首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently it has been demonstrated that CD30 expression was rather specific for transformed than for normal human ES cells and therefore CD30 maybe suggested as a potential marker for human ES cells bearing chromosomal abnormalities. Using immunohistochemistry and RT-PCR analysis we examined СD30 expression in 10 hESCs lines with normal and abberant karyotypes. All hESC lines expressed CD30 antigen and RNA in undifferentiated state whether cell line beared chromosomal abnormalities or not. In contrast to previous notions our data demonstrate that CD30 could be considered as marker of undifferentiated hESCs without respect to karyotype changes.  相似文献   

2.
One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specific cell type during early development, and how, or if, pluripotent genes, such as Oct4 and Sox2, play a role in this transition. Here, by studying the dynamic changes in the expression of embryonic surface antigens, we identified the sequential loss of Tra-1-81 and SSEA4 during hESC neural differentiation and isolated a transient Tra-1-81(-)/SSEA4(+) (TR-/S4+) cell population in the early stage of neural differentiation. These cells are distinct from both undifferentiated hESCs and their committed neural progenitor cells (NPCs) in their gene expression profiles and response to extracellular signalling; they co-express both the pluripotent gene Oct4 and the neural marker Pax6. Furthermore, these TR-/S4+ cells are able to produce cells of both neural and non-neural lineages, depending on their environmental cues. Our results demonstrate that expression of the pluripotent factor Oct4 is progressively downregulated and is accompanied by the gradual upregulation of neural genes, whereas the pluripotent factor Sox2 is consistently expressed at high levels, indicating that these pluripotent factors may play different roles in the regulation of neural differentiation. The identification of TR-S4+ cells provides a cell model for further elucidation of the molecular mechanisms underlying hESC neural differentiation.  相似文献   

3.
Human embryonic stem cells (hESC) can self-renew indefinitely in vitro, and with the appropriate cues can be induced to differentiate into potentially all somatic cell lineages. Differentiated hESC derivatives can potentially be used in transplantation therapies to treat a variety of cell-degenerative diseases. However, hESC differentiation protocols usually yield a mixture of differentiated target and off-target cell types as well as residual undifferentiated cells. For the translation of differentiated hESC-derivatives from the laboratory to the clinic, it is important to be able to discriminate between undifferentiated (pluripotent) and differentiated cells, and generate methods to separate these populations. Safe application of hESC-derived somatic cell types can only be accomplished with pluripotent stem cell-free populations, as residual hESCs could induce tumors known as teratomas following transplantation. Towards this end, here we describe a methodology to detect pluripotency associated cell surface antigens with the monoclonal antibodies TG30 (CD9) and GCTM-2 via fluorescence activated cell sorting (FACS) for the identification of pluripotent TG30Hi-GCTM-2Hi hESCs using positive selection. Using negative selection with our TG30/GCTM-2 FACS methodology, we were able to detect and purge undifferentiated hESCs in populations undergoing very early-stage differentiation (TG30Neg-GCTM-2Neg). In a further study, pluripotent stem cell-free samples of differentiated TG30Neg-GCTM-2Neg cells selected using our TG30/GCTM-2 FACS protocol did not form teratomas once transplanted into immune-compromised mice, supporting the robustness of our protocol. On the other hand, TG30/GCTM-2 FACS-mediated consecutive passaging of enriched pluripotent TG30Hi-GCTM-2Hi hESCs did not affect their ability to self-renew in vitro or their intrinsic pluripotency. Therefore, the characteristics of our TG30/GCTM-2 FACS methodology provide a sensitive assay to obtain highly enriched populations of hPSC as inputs for differentiation assays and to rid potentially tumorigenic (or residual) hESC from derivative cell populations.  相似文献   

4.
Various types of feeder cells have been adopted for the culture of human embryonic stem cells (hESCs) to improve their attachment and provide them with stemness-supporting factors. However, feeder cells differ in their capacity to support the growth of undifferentiated hESCs. Here, we compared the expression and secretion of four well-established regulators of hESC pluripotency and/or differentiation among five lines of human foreskin fibroblasts and primary mouse embryonic fibroblasts throughout a standard hESC culture procedure. We found that human and mouse feeder cells secreted comparable levels of TGF beta 1. However, mouse feeder cells secreted larger quantities of activin A than human feeder cells. Conversely, FGF-2, which was produced by human feeder cells, could not be detected in culture media from mouse feeder cells. The quantity of BMP-4 was at about the level of detectability in media from all feeder cell types, although BMP-4 dimers were present in all feeder cells. Production of TGF beta 1, activin A, and FGF-2 varied considerably among the human-derived feeder cell lines. Low- and high-producing human feeder cells as well as mouse feeder cells were evaluated for their ability to support the undifferentiated growth of hESCs. We found that a significantly lower proportion of hESCs maintained on human feeder cell types expressed SSEA3, an undifferentiated cell marker. Moreover, SSEA3 expression and thus the pluripotent hESC compartment could be partially rescued by addition of activin A. Cumulatively, these results suggest that the ability of a feeder layer to promote the undifferentiated growth of hESCs is attributable to its characteristic growth factor production.  相似文献   

5.
To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology for generating large numbers of enriched cardiomyocytes for therapeutic applications.  相似文献   

6.
Human embryonic stem cells (hESCs) are pluripotent, whereby they can proliferate endlessly and differentiate into many different cell types. At the molecular level, little is known of the mechanisms underlying their capability for self-renewal and differentiation. In the present study, we established two new hESC lines (AMC-hES1 and AMC-hES2) and demonstrated the existence of a regulator that may be a key molecule in hESC dynamics. Spa-1 is a principal Ras-proximate 1 (Rap1) GTPase-activating protein in hematopoietic progenitor cells that regulates Rap1-related signal transduction and is expressed restrictively in human adult tissues (bone marrow, thymus, and spleen). To investigate its functions in hESCs, we examined spa-1 expression profiles during hESC differentiation and used RNA interference (RNAi) to downregulate spa-1 in these cells. Our results show that Spa-1 is expressed in undifferentiated hESCs and is downregulated during hESC differentiation. In addition, the process of passing from the mode of self-renewal to that of differentiation in hESCs was regulated by spa-1 via Rap1/Raf/mitogen-activated protein kinase kinase/extracellular signal-related kinase signaling. An RNAi expression vector against spa-1 (pSUPER.retro.puro) was transfected into hESCs, which were seen to differentiate into three germ layers in spite of being in the undifferentiated condition. Based on our findings, therefore, it appears that spa-1 may be involved in hESC dynamics, and our results provide fundamental information regarding the self-renewal and differentiation of hESCs.  相似文献   

7.
This study describes the use of a previously reported chimerised monoclonal antibody (mAb), ch2448, to kill human embryonic stem cells (hESCs) in vivo and prevent or delay the formation of teratomas. ch2448 was raised against hESCs and was previously shown to effectively kill ovarian and breast cancer cells in vitro and in vivo. The antigen target was subsequently found to be Annexin A2, an oncofetal antigen expressed on both embryonic cells and cancer cells. Against cancer cells, ch2448 binds and kills via antibody-dependent cell-mediated cytotoxicity (ADCC) and/or antibody-drug conjugate (ADC) routes. Here, we investigate if the use of ch2448 can be extended to hESC. ch2448 was found to bind specifically to undifferentiated hESC but not differentiated progenitors. Similar to previous study using cancer cells, ch2448 kills hESC in vivo either indirectly by eliciting ADCC or directly as an ADC. The treatment with ch2448 post-transplantation eliminated the in vivo circulating undifferentiated cells and prevented or delayed the formation of teratomas. This surveillance role of ch2448 adds an additional layer of safeguard to enhance the safety and efficacious use of pluripotent stem cell-derived products in regenerative medicine. Thereby, translating the use of ch2448 in the treatment of cancers to a proof of concept study in hESC (or pluripotent stem cell [PSC]), we show that mAbs can also be used to eliminate teratoma forming cells in vivo during PSC-derived cell therapies. We propose to use this strategy to complement existing methods to eliminate teratoma-forming cells in vitro. Residual undifferentiated cells may escape in vitro removal methods and be introduced into patients together with the differentiated cells.  相似文献   

8.

Background

Neural induction of human pluripotent stem cells often yields heterogeneous cell populations that can hamper quantitative and comparative analyses. There is a need for improved differentiation and enrichment procedures that generate highly pure populations of neural stem cells (NSC), glia and neurons. One way to address this problem is to identify cell-surface signatures that enable the isolation of these cell types from heterogeneous cell populations by fluorescence activated cell sorting (FACS).

Methodology/Principal Findings

We performed an unbiased FACS- and image-based immunophenotyping analysis using 190 antibodies to cell surface markers on naïve human embryonic stem cells (hESC) and cell derivatives from neural differentiation cultures. From this analysis we identified prospective cell surface signatures for the isolation of NSC, glia and neurons. We isolated a population of NSC that was CD184+/CD271/CD44/CD24+ from neural induction cultures of hESC and human induced pluripotent stem cells (hiPSC). Sorted NSC could be propagated for many passages and could differentiate to mixed cultures of neurons and glia in vitro and in vivo. A population of neurons that was CD184/CD44/CD15LOW/CD24+ and a population of glia that was CD184+/CD44+ were subsequently purified from cultures of differentiating NSC. Purified neurons were viable, expressed mature and subtype-specific neuronal markers, and could fire action potentials. Purified glia were mitotic and could mature to GFAP-expressing astrocytes in vitro and in vivo.

Conclusions/Significance

These findings illustrate the utility of immunophenotyping screens for the identification of cell surface signatures of neural cells derived from human pluripotent stem cells. These signatures can be used for isolating highly pure populations of viable NSC, glia and neurons by FACS. The methods described here will enable downstream studies that require consistent and defined neural cell populations.  相似文献   

9.
Various types of human cells have been tested as feeder cells for the undifferentiated growth of human embryonic stem cells (hESCs) in vitro. We report here the successful culture of two hESC lines (H1 and H9) on human umbilical cord blood (UCB)-derived fibroblast-like cells. These cells permit the long-term continuous growth of undifferentiated and pluripotent hESCs. The cultured hESCs had normal karyotypes, expressed OCT-4, SSEA-4, TRA-1-60, and TRA-1-81, formed cystic embryonic body in vitro and teratomas in vivo after injected into immunodeficient mice. The wide availability of clinical-grade human UCB makes it a promising source of support cells for the growth of hESC for use in cell therapies.  相似文献   

10.
An important risk in the clinical application of human pluripotent stem cells (hPSCs), including human embryonic and induced pluripotent stem cells (hESCs and hiPSCs), is teratoma formation by residual undifferentiated cells. We raised a monoclonal antibody against hESCs, designated anti-stage-specific embryonic antigen (SSEA)-5, which binds a previously unidentified antigen highly and specifically expressed on hPSCs--the H type-1 glycan. Separation based on SSEA-5 expression through fluorescence-activated cell sorting (FACS) greatly reduced teratoma-formation potential of heterogeneously differentiated cultures. To ensure complete removal of teratoma-forming cells, we identified additional pluripotency surface markers (PSMs) exhibiting a large dynamic expression range during differentiation: CD9, CD30, CD50, CD90 and CD200. Immunohistochemistry studies of human fetal tissues and bioinformatics analysis of a microarray database revealed that concurrent expression of these markers is both common and specific to hPSCs. Immunodepletion with antibodies against SSEA-5 and two additional PSMs completely removed teratoma-formation potential from incompletely differentiated hESC cultures.  相似文献   

11.
Fibroblast feeder cells play an important role in supporting the derivation and long term culture of undifferentiated, pluripotent human embryonic stem cells (hESCs). The feeder cells secrete various growth factors and extracellular matrix (ECM) proteins into extracellular milieu. However, the roles of the feeder cell-secreted factors are largely unclear. Animal feeder cells and use of animal serum also make current feeder cell culture conditions unsuitable for derivation of clinical grade hESCs. We established xeno-free feeder cell lines using human serum (HS) and studied their function in hESC culture. While human foreskin fibroblast (hFF) feeder cells were clearly hESC supportive, none of the established xeno-free human dermal fibroblast (hDF) feeder cells were able to maintain undifferentiated hESC growth. The two fibroblast types were compared for their ECM protein synthesis, integrin receptor expression profiles and key growth factor secretion. We show that hESC supportive feeder cells produce laminin-511 and express laminin-binding integrins α3ß1, α6ß1 and α7ß1. These results indicate specific laminin isoforms and integrins in maintenance of hESC pluripotency in feeder-dependent cultures. In addition, several genes with a known or possible role for hESC pluripotency were differentially expressed in distinct feeder cells.  相似文献   

12.
13.
Autophagy in human embryonic stem cells   总被引:2,自引:0,他引:2  
Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.  相似文献   

14.
In this study, we characterize new multipotent human mesenchymal stem cell lines (MSCs) derived from desquamated (shedding) endometrium of menstrual blood. The isolated endometrial MSC (eMSC) is an adhesive to plastic heterogeneous population composed mainly of endometrial glandular and stromal cells. The established cell lines meet the criteria of the International Society for Cellular Therapy for defining multipotent human MSCs of any origin. The eMSCs have positive expression of CD13, CD29, CD44, CD73, CD90, and CD105 markers and lack hematopoietic cell surface antigens CD19, CD34, CD45, CD117, CD130, and HLA-DR (class II). Multipotency of the established eMSCs is confirmed by their ability to differentiate into other mesodermal lineages, such as osteocytes and adipocytes. In addition, the isolated eMSCs partially (over 50%) express the pluripotency marker SSEA-4. However, they do not express Oct-4. Immunofluorescent analysis of the derived cells revealed the expression of the neural precursor markers nestin and β-III-tubulin. This suggests a neural predisposition of the established eMSCs. These cells are characterized by a high proliferation rate (doubling time 22–23 h) and a high colony-forming efficiency (about 60%). In vitro, the eMSCs undergo more than 45 population doublings without karyotypic abnormalities. We demonstrate that mitotically inactivated eMSCs are perfect feeder cells for maintenance of human embryonic stem cell lines (hESCs) C612 and C910. The eMSCs, being a feeder culture, sustain the hESC pluripotent status that verified by expression of Oct-4, alkaline phosphatase and SSEA-4 markers. The hESCs cocultured with the eMSCs retain their morphology and proliferative rate for more than 40 passages and exhibit the capability for spontaneous differentiation into embryoid bodies comprising three embryonic germ layers. Thus, an easy and noninvasive isolation of the eMSCs from menstrual blood, their multipotency and high proliferative activity in vitro without karyotypic abnormalities demonstrate the potential of use of these stem cells in regenerative medicine. Using the derived eMSCs as the feeder culture eliminates the risks associated with animal cells while transferring hESCs to clinical setting.  相似文献   

15.
Human embryonic stem cells (hESCs) offer tremendous potential for not only treating neurological disorders but also for their ability to serve as vital reagents to model and investigate human disease. To further our understanding of a key protein involved in Alzheimer disease pathogenesis, we stably overexpressed amyloid precursor protein (APP) in hESCs. Remarkably, we found that APP overexpression in hESCs caused a rapid and robust differentiation of pluripotent stem cells toward a neural fate. Despite maintenance in standard hESC media, up to 80% of cells expressed the neural stem cell marker nestin, and 65% exhibited the more mature neural marker β-3 tubulin within just 5 days of passaging. To elucidate the mechanism underlying the effects of APP on neural differentiation, we examined the proteolysis of APP and performed both gain of function and loss of function experiments. Taken together, our results demonstrate that the N-terminal secreted soluble forms of APP (in particular sAPPβ) robustly drive neural differentiation of hESCs. Our findings not only reveal a novel and intriguing role for APP in neural lineage commitment but also identify a straightforward and rapid approach to generate large numbers of neurons from human embryonic stem cells. These novel APP-hESC lines represent a valuable tool to investigate the potential role of APP in development and neurodegeneration and allow for insights into physiological functions of this protein.  相似文献   

16.
Transplantation of human embryonic stem cells (hESC) into immune-deficient mice leads to the formation of differentiated tumors comprising all three germ layers, resembling spontaneous human teratomas. Teratoma assays are considered the gold standard for demonstrating differentiation potential of pluripotent hESC and hold promise as a standard for assessing safety among hESC-derived cell populations intended for therapeutic applications. We tested the potency of teratoma formation in seven anatomical transplantation locations (kidney capsule, muscle, subcutaneous space, peritoneal cavity, testis, liver, epididymal fat pad) in SCID mice with and without addition of Matrigel, and found that intramuscular teratoma formation was the most experimentally convenient, reproducible, and quantifiable. In the same experimental setting, we compared undifferentiated hESC and differentiated populations enriched for either beating cardiomyocytes or definitive endoderm derivatives (insulin-secreting beta cells), and showed that all cell preparations rapidly formed teratomas with varying percentages of mesoderm, ectoderm, and endoderm. In limiting dilution experiments, we found that as little as two hESC colonies spiked into feeder fibroblasts produced a teratoma, while a more rigorous single-cell titration achieved a detection limit of 1/4000. In summary, we established core parameters essential for facilitating safety profiling of hESC-derived products for future therapeutic applications.  相似文献   

17.
Human embryonic stem cells (hESCs) hold great promise for cell-based therapies and drug screening applications. However, growing and processing large quantities of undifferentiated hESCs is a challenging task. Conventionally, hESCs are passaged as clusters, which can limit their growth efficiency and use in downstream applications. This study demonstrates that hESCs can be passaged as single cells using Accutase, a formulated mixture of digestive enzymes. In contrast to trypsin treatment, Accutase treatment does not significantly affect the viability and proliferation rate of hESC dissociation into single cells. Accutase-dissociated single cells can be separated by FACS and proliferate as fully pluripotent hESCs. An Oct4-eGFP reporter construct engineered into hESCs was used to monitor the pluripotency of hESCs passaged with Accutase. Compared to collagenase-passaged hESCs, Accutase-treated cultures contained a larger proportion of undifferentiated (Oct4-positive) cells. Additionally, Accutase-passaged undifferentiated hESCs could be grown as monolayers without the need for monitoring and/or selection for quality hESC colonies.  相似文献   

18.
Human embryonic stem cells (hESC) represent a population of undifferentiated pluripotent cells with both self-renewal and multilineage differentiation characteristics. Proteomics provides a powerful approach for studying the characteristics of hESC and discovering molecular markers. We have analyzed proteome profiles of three hESC lines using 2-DE and MALDI TOF-TOF. Out of 844 spots analyzed with MALDI TOF-TOF, 685 proteins were identified of which 60 proteins were classified as the most abundant proteins on 2-D gels. A large number of proteins particularly high abundant ones were identified as chaperones, heat shock proteins, ubiquitin/proteasome, and oxidative stress responsive proteins underscoring the ability of these cells to resist oxidative stress and increase the life span. Several proteins involved in cell proliferation and differentiation were also among the highly expressed proteins. Although overall expression pattern of three hESC were similar, 54 spots changed quantitatively and 14 spots changed qualitatively among the hESC cell lines. Most of these proteins were identified as proteins involved in cell growth, metabolism and signal transduction, which may affect the self-renewal and pluripotency. To our knowledge, this study represents the first proteomic dataset for hESC and provides a better insight into the biology of hESC. Proteome maps of hESC are accessible at http://www.RoyanProteomics.ir.  相似文献   

19.

Rationale

Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs) are promising cell sources for cardiac regenerative medicine. To realize hESC/hiPSC-based cardiac cell therapy, efficient induction, purification, and transplantation methods for cardiomyocytes are required. Though marker gene transduction or fluorescent-based purification methods have been reported, fast, efficient and scalable purification methods with no genetic modification are essential for clinical purpose but have not yet been established. In this study, we attempted to identify cell surface markers for cardiomyocytes derived from hESC/hiPSCs.

Method and Result

We adopted a previously reported differentiation protocol for hESCs based on high density monolayer culture to hiPSCs with some modification. Cardiac troponin-T (TNNT2)-positive cardiomyocytes appeared robustly with 30–70% efficiency. Using this differentiation method, we screened 242 antibodies for human cell surface molecules to isolate cardiomyocytes derived from hiPSCs and identified anti-VCAM1 (Vascular cell adhesion molecule 1) antibody specifically marked cardiomyocytes. TNNT2-positive cells were detected at day 7–8 after induction and 80% of them became VCAM1-positive by day 11. Approximately 95–98% of VCAM1-positive cells at day 11 were positive for TNNT2. VCAM1 was exclusive with CD144 (endothelium), CD140b (pericytes) and TRA-1-60 (undifferentiated hESCs/hiPSCs). 95% of MACS-purified cells were positive for TNNT2. MACS purification yielded 5−10×105 VCAM1-positive cells from a single well of a six-well culture plate. Purified VCAM1-positive cells displayed molecular and functional features of cardiomyocytes. VCAM1 also specifically marked cardiomyocytes derived from other hESC or hiPSC lines.

Conclusion

We succeeded in efficiently inducing cardiomyocytes from hESCs/hiPSCs and identifying VCAM1 as a potent cell surface marker for robust, efficient and scalable purification of cardiomyocytes from hESC/hiPSCs. These findings would offer a valuable technological basis for hESC/hiPSC-based cell therapy.  相似文献   

20.
In recent years, substantial progress has been made in identifying culture conditions and specific molecular factors that maintain human embryonic stem cells (hESCs) in a self-renewing, pluripotent state. As science and medicine move closer to producing viable hESC-based therapeutics, effective methods of isolating and maintaining undifferentiated hESCs using clinically acceptable good manufacturing practices must be developed. In recent years, progress toward this goal has included the identification of molecular factors that induce or repress hESC self-renewal and the development of defined media that support long-term hESC expansion. In addition, the recent discovery of novel means to derive pluripotent cells that avoid embryo destruction, including induced pluripotent stem (iPS cells), may mitigate ethical concerns associated with the use of hESCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号