首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
[目的]研究不同浓度氯化钙(calcium chloride,CaCl2)浸种处理对水稻防御酶活性和抗褐飞虱Nilaparvata lugens的影响.[方法]分别用10,20,30,40和50 mmol/L CaCl2溶液浸泡水稻种子48 h,以蒸馏水浸种为对照,待水稻长至分蘖期时,检测褐飞虱3龄若虫取食胁迫下各浓度...  相似文献   

2.
3.
褐飞虱Nilaparvata lugens St(a)l是对水稻最具破坏性的害虫之一,OsLecRK1是水稻Bph3基因簇中对褐飞虱抗性贡献最大的基因.本文对RHTd(含Bph3)等材料进行了褐飞虱抗性评价,克隆并构建了OsLecRK1过量表达突变体水稻,利用该突变体分析了OsLecRK1基因对褐飞虱若虫存活率、若虫发育历期等生物学参数的影响.结果 表明,含Bph3基因水稻RHTd对褐飞虱的抗性明显地强于含Bph1基因水稻Mudgo和bph2基因水稻ASD7,RHTd水稻的褐飞虱受害指数仅为Mudgo和ASD7水稻的53.5%和24.1%.过量表达OsLecRK1基因能显著地增加水稻对褐飞虱的驱避性和抗生性,褐飞虱雌成虫偏好于在野生型水稻上产卵;突变体水稻上的褐飞虱若虫存活率显著地降低,仅为野生型水稻上若虫存活率的75.2% ~81.8%,且若虫发育历期显著地延长,羽化率和初羽化雌成虫体重均显著地降低;此外,褐飞虱在突变体水稻上取食分泌的蜜露量只有野生型上的40.3% ~ 60.9%,褐飞虱单雌产卵量只为野生型51% ~61.2%,卵孵化率只有野生型的52.2%~56.7%,均显著地减少.结果 表明,含Bph3基因水稻RHTd对褐飞虱的抗性明显地高于分别含Bph1、bph2的水稻Mudgo和ASD7;水稻Bph3基因座的OsLecRK1单个基因过量表达即可显著增加水稻对褐飞虱的抗性,OsLecRK1协同影响褐飞虱的多个生物学参数降低褐飞虱的适合度.  相似文献   

4.
The effect of nitrogen content in rice plants on the tolerance of brown planthopper (BPH), Nilaparvata lugens Stal to high temperature, starvation and insecticide, was studied in the laboratory at International Rice Research Institute (IRRI), Philippines. Survival of nymphs and adults, fecundity and egg hatchability were significantly increased by the increase of nitrogen content in host plants at 38℃. Moreover, the survival of nymphs,fecundity and egg hatchability were significantly higher in BPH populations on rice plants with a high nitrogen regimen than those on rice plants with a low nitrogen regimen.Meanwhile, the tolerance of female adults to starvation and nymphs to growth regulator buprofezin on rice plants with a high nitrogen regimen were slightly increased. This indicates that the tolerances of BPH to adverse environmental stresses were positively increased by the application of nitrogenous fertilizer. The outbreak potential of BPH induced by the excessive application of fertilizer in rice fields was also discussed.  相似文献   

5.
The flavone, tricin (5,7,4′‐trihydroxy‐3′,5′‐dimethoxyflavone), is a valuable secondary metabolite that is common in gramineous plants, including cultivated rice (Oryza sativa). It can defend the rice plant against infestation by the brown planthopper (BPH), Nilaparvata lugens Stål, one of the most important pests of rice. This study evaluated the tricin concentration in infested and non‐infested rice plants. The results of the liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) quantitative analysis showed that the tricin concentration in rice leaves was significantly higher than in the stems and roots. The mass concentration of tricin in the leaves at the leaf stage was significantly higher than at the tiller and booting stages. The relationship between rice variety, BPH resistance and tricin concentration was investigated. There was a significant negative correlation between tricin concentration and the injury severity scores for rice varieties. Moreover, BPH infestation caused variations in tricin concentration among rice plants. High BPH infestation levels can significantly reduce the tricin concentration in rice plants. However, there is no significant effect of the length of infestation times on tricin concentrations in rice leaves. These results suggest that there may be an elicitor in BPH saliva, which is injected into rice plants during BPH infestation and triggers the tricin metabolic system. Future studies need to identify the elicitor and clarify the mechanism underlying tricin reduction in infested rice plants.  相似文献   

6.
The relationship between metabolism reprogramming and neuroblastoma (NB) is largely unknown. In this study, one RNA‐sequence data set (n = 153) was used as discovery cohort and two microarray data sets (n = 498 and n = 223) were used as validation cohorts. Differentially expressed metabolic genes were identified by comparing stage 4s and stage 4 NBs. Twelve metabolic genes were selected by LASSO regression analysis and integrated into the prognostic signature. The metabolic gene signature successfully stratifies NB patients into two risk groups and performs well in predicting survival of NB patients. The prognostic value of the metabolic gene signature is also independent with other clinical risk factors. Nine metabolism‐related long non‐coding RNAs (lncRNAs) were also identified and integrated into the metabolism‐related lncRNA signature. The lncRNA signature also performs well in predicting survival of NB patients. These results suggest that the metabolic signatures have the potential to be used for risk stratification of NB. Gene set enrichment analysis (GSEA) reveals that multiple metabolic processes (including oxidative phosphorylation and tricarboxylic acid cycle, both of which are emerging targets for cancer therapy) are enriched in the high‐risk NB group, and no metabolic process is enriched in the low‐risk NB group. This result indicates that metabolism reprogramming is associated with the progression of NB and targeting certain metabolic pathways might be a promising therapy for NB.  相似文献   

7.
8.
9.
为了解东乡野生稻(Oryza rufipogon)对低温胁迫的响应机制,对苗期的RNA-seq转录表达谱进行了研究。结果表明,与对照相比,共检测到10 200个差异表达基因(DEGs),其中5 201个上调表达,4 999个下调表达,其中有426个DEGs位于已报道的水稻耐冷QTL区间,且37个为耐冷调控相关的家族基因。GO功能分类和KEGG代谢路径分析表明,核酸结合转录因子活性、氨基酸生物合成以及光合作用代谢等均参与响应低温胁迫过程。实时荧光定量分析表明,ABA响应蛋白基因、MYB转录因子和40S核糖体蛋白SA基因等12个可能与低温胁迫响应相关的DEGs表达模式与RNA-seq的一致。可见,植物激素传导途径和转录因子相关调控基因在东乡野生稻苗期响应低温胁迫过程中起重要作用。  相似文献   

10.
Low temperature has become a major abiotic stress factor that can reduce maize yield and cause a number of economic loss. This study was designed to identify key genes and pathways associated with coldresistance of maize. The gene expression profile GSE46704, including 4 control temperature treated plants and 4 low temperature treated plants, was downloaded from the Gene Expression Omnibus database. Differentially-expressed genes (DEGs) were identified by limma package. Then, protein-protein interaction (PPI) network and module selection were constructed using Cytoscape. Moreover, the DEGs were re-matched based on the Zea mays L. gene ID and symbol data from PlantRegMap. Finally, the re-matched DEGs were performed functional and pathway enrichment analyses by the DAVID online tool. A total of 750 DEGs were screened (including 387 up-regulated and 363 down-regulated genes) In the PPI network, GRMZM2G070837_P01 and GRMZM2G114578_P01 had higher degrees. Besides, carbohydrate metabolic process, starch and sucrose metabolism and biosynthesis of secondary metabolites were significantly enriched in functional and pathway enrichment analysis. GRMZM2G070837_P01 and GRMZM2G114578_P01 might play a critical role in cold-resistance of maize. Meanwhile, carbohydrate metabolic process, starch and sucrose metabolism and biosynthesis of secondary metabolites might function in cold-resistance of maize.  相似文献   

11.
Transgenic rice plants expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA) were screened for resistance to green leafhopper (Nephotettix virescens; GLH), a major homopteran pest of rice. Survival was reduced by 29% and 53% (P<0.05) respectively, on plants where GNA expression was tissue-specific (phloem and epidermal layer) or constitutive. Similar levels of resistance in GNA-expressing transgenic rice were previously reported for rice brown planthopper (Nilaparvata lugens; BPH). GNA binding to glycoproteins in gut tissues showed that BPH contained more "receptors" than GLH, and that the binding affinity was stronger, particularly in the midgut. Subsequent toxicity of GNA is thus unlikely to be directly related to the amount of lectin bound. GNA was not detected in the honeydew of either insect species when they were fed on GNA-expressing plants, in contrast to results from artificial diet studies. This result suggests that GNA is not being delivered to the insect efficiently. When offered a free choice vs control plants, BPH nymphs tended to avoid plants expressing GNA; avoidance was less pronounced and took longer to develop on plants where GNA expression was tissue-specific, In contrast to BPH, GLH nymphs were attracted to plants expressing GNA, whether constitutively or in a tissue-specific manner.  相似文献   

12.
13.
14.
The effects of elevated CO2 (750 vs. 375μl/l) on population abundances and metabolism enzyme of AChE and protective enzymes of SOD, POD and CAT in brown planthoppers (BPH) Nilaparvata lugens, and on size and abundances of yeast‐like endosymbiotes (YLES) were studied as BPH fed Bacillus thuringiensis (Bt) rice expressing pure Cry1Ab after successively two generations in open‐top chambers. The results indicated that: (1) Brachypterous and macropterous subpopulations and total population increased with elevated CO2. Significant increases were found as BPH fed non‐transgenic rice while only significant increase as macropterous‐BPH fed Bt rice. (2) The responses of brachypterous and macropterous‐BPH to Bt rice were different. Brachypterous‐subpopulation significantly decreased (13.6%) while macropterous ones significantly increased (43.8%) as fed Bt rice relative to non‐transgenic rice at elevated CO2. (3) Elevated CO2 only significantly inhibited AChE activity as brachypterous‐BPH fed non‐transgenic rice. Significant increases in POD and SOD, and significant decrease in CAT were found as brachypterous‐BPH fed Bt rice, while significant increases in CAT and significant decrease in POD were also observed as fed non‐transgenic rice in elevated CO2 relative to ambient CO2. (4) Bt rice significantly inhibited POD and SOD activity at ambient CO2, while only significantly enhanced SOD activity at elevated CO2. (5) Elevated CO2 significantly decreased YLES per mg/head of brachypterous‐BPH females while only significantly decreased YLES per mg/head as brachypterous‐BPH males fed Bt rice. And there were significant differences in YLES width or length between females and males. Elevated CO2 can markedly affect the symbiosis relationship between YLES and BPH through the bottom‐up forcing on BPH physiological metabolism. And the damage inflicted by BPH on rice, irrespective of the presence of insecticidal genes, is predicted to be higher at elevated CO2. Furthermore, transgenic Bt rice can also exacerbate emigrating‐macropterous‐BPH occurring especially at elevated CO2.  相似文献   

15.
Plant physiological and biochemical processes are significantly affected by gamma irradiation stress. In addition, gamma‐ray (GA) differentially affects gene expression across the whole genome. In this study, we identified radio marker genes (RMGs) responding only to GA stress compared with six abiotic stresses (chilling, cold, anoxia, heat, drought and salt) in rice. To analyze the expression patterns of differentially expressed genes (DEGs) in gamma‐irradiated rice plants against six abiotic stresses, we conducted a hierarchical clustering analysis by using a complete linkage algorithm. The up‐ and downregulated DEGs were observed against six abiotic stresses in three and four clusters among a total of 31 clusters, respectively. The common gene ontology functions of upregulated DEGs in clusters 9 and 19 are associated with oxidative stress. In a Pearson's correlation coefficient analysis, GA stress showed highly negative correlation with salt stress. On the basis of specific data about the upregulated DEGs, we identified the 40 candidate RMGs that are induced by gamma irradiation. These candidate RMGs, except two genes, were more highly induced in rice roots than in other tissues. In addition, we obtained other 38 root‐induced genes by using a coexpression network analysis of the specific upregulated candidate RMGs in an ARACNE algorithm. Among these genes, we selected 16 RMGs and 11 genes coexpressed with three RMGs to validate coexpression network results. RT‐PCR assay confirmed that these genes were highly upregulated in GA treatment. All 76 genes (38 root‐induced genes and 38 candidate RMGs) might be useful for the detection of GA sensitivity in rice roots.  相似文献   

16.
Jasmonic acid(JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase(JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate(Me JA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene,Os JMT1, whose encoding protein was localized in the cytosol, we found that the recombinant Os JMT1 protein catalyzed JA to Me JA. Os JMT1 is up-regulated in response to infestation with the brown planthopper(BPH; Nilaparvata lugens). Plants in which Os JMT1 had been overexpressed(oeJMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased Me JA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine(JAIle). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs,probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H_2O_2 and Me JA in oe-JMT plants. These results indicate that Os JMT1,by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice.  相似文献   

17.
Brown planthopper (Nilaparvata lugens Stål, BPH) causes huge economic losses in rice‐growing regions, and new strategies for combating BPH are required. To understand how BPHs respond towards BPH‐resistant plants, we systematically analysed the metabolic differences between BPHs feeding on the resistant and susceptible plants using NMR and GC‐FID/MS. We also measured the expression of some related genes involving glycolysis and biosyntheses of trehalose, amino acids, chitin and fatty acids using real‐time PCR. BPH metabonome was dominated by more than 60 metabolites including fatty acids, amino acids, carbohydrates, nucleosides/nucleotides and TCA cycle intermediates. After initial 12 h, BPHs feeding on the resistant plants had lower levels of amino acids, glucose, fatty acids and TCA cycle intermediates than on the susceptible ones. The levels of these metabolites recovered after 24 h feeding. This accompanied with increased level in trehalose, choline metabolites and nucleosides/nucleotides compared with BPH feeding on the susceptible plants. Decreased levels of BPH metabolites at the early feeding probably resulted from less BPH uptakes of sap from resistant plants and recovery of BPH metabolites at the later stage probably resulted from their adaptation to the adverse environment with their increased hopping frequency to ingest more sap together with contributions from yeast‐like symbionts in BPHs. Throughout 96 h, BPH feeding on the resistant plants showed significant up‐regulation of chitin synthase catalysing biosynthesis of chitin for insect exoskeleton, peritrophic membrane lining gut and tracheae. These findings provided useful metabolic information for understanding the BPH–rice interactions and perhaps for developing new BPH‐combating strategies.  相似文献   

18.
Liu C  Hao F  Hu J  Zhang W  Wan L  Zhu L  Tang H  He G 《Journal of proteome research》2010,9(12):6774-6785
Brown planthopper (BPH) is a notorious pest of rice plants attacking leaf sheaths and seriously affecting global rice production. However, how rice plants respond against BPH remains to be fully understood. To understand systems metabolic responses of rice plants to BPH infestation, we analyzed BPH-induced metabolic changes in leaf sheaths of both BPH-susceptible and resistant rice varieties using NMR-based metabonomics and measured expression changes of 10 relevant genes using quantitative real-time PCR. Our results showed that rice metabonome was dominated by more than 30 metabolites including sugars, organic acids, amino acids, and choline metabolites. BPH infestation caused profound metabolic changes for both BPH-susceptible and resistant rice plants involving transamination, GABA shunt, TCA cycle, gluconeogenesis/glycolysis, pentose phosphate pathway, and secondary metabolisms. BPH infestation caused more drastic overall metabolic changes for BPH-susceptible variety and more marked up-regulations for key genes regulating GABA shunt and biosynthesis of secondary metabolites for BPH-resistant variety. Such observations indicated that activation of GABA shunt and shikimate-mediated secondary metabolisms was vital for rice plants to resist BPH infestation. These findings filled the gap of our understandings in the mechanistic aspects of BPH resistance for rice plants and demonstrated the combined metabonomic and qRT-PCR analysis as an effective approach for understanding plant-herbivore interactions.  相似文献   

19.
温度和氮肥对褐飞虱存活、生长发育和繁殖的交互作用   总被引:4,自引:0,他引:4  
在实验室条件下,研究了不同温度(20 ℃、23 ℃、26 ℃、29 ℃和32 ℃)和氮肥水平(不施氮:0 kg·hm-2;高氮:250 kg·hm-2)对褐飞虱存活、发育和繁殖的影响和交互作用.结果表明:在20 ℃~29 ℃范围内,随着温度的升高,褐飞虱的卵孵化率和若虫存活率提高,卵和若虫历期缩短,成虫寿命缩短,同时产卵量增加;32 ℃时, 褐飞虱卵孵化率和若虫存活率降低、卵和若虫历期延长、成虫生殖力降低;在不同温度下,高氮植株上的褐飞虱卵孵化率和若虫存活率、成虫生殖力均明显高于低氮稻株上的褐飞虱,同时高氮植株上褐飞虱的卵和若虫历期明显短于低氮稻株上的褐飞虱,说明施用高水平氮肥提高了褐飞虱对逆境条件的生态适应性;温度和氮肥对褐飞虱卵存活率、若虫历期和产卵量的交互作用显著,表明全球气候变暖和长期施用高水平氮肥很可能是近年来褐飞虱猖獗暴发的重要原因.  相似文献   

20.
The microbiome associated with brown planthopper (BPH) plays an important role in mediating host health and fitness. Characterization of the microbial community and its structure is prerequisite for understanding the intricate symbiotic relationships between microbes and host insect. Here, we investigated the bacterial and fungal communities of BPH at different developmental stages using high‐throughput amplicon sequencing. Our results revealed that both the bacterial and fungal communities were diverse and dynamic during BPH development. The bacterial communities were generally richer than fungi in each developmental stage. At 97% similarly, 19 phyla and 278 genera of bacteria were annotated, while five fungal phyla comprising 80 genera were assigned. The highest species richness for the bacterial communities was detected in the nymphal stage. The taxonomic diversity of the fungal communities in female adults was generally at a relatively higher level when compared to other developmental stages. The most dominant phylum of bacteria and fungi at each developmental stage all belonged to Proteobacteria and Ascomycota, respectively. A significantly lower abundance of bacterial genus Acinetobacter was recorded in the egg stage when compared to other developmental stages, while the dominant fungal genus Wallemia was more abundant in the nymph and adult stages than in the egg stage. Additionally, the microbial composition differed between male and female adults, suggesting that the microbial communities in BPH were gender‐dependent. Overall, our study enriches our knowledge on the microbial communities associated with BPH and will provide clues to develop potential biocontrol techniques against this rice pest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号