in PC12 cells after thiamet-G treatment. These results suggest that acute high-dose thiamet-G injection can not only directly antagonize tau phosphorylation, but also stimulate GSK-3β activity, with the downstream consequence being site-specific, bi-directional regulation of tau phosphorylation in the mammalian brain.  相似文献   

17.
12/15‐lipoxygenase (12‐15LO) is a lipid‐peroxidizing enzyme widely expressed in the central nervous system where it has been involved in the neurobiology of Alzheimer's disease (AD) because it modulates amyloid beta (Aβ) and APP processing. However, its biological effect on tau protein is unknown. We investigated the effect of 12‐15LO on tau levels and metabolism in vivo and in vitro and the mechanism involved by using genetic and pharmacologic approaches. While no significant differences were observed in the levels of total tau for both groups, compared with controls, Tg2576 mice overexpressing 12‐15LO had elevated levels of phosphorylated tau at two specific epitopes, Ser 202/Thr 205 and Ser 396. In vitro and in vivo studies show that 12‐15LO modulates tau metabolism specifically via the cdk5 kinase pathway. Associated with these changes were biochemical markers of synaptic pathology. Finally, 12‐15LO‐dependent alteration of tau metabolism was independent from an effect on Aβ. Our findings reveal a novel pathway by which 12‐15LO modulates endogenous tau metabolism making this protein an appealing pharmacologic target for treatment of AD and related tauopathies.  相似文献   

18.
目的: 探讨吴茱萸次碱对高糖诱导的阿尔茨海默病(AD)大鼠认知功能障碍的影响及其机制。方法: 健康成年雄性SD大鼠随机分为3组(n=20):对照组、高糖组和吴茱萸次碱组。对照组大鼠行常规饲料和自来水饲养;高糖组大鼠行常规饲料和20%蔗糖水饲养;吴茱萸次碱组行0.01%吴茱萸次碱饲料和20%蔗糖水饲养。三组大鼠饲养24周后行Morris水迷宫实验检测大鼠学习记忆和认知功能,Western blot实验检测各组大鼠tau蛋白在Thr205和Ser214位点以及GSK-3β在丝氨酸9位点糖原合成酶激酶-3β(S9-GSK-3β)和PP2A在络氨酸307位点蛋白磷酸酯酶-2A(Y307-PP2A)的磷酸化水平;免疫组织化学进一步验证各组大鼠大脑海马和皮层tau蛋白在Thr205位点上的表达情况。结果: 与对照组比较,高糖组Morris水迷宫大鼠潜伏期明显升高,穿越平台次数和目标象限停留时间均明显降低(P均<0.05),免疫组织化学染色中tau蛋白在Thr205位点上的磷酸化水平显著增高(P< 0.05),Western blot实验tau蛋白在Thr205和Ser214位点的磷酸化水平显著增高,pS9-GSK-3β的磷酸化水平显著降低(P均<0.05);与高糖组相比,吴茱萸次碱组Morris水迷宫大鼠潜伏期明显降低,穿越平台次数和目标象限停留时间明显升高(P均<0.05),免疫组织化学染色中tau蛋白在Thr205位点的磷酸化水平显著降低(P<0.05);Western blot实验tau蛋白在Thr205和Ser214位点磷酸化水平显著降低,pS9-GSK-3β的磷酸化水平显著增高(P均< 0.05)。结论: 吴茱萸次碱可减轻高糖诱导的AD样大鼠认知功能障碍,其机制可能是通过增强海马pS9-GSK-3β磷酸化水平,下调GSK-3β活性,进而降低tau蛋白相关位点的过度磷酸化实现的。  相似文献   

19.
Dysregulation of iron homeostasis is involved in the pathological process of Alzheimer's disease (AD). We have recently reported that divalent metal transporter 1 (DMT1) is upregulated in an AD transgenic mouse brain, and that silencing of DMT1, which reduces cellular iron influx, results in inhibition of amyloidogenesis in vitro, suggesting a potential target of DMT1 for AD therapy. In the present study, we tested the hypothesis that inhibition of DMT1 with ebselen, a DMT1 transport inhibitor, could affect tau phosphorylation. Human neuroblastoma SH-SY5Y cells were pre-treated with ebselen and then treated with ferrous sulfate (dissolved in ascorbic acid), and the effects of ebselen on tau phosphorylation and the relative signaling pathways were examined. Our results showed that ebselen decreased iron influx, reduced iron-induced ROS production, inhibited the activities of cyclin-dependent kinase 5 and glycogen synthase kinase 3β, and ultimately attenuated the levels of tau phosphorylation at the sites of Thr205, Ser396 and Thr231. The present study indicates that the neuroprotective effect of ebselen on AD is not only related to its antioxidant activity as reported previously, but is also associated with a reduction in tau phosphorylation by inhibition of DMT1.  相似文献   

20.
Pathological hyperphosphorylation of the microtubule-associated protein tau is characteristic of Alzheimer's disease (AD) and the associated tauopathies. The reciprocal relationship between phosphorylation and O-GlcNAc modification of tau and reductions in O-GlcNAc levels on tau in AD brain offers motivation for the generation of potent and selective inhibitors that can effectively enhance O-GlcNAc in vertebrate brain. We describe the rational design and synthesis of such an inhibitor (thiamet-G, K(i) = 21 nM; 1) of human O-GlcNAcase. Thiamet-G decreased phosphorylation of tau in PC-12 cells at pathologically relevant sites including Thr231 and Ser396. Thiamet-G also efficiently reduced phosphorylation of tau at Thr231, Ser396 and Ser422 in both rat cortex and hippocampus, which reveals the rapid and dynamic relationship between O-GlcNAc and phosphorylation of tau in vivo. We anticipate that thiamet-G will find wide use in probing the functional role of O-GlcNAc in vertebrate brain, and it may also offer a route to blocking pathological hyperphosphorylation of tau in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号