首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wang C  Tang X  Sun X  Miao Z  Lv Y  Yang Y  Zhang H  Zhang P  Liu Y  Du L  Gao Y  Yin M  Ding M  Deng H 《Cell research》2012,22(1):194-207
Embryonic hematopoiesis is a complex process. Elucidating the mechanism regulating hematopoietic differentiation from pluripotent stem cells would allow us to establish a strategy to efficiently generate hematopoietic cells. However, the mechanism governing the generation of hematopoietic progenitors from human embryonic stem cells (hESCs) remains unknown. Here, on the basis of the emergence of CD43(+) hematopoietic cells from hemogenic endothelial (HE) cells, we demonstrated that VEGF was essential and sufficient, and that bFGF was synergistic with VEGF to specify the HE cells and the subsequent transition into CD43(+) hematopoietic cells. Significantly, we identified TGFβ as a novel signal to regulate hematopoietic development, as the TGFβ inhibitor SB 431542 significantly promoted the transition from HE cells into CD43(+) hematopoietic progenitor cells (HPCs) during hESC differentiation. By defining these critical signaling factors during hematopoietic differentiation, we can efficiently generate HPCs from hESCs. Our strategy could offer an in vitro model to study early human hematopoietic development.  相似文献   

3.
Genetic manipulation of human embryonic stem cells (hESCs) is instrumental for tracing lineage commitment and to studying human development. Here we used hematopoietic-specific Wiskott-Aldrich syndrome gene (WAS)-promoter driven lentiviral vectors (LVs) to achieve highly specific gene expression in hESCs-derived hematopoietic cells. We first demonstrated that endogenous WAS gene was not expressed in undifferentiated hESCs but was evident in hemogenic progenitors (CD45(-)CD31(+)CD34(+)) and hematopoietic cells (CD45(+)). Accordingly, WAS-promoter driven LVs were unable to express the eGFP transgene in undifferentiated hESCs. eGFP(+) cells only appeared after embryoid body (EB) hematopoietic differentiation. The phenotypic analysis of the eGFP(+) cells showed marking of different subpopulations at different days of differentiation. At days 10-15, AWE LVs tag hemogenic and hematopoietic progenitors cells (CD45(-)CD31(+)CD34(dim) and CD45(+)CD31(+)CD34(dim)) emerging from hESCs and at day 22 its expression became restricted to mature hematopoietic cells (CD45(+)CD33(+)). Surprisingly, at day 10 of differentiation, the AWE vector also marked CD45(-)CD31(low/-)CD34(-) cells, a population that disappeared at later stages of differentiation. We showed that the eGFP(+)CD45(-)CD31(+) population generate 5 times more CD45(+) cells than the eGFP(-)CD45(-)CD31(+) indicating that the AWE vector was identifying a subpopulation inside the CD45(-)CD31(+) cells with higher hemogenic capacity. We also showed generation of CD45(+) cells from the eGFP(+)CD45(-)CD31(low/-)CD34(-) population but not from the eGFP(-)CD45(-)CD31(low/-)CD34(-) cells. This is, to our knowledge, the first report of a gene transfer vector which specifically labels hemogenic progenitors and hematopoietic cells emerging from hESCs. We propose the use of WAS-promoter driven LVs as a novel tool to studying human hematopoietic development.  相似文献   

4.
HoxB4 has been shown to enhance hematopoietic engraftment by hematopoietic stem cells (HSC) from differentiating mouse embryonic stem cell (mESC) cultures. Here we examined the effect of ectopic expression of HoxB4 in differentiated human embryonic stem cells (hESCs). Stable HoxB4-expressing hESCs were established by lentiviral transduction, and the forced expression of HoxB4 did not affect stem cell features. HoxB4-expressing hESC-derived CD34+ cells generated higher numbers of erythroid and blast-like colonies than controls. The number of CD34+ cells increased but CD45+ and KDR+ cell numbers were not significantly affected. When the hESC derived CD34+ cells were transplanted into NOD/SCID beta 2m-/- mice, the ectopic expression of HoxB4 did not alter their repopulating capacity. Our findings show that overexpression of HoxB4 in differentiating hESCs increases hematopoietic colony formation and hematopoietic cell formation in vitro, but does not affect in vivo repopulation in adult mice hosts.  相似文献   

5.
Despite a growing body of literature concerning the hematopoietic differentiation of human embryonic stem cells (hESCs), the full hematopoietic potential of the majority of existing hESC lines remains unknown. In this study, the hematopoietic response of five NIH-approved hESC lines (H1, hSF6, BG01, BG02, and BG03) was compared. Our data show that despite expressing similar hESC markers under self-renewing conditions and initiating mesodermal differentiation under spontaneous differentiation conditions, marked differences in subsequent hematopoietic differentiation potential among these lines existed. A high degree of hematopoietic differentiation was attained only by H1 and BG02, whereas this process appeared to be abortive in nature for hSF6, BG01, and BG03. This difference in hematopoietic differentiation predisposition was readily apparent during spontaneous differentiation, and further augmented under hematopoietic-inducing conditions. This predisposition appeared to be intrinsic to the specific hESC line and independent of passage number or gender karyotype. Interestingly, H1 and BG02 displayed remarkable similarities in their kinetics of hematopoietic marker expression, hematopoietic colony formation, erythroid differentiation, and globin expression, suggesting that a similar, predetermined differentiation sequence is followed. The identification of intrinsic and extrinsic factors governing the hematopoietic differentiation potential of hESCs will be of great importance for the putative clinical utility of hESC lines.  相似文献   

6.
The signals that direct pluripotent stem cell differentiation into lineage‐specific cells remain largely unknown. Here, we investigated the roles of BMP on vascular progenitor development from human embryonic stem cells (hESCs). In a serum‐free condition, hESCs sequentially differentiated into CD34+CD31?, CD34+CD31+, and then CD34?CD31+ cells during vascular cell development. CD34+CD31+ cells contained vascular progenitor population that gives rise to endothelial cells and smooth muscle cells. BMP4 promoted hESC differentiation into CD34+CD31+ cells at an early stage. In contrast, TGFβ suppressed BMP4‐induced CD34+CD31+ cell development, and promoted CD34+CD31? cells that failed to give rise to either endothelial or smooth muscle cells. The BMP‐Smad inhibitor, dorsomorphin, inhibited phosphorylation of Smad1/5/8, and blocked hESC differentiation to CD34+CD31+ progenitor cells, suggesting that BMP Smad‐dependent signaling is critical for CD34+CD31+ vascular progenitor development. Our findings provide new insight into how pluripotent hESCs differentiate into vascular cells. J. Cell. Biochem. 109: 363–374, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
In this study, we characterize new multipotent human mesenchymal stem cell lines (MSCs) derived from desquamated (shedding) endometrium of menstrual blood. The isolated endometrial MSC (eMSC) is an adhesive to plastic heterogeneous population composed mainly of endometrial glandular and stromal cells. The established cell lines meet the criteria of the International Society for Cellular Therapy for defining multipotent human MSCs of any origin. The eMSCs have positive expression of CD13, CD29, CD44, CD73, CD90, and CD105 markers and lack hematopoietic cell surface antigens CD19, CD34, CD45, CD117, CD130, and HLA-DR (class II). Multipotency of the established eMSCs is confirmed by their ability to differentiate into other mesodermal lineages, such as osteocytes and adipocytes. In addition, the isolated eMSCs partially (over 50%) express the pluripotency marker SSEA-4. However, they do not express Oct-4. Immunofluorescent analysis of the derived cells revealed the expression of the neural precursor markers nestin and β-III-tubulin. This suggests a neural predisposition of the established eMSCs. These cells are characterized by a high proliferation rate (doubling time 22–23 h) and a high colony-forming efficiency (about 60%). In vitro, the eMSCs undergo more than 45 population doublings without karyotypic abnormalities. We demonstrate that mitotically inactivated eMSCs are perfect feeder cells for maintenance of human embryonic stem cell lines (hESCs) C612 and C910. The eMSCs, being a feeder culture, sustain the hESC pluripotent status that verified by expression of Oct-4, alkaline phosphatase and SSEA-4 markers. The hESCs cocultured with the eMSCs retain their morphology and proliferative rate for more than 40 passages and exhibit the capability for spontaneous differentiation into embryoid bodies comprising three embryonic germ layers. Thus, an easy and noninvasive isolation of the eMSCs from menstrual blood, their multipotency and high proliferative activity in vitro without karyotypic abnormalities demonstrate the potential of use of these stem cells in regenerative medicine. Using the derived eMSCs as the feeder culture eliminates the risks associated with animal cells while transferring hESCs to clinical setting.  相似文献   

8.
In vitro differentiation of embryonic stem (ES) cells is often used to study hematopoiesis. However, the differentiation pathway of lymphocytes, in particular natural killer (NK) cells, from ES cells is still unclear. Here, we used a multi-step in vitro ES cell differentiation system to study lymphocyte development from ES cells, and to characterize NK developmental intermediates. We generated embryoid bodies (EBs) from ES cells, isolated CD34(+) EB cells and cultured them on OP9 stroma with a cocktail of cytokines to generate cells we termed ES-derived hematopoietic progenitors (ES-HPs). EB cell subsets, as well as ES-HPs derived from EBs, were tested for NK, T, B and myeloid lineage potentials using lineage specific cultures. ES-HPs derived from CD34(+) EBs differentiated into NK cells when cultured on OP9 stroma with IL-2 and IL-15, and into T cells on Delta-like 1-transduced OP9 (OP9-DL1) with IL-7 and Flt3-L. Among CD34(+) EB cells, NK and T cell potentials were detected in a CD45(-) subset, whereas CD45(+) EB cells had myeloid but not lymphoid potentials. Limiting dilution analysis of ES-HPs generated from CD34(+)CD45(-) EB cells showed that CD45(+)Mac-1(-)Ter119(-) ES-HPs are highly enriched for NK progenitors, but they also have T, B and myeloid potentials. We concluded that CD45(-)CD34(+) EB cells have lymphoid potential, and they differentiate into more mature CD45(+)Lin(-) hematopoietic progenitors that have lymphoid and myeloid potential. NK progenitors among ES-HPs are CD122(-) and they rapidly acquire CD122 as they differentiate along the NK lineage.  相似文献   

9.
Human embryonic stem cells (hESCs) can be induced to differentiate into blood cells using either co-culture with stromal cells or following human embryoid bodies (hEBs) formation. It is now well established that the HOXB4 homeoprotein promotes the expansion of human adult hematopoietic stem cells (HSCs) but also myeloid and lymphoid progenitors. However, the role of HOXB4 in the development of hematopoietic cells from hESCs and particularly in the generation of hESC-derived NK-progenitor cells remains elusive. Based on the ability of HOXB4 to passively enter hematopoietic cells in a system that comprises a co-culture with the MS-5/SP-HOXB4 stromal cells, we provide evidence that HOXB4 delivery promotes the enrichment of hEB-derived precursors that could differentiate into fully mature and functional NK. These hEB-derived NK cells enriched by HOXB4 were characterized according to their CMH class I receptor expression, their cytotoxic arsenal, their expression of IFNγ and CD107a after stimulation and their lytic activity. Furthermore our study provides new insights into the gene expression profile of hEB-derived cells exposed to HOXB4 and shows the emergence of CD34(+)CD45RA(+) precursors from hEBs indicating the lymphoid specification of hESC-derived hematopoietic precursors. Altogether, our results outline the effects of HOXB4 in combination with stromal cells in the development of NK cells from hESCs and suggest the potential use of HOXB4 protein for NK-cell enrichment from pluripotent stem cells.  相似文献   

10.
11.
One of the goals of stem cell technology is to control the differentiation of human embryonic stem cells (hESCs), thereby generating large numbers of specific cell types for many applications including cell replacement therapy. Although individual hESC lines resemble each other in expressing pluripotency markers and telomerase activity, it is not clear whether they are equivalent in their developmental potential in vitro. We compared the developmental competence of three hESC lines (HSF6, Miz-hES4, and Miz-hES6). All three generated the three embryonic germ layers, extraembryonic tissues, and primordial germ cells during embryoid body (EB) formation. However, HSF6 and Miz-hES6 readily formed neuroectoderm, whereas Miz-hES4 differentiated preferentially into mesoderm and endoderm. Upon terminal differentiation, HSF6 and Miz-hES6 produced mainly neuronal cells whereas Miz-hES4 mainly formed mesendodermal derivatives, including endothelial cells, leukocyte progenitors, hepatocytes, and pancreatic cells. Our observations suggest that independently-derived hESCs may differ in their developmental potential.  相似文献   

12.
The Notch signaling pathway plays important roles in cell-fate determination during embryonic development and adult life. In this study, we focus on the role of Notch signaling in governing cell-fate choices in human embryonic stem cells (hESCs). Using genetic and pharmacological approaches, we achieved both blockade and conditional activation of Notch signaling in several hESC lines. We report here that activation of Notch signaling is required for undifferentiated hESCs to form the progeny of all three embryonic germ layers, but not trophoblast cells. In addition, transient Notch signaling pathway activation enhanced generation of hematopoietic cells from committed hESCs. These new insights into the roles of Notch in hESC-fate determination may help to efficiently direct hESC differentiation into therapeutically relevant cell types.  相似文献   

13.
Definitive hematopoietic progenitor cells have been thought to develop from the vascular endothelium located in the aorta-gonad-mesonephros region of the mouse embryo. However, several recent findings have suggested that most hematopoietic progenitors are derived from non-endothelial precursor cells expressing CD41. We characterized two distinct precursor populations of definitive hematopoietic cell lineages, vascular endothelial (VE)-cadherin(+) CD41(-) CD45(-) endothelial cells and CD41(+) CD45(-) non-endothelial progenitors, both of which are derived from lateral mesoderm. VE-cadherin(+) endothelial cells obtained from cultures of differentiating embryonic stem cells possessed hematopoietic potential encompassing erythroid, myeloid and B lymphoid lineages, whereas CD41(+) progenitors lacked the B lymphopoietic potential. VE-cadherin(+) endothelial cells in the lower trunk of the embryo proper showed a significant potential for initiating B lymphopoiesis in cultures, while endothelial cells in the yolk sac appeared to have a bias for myeloerythropoietic differentiation. CD41(+) progenitors isolated from yolk sac and embryo proper were capable of generating multiple hematopoietic lineages, although mast cell precursors were exclusively enriched in CD41(+) progenitors in the yolk sac. These results suggest that hemogenic endothelial cells and CD41(+) progenitors possess distinct hematopoietic potential depending on the tissues in which they reside.  相似文献   

14.
Pluripotent stem cells are derived from the inner cell mass of preimplantation embryos, and display the ability of the embryonic founder cells by forming all three germ lineages in vitro. It is well established that the cellular niche plays an important role in stem cell maintenance and differentiation. Stem cells generally have limited function without the specialized microenvironment of the niche that provides key cell-cell contact, soluble mediators, and extracellular matrices. We were interested in the role that Wnt signaling, in particular Wnt3a, played in human embryonic stem cell (hESC) differentiation to hepatic endoderm in vitro. hESC differentiation to hepatic endoderm was efficient in pure stem cell populations. However, in younger hESC lines, generating stromal cell mesenchyme, our model was very inefficient. The negative effect of stroma could be reversed by pretreating hESCs with Wnt3a prior to the onset of hepatocyte differentiation. Wnt3a pretreatment reinstated efficient hESC differentiation to hepatic endoderm. These studies represent an important step in understanding hepatocyte differentiation from hESCs and the role played by the cellular niche in vitro.  相似文献   

15.
In this study, we characterize new multipotent human mesenchymal stem cell (MSC) lines derived from desquamated (shedding) endometrium in menstrual blood. The isolated endometrial MSC (eMSC) is an adhesive to plastic heterogeneous population composed mainly of endometrial glandular and stromal cells. The established cell lines meet the criteria of the International Society for Cellular Therapy for defining multipotent human MSC of any origin. The eMSCs have positive expression of CD73, CD90, CD105, CD13, CD29, CD44 markers and the absence of expression of the hematopoietic cell surface antigens CD19, CD34, CD45, CD117, CD130 and HLA-DR (class II). Multipotency of the established eMSC is confirmed by their ability to differentiate into other mesodermal cell types such as osteocytes and adipocytes. Besides, the isolated eMSC lines partially (over 50%) express the pluripotency marker SSEA-4, but do not express Oct-4. Immunofluorescent analysis of the derived cells revealed the expression of the neural precursor markers nestin and beta-III-tubulin. This suggests a neural predisposition of the established eMSC. These cells are characterized by high rate of cell proliferation (doubling time 22-23 h) and high cloning efficiency (about 60%). In vitro the eMSCs undergo more than 45 population doublings revealing normal karyotype without karyotipic abnormalilies. We demonstrate, that the mititotically inactivated eMSCs are perfect feeder cells for human embryonic stem cell lines (hESC) C612 and C910. The eMSC being a feeder culture maintain the pluripotent status of the hESC, which is revealed by the expression of Oct-4, alkaline phosphatase and SSEA-4. When co-culturing, hESC retain their morphology, proliferative rate for more than 40 passages and capability for spontaneous differentiation into embryoid bodies comprising the three embryonic germ layers. Thus, an easy and non-invasive extraction of the eMSC in menstrual blood, their multipotency and high proliferative activity in vitro without karyotypic abnormalities demonstrate the potential of use of these stem cells in regenerative medicine. Using the derived eMSCs as the feeder culture eliminates the risks associated with animal cells while transferring hESC to clinical setting.  相似文献   

16.
17.
Hepatocytes derived from human embryonic stem cells (hESCs) are a potential cell source for regenerative medicine. However, the definitive factors that are responsible for hepatic differentiation of hESCs remain unclear. We aimed to evaluate the effects of various extracellular matrixes and growth factors on endodermal differentiation and to optimize the culture conditions to induce hepatic differentiation of hESCs. The transgene vector that contained enhanced green fluorescent protein (EGFP) under the control of human alpha-fetoprotein (AFP) enhancer/promoter was transfected into hESC lines. The transgenic hESCs were cultured on extracellular matrixes (collagen type I, laminin, and Matrigel) in the presence or absence of growth factors including hepatocyte growth factor (HGF), bone morphogenetic protein 4, fibroblast growth factor 4, all-trans-retinoic acid, and activin A. The expression of AFP-EGFP was measured by flow cytometry. The culture on Matrigel-coated dishes with 100 ng/ml activin A showed 19.5% of EGFP-positive proportions. Moreover, the sequential addition of 100 ng/ml activin A and 20 ng/ml HGF resulted in 21.7% and produced a higher yield of EGFP-positive cells than the group stimulated by activin A alone. RT-PCR and immunocytochemical staining revealed these EGFP-positive cells to differentiate into mesendoderm-like cells by use of activin A and then into hepatic endoderm cells by use of HGF. Two other hESC lines also differentiated into endoderm on the hepatic lineage by our method. In conclusion, we therefore found this protocol to effectively differentiate multiple hESC lines to early hepatocytes using activin A and HGF on Matrigel.  相似文献   

18.
19.
The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high oxygen tension, in culture medium with or without basic fibroblast growth factor, and on feeder layers comprising mouse embryonic fibroblasts or human foreskin fibroblasts to evaluate whether hESCs and their progeny produced YKL-40 and to characterize YKL-40 expression during differentiation. Secreted YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3β, PDX1, CD34, p63, nestin, PAX6) markers. Double-labeling showed YKL-40 expression in OCT4-positive hESCs, PAX6-positive neuroectodermal cells, and HNF-3β-positive endodermal cells. The differentiating progeny showed strong YKL-40 expression. Abrupt transition between YKL-40 and OCT4-positive hESCs and YKL-40-positive ecto- and neuroectodermal lineages was observed within the same epithelial-like layer. YKL-40-positive cells within deeper layers lacked contact with OCT4-positive cells. YKL-40 may be important in initial cell differentiation from hESCs toward ectoderm and neuroectoderm, with retained epithelial morphology, whereas later differentiation into endoderm and mesoderm involves a transition into the deeper layers of the colony.  相似文献   

20.
Human embryonic stem cells (hESCs) are pluripotent cells that can differentiate into neural cell lineages. These neural populations are usually heterogeneous and can contain undifferentiated pluripotent cells that are capable of producing teratomas in cell grafts. The characterization of surface protein profiles of hESCs and their neural derivatives is important to determine the specific markers that can be used to exclude undifferentiated cells from neural populations. In this study, we analyzed the cluster of differentiation (CD) marker expression profiles of seven undifferentiated hESC lines using flow-cytometric analysis and compared their profiles to those of neural derivatives. Stem cell and progenitor marker CD133 and epithelial adhesion molecule marker CD326 were more highly expressed in undifferentiated hESCs, whereas neural marker CD56 (NCAM) and neural precursor marker (chemokine receptor) CD184 were more highly expressed in hESC-derived neural cells. CD326 expression levels were consistently higher in all nondifferentiated hESC lines than in neural cell derivatives. In addition, CD326-positive hESCs produced teratomas in SCID mouse testes, whereas CD362-negative neural populations did not. Thus, CD326 may be useful as a novel marker of undifferentiated hESCs to exclude undifferentiated hESCs from differentiated neural cell populations prior to transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号